
1 

Elements of Graph Theory 

Quick review of Chapters 9.1… 9.5, 9.7 (studied in
 Mt1348/2008) = all basic concepts must be known 

New topics 
•  we will mostly skip shortest paths (Chapter 9.6), as that was
 covered in Data Structures 
•  Graph colouring (Chapter 9.8) 
•  Trees (Chapter 3.1, 3.2) 
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Applications of Graphs 

Applications of Graphs: Potentially anything (graphs can
 represent  relations, relations can describe the
 extension of any predicate). 

Applications in networking, scheduling, flow optimization,
 circuit design, path planning. 

More applications: Geneology analysis, computer game
-playing, program compilation, object-oriented design,
 … 
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Simple Graphs 

Simple Graphs: Correspond to symmetric, irreflexive binary relations R. 
  A simple graph G=(V,E) consists of: 

  a set V of vertices or nodes (V corresponds to the universe of the
 relation R), 

  a set E of edges / arcs / links: unordered pairs of [distinct]
 elements u,v ∈ V, such that uRv. 

  A directed graph (V,E) consists of a set of vertices V and a binary
 relation (need not be symmetric) E on V. 

Visual Representation 
of a Simple Graph 

u, v are adjacent / neighbors / connected. 
Edge e is incident with vertices u and v. 
Edge e connects u and v. 
Vertices u and v are endpoints of edge e. 
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Degree of a Vertex 

  Let G be an undirected graph, v∈V a vertex. 
  The degree of v, deg(v), is its number of incident edges.

 (Except that any self-loops are counted twice.) 
  A vertex with degree 0 is called isolated. 
  A vertex of degree 1 is called pendant. 

Handshaking Theorem: Let G be an undirected (simple, multi-, or
 pseudo-) graph with vertex set V and edge set E.  Then 

Corollary: Any undirected graph has an even number of vertices
 of odd degree. 
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Directed Degree 

  Let G be a directed graph, v a vertex of G. 
  The in-degree of v, deg-(v), is the number of edges going to v. 
  The out-degree of v, deg+(v), is the number of edges coming

 from v. 
  The degree of v, deg(v):≡deg-(v)+deg+(v), is the sum of v’s in

-degree and out-degree. 

  Directed Handshaking Theorem:  
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Special Graph Structures 

K1 K2 K3 K4 K5 K6 

C3 C4 C5 C6 C7 C8 

Complete graphs Kn 

Cycles Cn 
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Special Graph Structures 

W3 W4 W5 W6 W7 W8 

Q0 
Q1 Q2 Q3 

Q4 

Number of vertices: 2n.  Number of edges? 

Wheels Wn 

n-Cubes Qn 
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A graph G=(V,E) is bipartite (two-part) iff  
V = V1∩V2 where V1∪V2=∅ and ∀e∈E:  
∃v1∈V1,v2∈V2: e={v1,v2}. 

For m,n∈N, the complete bipartite graph Km,n  
is a bipartite graph where |V1| = m, |V2| = n,  
and E = {{v1,v2}|v1∈V1 ∧ v2∈V2}. 

A subgraph of a graph G=(V,E) is a graph H=(W,F) where W⊆V
 and F⊆E. 

Bipartite Graphs 

V1 

V2 

K4,3 

G H 
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§9.3: Graph Representations & Isomorphism 

  Graph representations: 
  Adjacency lists. 
  Adjacency matrices. 
  Incidence matrices. 

  Graph isomorphism: 
  Two graphs are isomorphic iff they are identical except for

 their node names. 
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Adjacency Lists 

Adjacency Lists: A table with 1 row per vertex, listing its adjacent
 vertices. 

a 

b 

d 

c 

f 
e 

Directed Adjacency Lists: 1 row per node, listing the terminal nodes
 of each edge incident from that node. 
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Adjacency Matrices 

  A way to represent simple graphs 
  possibly with self-loops. 

  Matrix A=[aij], where aij is 1 if {vi, vj} is an edge of G, and is 0
 otherwise. 

  Can extend to pseudographs by letting each matrix elements be
 the number of links (possibly >1) between the nodes. 



12 

Graph Isomorphism 

  Formal definition: 
  Simple graphs G1=(V1, E1) and G2=(V2, E2) are isomorphic iff

 ∃ a bijection f:V1→V2 such that ∀ a,b∈V1, a and b are
 adjacent in G1 iff f(a) and f(b) are adjacent in G2. 

  f is the “renaming” function between the two node sets that
 makes the two graphs identical. 

  This definition can easily be extended to other types of
 graphs. 

Necessary but not sufficient conditions for G1=(V1, E1) to be isomorphic
 to G2=(V2, E2): 

• We must have that |V1|=|V2|, and |E1|=|E2|. 
• The number of vertices with degree n is the same in both graphs. 
• For every proper subgraph g of one graph, there is a proper
 subgraph of the other graph that is isomorphic to g. 
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Isomorphism Example 

If isomorphic, label the 2nd graph to show the isomorphism, else
 identify difference. 

a 

b 

c d 

e 
f 

b 

d 

a 

e 
f c 
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Are These Isomorphic? 

  If isomorphic, label the 2nd graph to show the
 isomorphism, else identify difference. 

a 
b 

c 

d 

e 

•   Same # of
 vertices 

•   Same # of
 edges 

•   Different # of
 vertices of degree
 2!   (1 vs 3) 
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§9.4: Connectivity 

  In an undirected graph, a path of length n from u to v is a
 sequence of adjacent edges going from vertex u to vertex v. 

  A path is a circuit if u=v. 
  A path traverses the vertices along it. 
  A path is simple if it contains no edge more than once. 

  Paths in Directed Graphs: Same as in undirected graphs, but the
 path must go in the direction of the arrows. 

An undirected graph is connected iff there is a path between every pair
 of distinct vertices in the graph. 
There is a simple path between any pair of vertices in a connected
 undirected graph. 
Connected component: connected subgraph 
A cut vertex or cut edge separates 1 connected component into 2 if
 removed 
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Directed Connectedness 

  A directed graph is strongly connected iff there is a directed
 path from a to b for any two vertices a and b.   

  It is weakly connected iff the underlying undirected graph (i.e.,
 with edge directions removed) is connected. 

  Note strongly implies weakly but not vice-versa. 

Note that connectedness, and the existence of a circuit or simple
 circuit of length k are graph invariants with respect to isomorphism. 

Counting different paths: the number of different paths from a vertex i to
 a vertex  j is the (i, j) entry in Ar, where A is the adjacency matrix of the
 graph 

  proof by induction on r 
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§9.5: Euler & Hamilton Paths 

  An Euler circuit in a graph G is a simple circuit
 containing every edge of G. 

  An Euler path in G is a simple path containing every
 edge of G. 

  A Hamilton circuit is a circuit that traverses each
 vertex in G exactly once. 

  A Hamilton path is a path that traverses each
 vertex in G exactly once. 
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Euler and Hamiltonian Tours 

Chinese postman problem 
•  find a shortest tour in a non-Euler graph 
•  some edges will be traversed twice 
•  corresponds to finding the cheapest set of paths connecting
 matching vertices of odd degree 

•  the number of odd-degree vertices is even 
•  the paths are edge-disjoint 



Can we walk through town, crossing each bridge exactly
 once, and return to start? 
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Bridges of Königsberg Problem 

A 

B 

C 

D 

The original problem 

Equivalent multigraph 

Theorem: A connected multigraph has an Euler circuit iff each vertex
 has even degree. 

Proof:  
(→) The circuit contributes 2 to degree of each node. 
(←) By construction using algorithm on p. 580-581 



Euler Path Problem 

  Theorem:  A connected multigraph has an Euler path (but not
 an Euler circuit) iff it has exactly 2 vertices of odd degree. 
  One is the start, the other is the end. 

  Euler tour in a directed graph 
   in-degrees must match out-degrees in all nodes 

  Euler Circuit Algorithm 
  Begin with any arbitrary node. 
  Construct a simple path from it till you get back to start. 
  Repeat for each remaining subgraph, splicing results back

 into original cycle. 

Dr-Zaguia-CSI2101-W08 20 
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Round-the-World Puzzle 

  Can we traverse all the vertices of a
 dodecahedron, visiting each once?` 

Dodecahedron puzzle Equivalent graph 
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Hamiltonian Path Theorems 

  Dirac’s theorem:  If (but not only if) G is connected, simple,
 has n≥3 vertices, and ∀v deg(v)≥n/2, then G has a Hamilton
 circuit. 
  Ore’s corollary:  If G is connected, simple, has n≥3 nodes,

 and deg(u)+deg(v)≥n for every pair u,v of non-adjacent
 nodes, then G has a Hamilton circuit. 
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Hamiltonian Tours - Applications 

Traveling salesmen problem 
•  in a weighted graph, find the shortest tour visiting every vertex 
•  we can solve it if we can solve the problem of finding the shortest
 Hamiltonian path in complete graphs 

Gray codes 
•  find a sequence of codewords such that each binary string is used, but
 adjacent codewords are close to each other (differ by 1 bit only) 
•  all binary strings of length n = vertices of n-dimensional hypercube 
•  edges of the hypercube = vertices that differ by 1 bit 
•  our problem = find a Hamiltonian circuit in hypercubes 
•  Gray codes – one particular solution 

•  can be defined recursively (as hypercubes are) 
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Planar Graphs 

Planar graphs are graphs that can be drawn
 in the plane without edges having to cross. 

Understanding planar graph is important: 
   Any graph representation of maps/

 topographical information is planar. 
  graph algorithms often specialized to planar

 graphs (e.g. traveling salesperson) 

   Circuits usually represented by planar graphs 
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Planar Graphs 
-Common Misunderstanding 

Just because a graph is drawn with edges
 crossing doesn’t mean its not planar. 

Q:  Why can’t we conclude that the
 following is non-planar? 
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Planar Graphs 
-Common Misunderstanding 

A: Because it is isomorphic to a graph
 which is planar: 
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Proving Planarity 

To prove that a graph is planar amounts
 to redrawing the edges in a way that
 no edges will cross.  May need to move
 vertices around and the edges may
 have to be drawn in a very indirect
 fashion. 

E.G. show that the 3-cube is planar: 
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Proving Planarity 
3-Cube 
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Proving Planarity? 
4-Cube 

Seemingly not planar, but how would
 one prove this! 
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The smallest graphs that are not
 planar 

  K5, K3,3 
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Disproving Planarity: Kuratowski / Wagner 

  A graph is planar if and only if it does
 not contain the K5 and the K3,3 as a
 homeomorphic subgraph / as a minor. 

  Minor: H is a minor of G, if H can be
 obtained from G by a series of 0 or
 more deletions of vertices, deletions of
 edges, and contraction of edges. 

  Does not yield fast recognition
 algorithm! 
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Euler’s theorem 

  Let G be a connected plane graph with n
 vertices, m edges, and f faces. Then n + f –
 m = 2. 

  Proof. By induction.  
  True if m=0. 
  If G has a circuit, then delete an edge and … 
  If G has a vertex v of degree 1, then delete v and

 … 

  … 
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Euler’s theorem Corollaries 

  If G is a connected plane graph with no parallel edges
 and no self-loops, with n > 1, then m ≤ 3n-6. 
  Every face `has’ at least three edges; each edge `is

 on’ two faces, or twice on the same face.  
  Every plane graph with no parallel edges and no self

-loops has a vertex of degree at most 5. 
  K5 is not a planar graph 

  If G is a planar simple graph with v ≥3 and no cycles
 of length 3, then e≤2v-4 
  K3,3 is not planar 



Proof of Euler’s theorem Corollaries 

Suppose that G has at most m edges, consider some plane drawing
 of G, with f faces. Consider the number of pairs (e, F) where e
 is one of the edges bounding the face F. 

For each edge e, there are at most 2 faces that it bounds. So the
 total number of these edge face pairs has to be less than 2m.
 On the other hand, because G is a simple graph, each face is
 bounded by at least 3 edges. Therefore, the total number of
 edge-face pairs is greater than or equal to 3f.   So 3f ≤2m 

By the Euler Polyhedron Formula, n-m+f=2, so, 3n-3m+3f=6.
 Since 3f ≤ 2m, 3f = 6 -3n+3m ≤ 2m. Therefore m ≤ 3n -6. 

If G has no triangles, each face must be bounded by 4 or more
 edges. Thus 2f ≤ m and 4 -2n+2m ≤ m , therefore m ≤ 2n -4. 
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Euler’s theorem Corollaries 

Every simple, planar graph has a vertex of degree less
 than 6. 

Proof: 

Thus the average degree (6n-12)/n = 6 – 12/n < 6. 
So at least one of the vertices has degree less than 6.  

Dr-Zaguia-CSI2101-W08 43 
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Graph Colorings 

Vertex coloring of a graph 
•  assign a color to each vertex so that adjacent vertices
 are of different colors 
•  i.e. find c: V → N such that  (u,v) ∈E→ c(u) ≠ c(v) 

Chromatic number χ of a graph G 
•  the least amount of colors needed to color the graph 
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Graph Colorings 

So, what is a chromatic number for 
•  Kn? 
•  Cn? 
•  Km,n? 

Bipartite Graphs 
The chromatic number of a graph G is 2 if and only if G is
 a bipartite graph 

Planar Graphs? 



The four Color Theorem 

The four color theorem: The chromatic number of
 every simple planar graph is at most four 

We can prove that six  colors are enough 

For general graphs? 
 only exponential algorithms known 
 even finding approximation is difficult 
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Six color Theorem 

Proof of the six color theorem: by induction on n, the number of
 vertices of the graph. 

Basis Step: If G has fewer than seven vertices then the result is
 obvious.  

Inductive step: Let n>=7. We assume that all simple graphs with
 n-1 vertices are 6 colorable. Because of planarity and Euler’s
 theorem we know that G has a vertex v with degree less than
 6. Remove v from G and all adjacent edges to v. The remaining
 subgraph has n-1 vertices and by the induction hypothesis it
 can be properly colored by 6 colors. Since v has at most 5
 adjacent vertices in G, then v can be colored with a color
 different from all of its neighbours.   This ends the proof. 

Dr-Zaguia-CSI2101-W08 47 
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Graph Colorings - Applications 

Scheduling exams 
•  many exams, each student have specified which
 exams he/she has to take 
•  how many different exam slots are needed? (a
 student cannot be at two different exams at the same
 time) 

Vertices: courses 
Edges: if there is a student taking both courses 
Exam slots: colors 

Frequency assignments 
•  TV channels, mobile networks 
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§10.1: Introduction to Trees 

  A tree is a connected undirected graph that contains no circuits. 
  Theorem: There is a unique simple path between any two

 of its nodes. 
  A (not-necessarily-connected) undirected graph without simple

 circuits is called a forest. 
  You can think of it as a set of trees having disjoint sets of

 nodes. 
  A leaf node in a tree or forest is any pendant or isolated vertex. 

 An internal node is any non-leaf vertex (thus it has degree ≥). 
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Trees as Models 

  Can use trees to model the following: 
  Saturated hydrocarbons 
  Organizational structures 
  Computer file systems 

  In each case, would you use a rooted or
 a non-rooted tree? 
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Some Tree Theorems 

  Any tree with n nodes has e = n−1 edges. 
  Proof: Consider removing leaves. 

  A full m-ary tree with i internal nodes has
 n=mi+1 nodes, and =(m−1)i+1 leaves. 
  Proof: There are mi children of internal nodes,

  plus the root. And,  = n−i = (m−1)i+1. □  
  Thus, when m is known and the tree is full,

 we can compute all four of the values e, i, n,
 and , given any one of them. 
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Some More Tree Theorems 

  Definition: The level of a node is the length
 of the simple path from the root to the node. 
  The height of a tree is maximum node level. 
  A rooted m-ary tree with height h is called

 balanced if all leaves are at levels h or h−1. 

  Theorem:  There are at most mh leaves in
 an m-ary tree of height h. 
  Corollary:  An m-ary tree with  leaves has

 height h≥logm .  If m is full and balanced then
 h=logm.  
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§10.2: Applications of Trees 

  Binary search trees 
  A simple data structure for sorted lists 

  Decision trees 
  Minimum comparisons in sorting algorithms 

  Prefix codes 
  Huffman coding 

  Game trees 
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§10.3: Tree Traversal 

  Universal address systems 
  Traversal algorithms 

  Depth-first traversal: 
  Preorder traversal 
  Inorder traversal 
  Postorder traversal 

  Breadth-first traversal 
  Infix/prefix/postfix notation 


