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COVERINGS, UNCOVERINGS AND UBBs

• An (n,m, r) covering design is a set C of m-subsets

of {1, . . . ,n} such that any r-subset of {1, . . . ,n} is

contained in at least one of the m-subsets.

• An (n,k, r)-uncovering is a set U of k-subsets of

{1, . . . ,m} such that any r-subset of {1, . . . ,n} is dis-

joint from at least one of the k-subsets.

• A base for a finite permutation group G acting on a

set Ω is a sequence of points (x1, . . . ,xb) from Ω
such that its pointwise stabiliser is the identity.

• An uncovering-by-bases (or UBB) for G acting on Ω
is a set U of bases so that any r-subset of Ω is dis-

joint from at least one base in U.

• Interesting case: when r =
⌊

d−1
2

⌋
, where d is the

minimum degree of G.



EASY EXAMPLES

• If G is sharply k-transitive and has degree n, we have

r =
⌊

n−k
2

⌋
and any k-subset of {1, . . . ,n} is a base.

So we just need an (n,k, r)-uncovering.

• H oSn, where H is a regular group of degree m.

– Minimum degree is m, so r =
⌊

m−1
2

⌋
.

– We think of Ω as an m× n rectangle. A base

consists from a single point drawn from each col-

umn:

• ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ · · · •
... ... ... ...

◦ ◦ ◦ ◦

We call this a transversal of Ω.

– A UBB consists of r +1 disjoint transversals.



GL(n,q)

• A basis for the vector space Fn
q is a base for GL(n,q)

acting on the non-zero vectors.

• The minimum degree is qn−qn−1, so r =
⌊

qn−qn−1−1
2

⌋
.

• For n = 2, this is easy to deal with.

• For n = 3, things are more difficult!



AN UNCOVERING BY TRIPLES

• To obtain a (2m,3,m− 1)-uncovering, think of the
2m-set as Z2m, then take all triples of the form
{i−1, i, i +m} for i ∈ Z2m.

• For example, with m= 5, we have

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

• We use this construction to construct a UBB for GL(3,q),
by forcing each triple to be a basis for the vector
space.



GL(3,q), for q odd

• We need a map from Z2m to F3
q which forces each

triple to be a basis.

• Instead of the vector space, we work in the extension

field Fq3.

• Suppose q is odd, so that q3−1 is even, say q3−1=
2m.

• We can write the elements of Fq3 \{0} as{
1,α,α2, . . . ,α2m−1

}
where α is a primitive element of Fq3.

• Obvious map: i 7→ αi. Unfortunately, this doesn’t

work! (Since αm = −1, {1,α,αm+1} = {1,α,−α},

which is clearly not a basis.)



Instead, we use the following trick.

• Define ϕα : Z2m → F∗
q3 by

i 0 1 2 · · · m−1 m m+1 · · · 2m−3 2m−2 2m−1

ϕα(i) 1 α α2 · · · αm−1 αm+2 αm+3 · · · α2m−1 αm αm+1

• This leaves us with several cases to check, it reduces

to verifying that {1,α,α2} and {1,α,α3} are bases.

• {1,α,α2} is always a basis.

• {1,α,α3} is NOT always a basis, but by judicious

choice of α, we can ensure this.

• That such an element always α exists requires non-

trivial theorems from number theory (such as the

Primitive Normal Basis Theorem).



Basis for F27 Basis for F3
3

1,α,α16 001,010,201

α,α2,α17 010,100,211

α2,α3,α18 100,102,011

α3,α4,α19 102,122,110

α4,α5,α20 122,022,202

α5,α6,α21 022,220,221

α6,α7,α22 220,101,111

α7,α8,α23 101,112,212

α8,α9,α24 112,222,021

α9,α10,α25 222,121,210

α10,α11,α13 121,012,002

α11,α12,α14 012,120,020

α12,α15,1 120,200,001

α15,α16,α 200,201,010

α16,α17,α2 201,211,100

α17,α18,α3 211,011,102

α18,α19,α4 011,110,122

α19,α20,α5 110,202,022

α20,α21,α6 202,221,220

α21,α22,α7 221,111,101

α22,α23,α8 111,212,112

α23,α24,α9 212,021,222

α24,α25,α10 021,210,121

α25,α13,α11 210,002,012

α13,α14,α12 002,020,120

α14,1,α15 020,001,200



Sm ACTING ON 2-SUBSETS

• Consider G= Sm, acting on the 2-subsets of {1, . . . ,m}.

• Degree
(m

2
)
, minimum degree 2(m−2), so we have

r = m−3.

• Think of the 2-subsets as the edges of the complete

graph Km.

• An example of a base is a spanning subgraph of the

form
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We call these bases V-graphs.

• V-graphs can easily be embedded into Hamilton cir-

cuits.



CONSTRUCTING A UBB FOR THIS

Using Ore’s Theorem, we can show that Km\R is Hamil-

tonian (where R is an arbitrary r-set of edges). This shows

us that an uncovering-by-bases formed from V-graphs al-

ways exists.

To construct one:

• Use decompositions of Km into either (i) Hamilton cy-

cles (if m is odd), or (ii) Hamilton cycles and a 1-factor

(if m is even).

• In each Hamilton circuit obtained, obtain a number of

V-graphs.

• How many we need is determined by congruence

classes modulo 3, but we either need 3 or 4 to suc-

ceed.

• For example, with m= 7 we have the following.





UBBs FOR MATROIDS

For a particular class of groups, known as IBIS groups,

the irredundant bases of the group are precisely the bases

(i.e. maximal independent sets) of a matroid.

The definition of uncovering-by-bases holds for matroids.

(For IBIS groups the two notions coincide.)

For example, with the uniform matroid Um,n, where every

m-subset of {1, . . . ,n} is a base, a UBB is just an (n,m, r)-
uncovering (for some r).

Questions:

• What is the obvious value of r to choose?

• What does the r we had before represent in terms of

matroid theory?



• For an IBIS group G, the fixed point sets of G are

all flats of the corresponding matroid. In fact, every

maximal proper flat is a fixed point set.

• Thus r , as we had it before, can be determined from

the cardinality of a maximal proper flat.

• In the group case, this parameter has a “nice” inter-

pretation, in terms of coding theory.

• What, if anything, does it mean for matroids?


