
Workshop on Covering Arrays: Constructions,
Applications and Generalizations

Plenary Talks

Rick Brewster, Thompson Rivers University
Graph Homomorphisms, an introduction
This talk is an introduction to the subject of graph homomorphisms. The
concept of homomorphisms appears in many areas of mathematics, and the
field of graph theory is no exception. However, until recently most graph
theorists did not view graph homomorphisms as a central topic in the disci-
pline. In their recent book ”Graphs and homomorphisms”, Hell and Nesetril
make the case that ”the time is ripe to introduce this exciting topic to a
wider audience”. In this talk we shall provide introductory concepts and
examples, survey some history, and outline connections to other areas of
mathematics and computer science. In particular, both categorical aspects
and computational complexity will be examined.

Charles Colbourn, Arizona State University
Construction Techniques for Covering Arrays
The construction of covering arrays to minimize the number of test performed
is a challenging problem. To date, computational methods have proved to be
effective for “small” arrays; indeed for practical software tools, greedy meth-
ods are prevalent. However even the best of these do not appear to scale well
to larger problems; either the size of the array appears to be unnecessarily
large, or the time to produce the array appears prohibitive.

Consequently combinatorial and algebraic techniques have a substantial
role to play, even in the construction of covering arrays of “moderate” size. In
this talk we explore recursive constructions of covering arrays. We emphasize
the cases with higher strength, since these are at present less amenable to
algorithmic techniques.

We start with a 1987 construction by Roux, a simple cut-and-paste tech-
nique for binary arrays of strength three, juxtaposing two smaller arrays.
We then generalize it to (1) more symbols, (2) more copies, and (3) higher
strength. Then we turn to a powerful construction using perfect hash families
and explore the relationships among perfect hash families, separating hash
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families, and covering arrays.
Throughout, numerous questions will be posed, and a few of them an-

swered.

Peter Gibbons, University of Auckland
Computational Constructions of Combinatorial Structures
We survey popular methods for constructing and enumerating combinatorial
structures. The techniques will be explained using examples involving various
types of incidence structures, including triple systems, queens’ domination,
and covering arrays. Rather than purporting to be a research seminar, this
is a relatively introductory tutorial aimed at those who wish to better under-
stand computational methods in general and how to profitably apply them
to their own structures of interest.

Alan Hartman, IBM Haifa Research Laboratory
Covering Arrays: Mathematical, Engineering, and Scientific Perspectives
There is no doubt that covering arrays are a fruitful and elegant area for
mathematical research. Recently there have been some interesting devel-
opments in making these structures more easily available to the software
engineering community. The mathematics and computer science research
communities have made many claims for the usefulness of covering arrays
in software engineering, and in particular in software and hardware testing.
Engineers have recently called these results into question. We will discuss
this debate and propose some scientific research activities which will help in
settling these questions.

Brett Stevens, Carleton University
Covering Arrays and their Generalizations
I will briefly define covering arrays, outline their uses and anticipate the other
talks in the workshop. I will then go on to describe several generalizations
that have been made to the standard covering array model and assumptions.
These have almost all been motivated by consideration of real world applica-
tion circumstances. We will discuss optimization when we know of definite
non-interaction of internal components; this uses graph homomorphism the-
ory and is often called a covering array on a graph, G. We look at recent work
on mixed factor levels and talk about mixed covering arrays on graphs. We
also look at some work on uniform covering arrays, where each symbol occurs
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nearly equally often in each factor. Another recent generalization is the use
of a “don’t care” symbol which has led to some beautiful optimizations of
known constructions. Finally we look at covering arrays with forbidden pairs.
We will show that, paradoxically, forbidding certain pairs of interactions can
either reduce the size of an array or increase it often dramatically.

Doug R. Stinson, University of Waterloo
Tutorial on Orthogonal Arrays: Constructions, Bounds and Links to Error-
correcting Codes
We begin by defining orthogonal arrays OA(k, n) and briefly discussing their
connection to sets of mutually orthogonal Latin squares. Next, we gener-
alize the definition of OAs to higher lambda, and we discuss the Plackett-
Burman bound and cases of equality. Then, we generalize the definition of
OAs to higher strength and we discuss the links between linear OAs and
linear codes. We then look briefly at nonlinear OAs and their relationship to
nonlinear codes. Finally, we present a few results on OAs where the number
of symbols is not a prime power. Throughout the talk, we are emphasizing
constructions (sufficient conditions) and bounds (necessary conditions) for
the objects under consideration. A few proofs are given along the way.

Contributed Talks

Robert F. Bailey, Queen Mary, University of London
Uncoverings-by-bases for Groups and Matroids
Let G be a permutation group acting on a finite set Ω. An uncovering-by-
bases for G is a set U of bases for G (i.e. a sequence of points from Ω whose
pointwise stabiliser is trivial) such that any r-subset of Ω is disjoint from at
least one base in U . These objects are closely related to covering designs,
and they arise in the decoding algorithm for error-correcting codes which I
describe in my DMD talk.

I will give some examples of some constructions, which use different tech-
niques (such as finite fields and graph decompositions). Also, the definition
generalises to matroid theory: I will also give a brief description of this, if
time permits.

Frank E. Bennett, Mount Saint Vincent University
Perfect Mendelsohn Designs: A Brief Survey of Existence Results
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Let v, k and λ be positive integers. A (v, k, λ)-Mendelsohn design, denoted
briefly by (v, k, λ)-MD, is a pair (X,B) where X is a v-set (of points) and
B is a collection of cyclically ordered k-subsets of X (called blocks) such
that every ordered pair of points of X are consecutive in exactly λ blocks
of B. If for all t = 1, 2, . . . , k − 1, every ordered pair of points of X are
t-apart in exactly λ blocks of B, then the (v, k, λ)-MD is called a perfect
design and denoted briefly by (v, k, λ)-PMD. The basic necessary conditions
for the existence of a (v, k, λ)-PMD are v ≥ k and λv(v − 1) ≡ 0 (mod k).
These conditions are known to be sufficient in most cases, but certainly not in
all. For k = 3, 4, 5, 6, 7, very extensive investigations of (v, k, λ)-PMDs have
now been carried out. In some of these cases, the results have been fairly
conclusive. We shall provide a brief survey the known existence results. It
is well known that an equivalent formulation for a set of k − 2 mutually
orthogonal Latin squares (MOLS) of order n is that of an orthogonal array
OA(n; k). This is an n2 × k array whose entries come from an n-set X, and
such that for any pair of columns every ordered pair of elements of X (not
necessarily distinct) appear in the same row exactly once. It is also known
that the existence of a (v, k, 1)-PMD implies the existence of an OA(v; k),
which is invariant under cyclic permutation of its columns.

Myra Cohen, University of Nebraska - Lincoln
Variable Strength Covering Arrays: Applications and Challenges
A covering array CA(N ; t, k, v) is an N × k array on v symbols such that for
any N × t sub-array all ordered t-tuples occur at least once where t is called
the strength of the array. A V CA(N ; t, k, v, C) is an N × k array such that
any N × t sub-array contains all order t-tuples at least once, and where C
defines a vector of m covering arrays, with t′1, t′2, .., t′m > t and where the
columns in C form a subset of columns from k. In this work we discuss the
use of variable strength covering arrays in practical applications for software
testing and highlight some computational techniques for finding them. Little
however, is knownabout direct mathematical constructions. We discuss the
need for more research on this front and leave this as an open problem.

Lucia Gionfriddo, University of Catania
On the spectrum of Hexagon G-systems
Let G be a graph and let J be a family of subgraphs G’ of G. A G− system
of order n and index ρ is a pair Σ = (X,H),where X is a finite set of n
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vertices and H is a collection ofedge disjoint graphs G (called blocks) which
partitions the edgeset of complete graph ρKn, with vertex set X. We say that
aG-system Σ is J −nesting if, for every fixed subgraphG′ ∈ J , the collection
of all the subgraphs G′ contained inthe blocks of the G − system Σ form a
G′−system with adue index λ. ”Perfect hexagon triple systems” (studiedby
S. Kucukcifci and C. Lindner (2004)) and ”Perfect Dexagontriple systems”
(studied by C. Lindener and A. Rosa (2006))can be considered following
this definition. We have studied thespectrum for these J-nesting G-systems,
determining it completely,in various cases: for the ” Hexagon Quadrangle
suystems”, for the”Hexagon bi-quadrangle systems”, for the ”Hexagon kite
systems”.Other interesting cases can be considered.

Anant P. Godbole, East Tennessee State University
Partial Covering Arrays and a Generalized Erdos-Ko-Rado Property
The classical Erdős-Ko-Rado theorem states that if k ≤ bn/2c then the
largest family of pairwise intersecting k-subsets of [n] = {0, 1, . . . , n} is of

size
(
n−1
k−1

)
. A family of k subsets satisfying this pairwise intersecting prop-

erty is called an EKR family. We generalize the EKR property and provide
asymptotic lower bounds on the size of the largest family A of k-subsets of
[n] that satisfies the following property: For each A,B,C ∈ A, each of the
four sets A ∩ B ∩ C;A ∩ B ∩ CC ;A ∩ BC ∩ C;AC ∩ B ∩ C are non-empty.
This generalized EKR (GEKR) property is motivated, generalizations are
suggested, and a comparison is made with fixed weight 3-covering arrays.
Our techniques are probabilistic, and reminiscent of those used in a paper of
Godbole, Sunley and Skipper and in the work of Roux, as cited in the classic
survey paper of Sloane.

Joint work with Particia A. Carey.

Roy Gourgi, Covering designs - a new approach
A new dynamic approach forfinding covering designs that minimizes resources
(memory & cpu time) and a new formula that improves the lowest bounds.

Robert E. Jamison, Clemson University
Difference Sets, Bouchet Diagrams, and the Achromatic Index of Complete
Graphs
The achromatic index A(n) of the complete graph Kn is the largest number
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of colors that can be used to color the edges of Kn so that the following
conditions are satisfied:

• edges which share a common endnode get different colors [proper], and

• given any two colors i and j there are edges e and f of those colors
which do share a common endnode [completeness].

Although it is known that A(n) grows asymptotically like n3/2, very few
exact values are known. In his study of A(n), Andre Bouchet, introduced a
technique for obtaining lower bounds. So far this technique remains largely
unexplored, but it can be viewed as a relaxation of the notion of a difference
set with a perfect matching. In this talk, I will describe efforts to produce
Bouchet diagrams from odd difference sets and the structure which results.

Yu Lei, University of Texas at Arlington
Combinatorial Testing using Covering Arrays: Going beyond Pairwise Test-
ing
A commonly used software testing technique is combinatorial testing, which
involves constructing and using covering arrays so that every interaction be-
tween input parameters is exercised. Existing work on combinatorial testing
has mainly focused on 2-way (pair-wise) interaction testing in which a cov-
ering array of strength two is used to exercise every interaction between any
two parameters. In this talk, we will report on a project to develop new
methods and tools for efficiently constructing covering arrays for up to 6-way
interaction testing. A recent study of actual faults revealed that in certain
software, faults may result from up to 6-way interactions. One of the main
challenges is that the computational complexity of constructing covering ar-
rays goes up rapidly as the degree of interaction increases. We will discuss
the design and implementation of a tool called FireEye for multi-way testing.
In particular, we will highlight several key data structures that are used to
reduce the time and space requirements of the test generation process. The
directions along which our work is being continued will also be discussed.
This project is a collaboration effort between the US National Institute of
Standards and Technology, George Mason University, and the University of
Texas at Arlington.

(Joint work with Raghu Kacker)
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Lucia Moura, University of Ottawa
Covering Arrays and Extremal Set-Partition Systems
In this talk, we will look at a covering array as a system of partitions of an
n-set that presents non-empty intersection between any two parts of different
partitions. We will look at how results for extremal set systems were used
to settled the binary-alphabet case, and propose the study of set-partition
systems in order to advance on larger alphabet cases. Some generalizations
of the Erdos-Ko-Rado and Sperner’s theorems for set-partition systems will
be discussed (joint work with Meagher and Stevens). We will briefly look at
questions involving higher strength.

Daniel Panario, Carleton University
Division of Trinomials by Pentanomials and Orthogonal Arrays
Consider a maximum-length binary shift-register sequence generated by a
primitive polynomial f of degree m. Let Cf

n denote the set of all subintervals
of this sequence with length n, where m < n ≤ 2m, together with the
zero vector of length n. Munemasa (1999) considered the case in which
the polynomial f generating the sequence is a trinomial satisfying certain
conditions. He proved that, in this case, Cf

n corresponds to an orthogonal
array of strength 2 that has a property very close to being an orthogonal
array of strength 3.

Munemasa’s result was based on his proof that very few trinomials of
degree at most 2m are divisible by the given trinomial f . We consider the
case in which the sequence is generated by a pentanomial f satisfying certain
conditions. Our main result is that no trinomial of degree at most 2m is
divisible by the given pentanomial f , provided that f is not in a finite list of
exceptions we give. As a corollary, we get that, in this case, Cf

n corresponds
to an orthogonal array of strength 3.

(Joint work with Michael Dewar, Lucia Moura, Brett Stevens and Steven
Wang)

George Sherwood, Testcover.com LLC
A Column Expansion Construction for Optimal and Near-Optimal Mixed
Covering Arrays
This talk describes the construction of a strength 2 mixed covering array
using an orthogonal array and one or more ordered designs. The constructed
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array may have several different alphabet sizes. In each step of the recur-
sive expansion, the degree for a particular alphabet size is multiplied by the
corresponding ordered design degree. The covering array size exceeds the
optimal size by less than the order of the orthogonal array. Conditions for
achieving optimal size are described.

Joe Yucas, Southern Illinois University
Some covering arrays of strength two
We present constructions of a few infinite families of covering arrays of
strength two. These are special cases resulting from joint work with C.
Colbourn, S. Martirosyan, G. Mullen, D. Shasha and G. Sherwood. With
these constructions, the upper bounds on the sizes of many covering arrays
are improved.

Latifa Zekaoui, University of Ottawa
Mixed Covering Arrays on Graphs
In this talk, we look at a generalization of covering arrays that considers both
mixed alphabet sizes for different rows and a graph structure on the rows
that prescribes the pair of rows for which we require the covering property.
A (standard) covering array is a particular case where all alphabets are the
same and G is the complete graph. We extend (to the mixed alphabet case)
results by Meagher and Stevens (2005) for covering arrays on graphs related
to graph homomorphisms. We give optimal constructions of mixed covering
arrays for trees, cycles and bipartite graphs.

(Joint work with Karen Meagher and Lucia Moura)
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