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Abstract

This thesis addresses the problem of estimation of the camera poses with respect to

a rigid object, which is equivalent to the problem of tridimensional registration of a

moving rigid object before fixed cameras. Matching, tracking and 3D reconstruction

of feature points by a stereoscopic vision setup allows the computation of the homo-

geneous transformation matrix linking two consecutive scene captures. Robustness to

errors is provided by the scene rigidity constraint. Accumulation of error is compen-

sated through loop detection in the calculated camera poses. Experimental results

show the validity of the obtained camera poses.
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Chapter 1

Introduction

Computer vision is a young discipline. Its implementations used to be regarded as

costly, complex solutions to simple problems. After all, the human visual system and

the human brain are tremendous scene understanding machines! It is amazing how

easily a human being can infer 3D information from a single, noisy image. Anyone

who has experience in programming vision-related software has been stunned by this

simple fact: it is so easy to perform with your own eyes and so hard to tell a computer

to do it. Nevertheless, hard work is rewarded, for there are countless situations for

which a computer vision algorithm will perform better than a human operator.

Trucco and Verri [1] provide the following definition of the scope of computer

vision:

“A set of computational techniques aimed at estimating or making ex-

plicit the geometric and dynamic properties of the 3-D world from digital

images”

The roots of machine “understanding” of images can be found in the sixties, as

the United States Postal Service implemented an optical character recognition system

to sort mail. As its name suggests, the first recognition devices were optical. With

the advent of video cameras, frame grabbers and digital cameras, computers had an

increasing role in vision tasks. Since then, computer vision has become a subject

1
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of intensive research around the world. Its commercial applications are increasing,

as the computers power keep up with Moore’s law. Even more critical, the price of

digital cameras has been going down substantially in the last few years. This makes

good quality digital images ubiquitous.

Numerous research areas can be identified within computer vision science. Pat-

tern recognition is a very important one, and perhaps the most relevant to artificial

intelligence. The goal of pattern recognition is to identify an object from one or many

images of it. A pattern recognition algorithm will be evaluated according to its abil-

ity to produce large rates of correct identification under noisy conditions, and under

a wide range of perceptual distortions (change in scale, orientation or illumination

conditions). Typically, a trade-off will be reached between the discriminating power

of an algorithm and its robustness to distortions.

Nowadays, there is an ever-increasing demand for surveillance and security appli-

cations of computer vision. Biometrics, for instance, aims at identifying individuals

from images of their face, fingertips or iris. Face identification is an example of an

application that could benefit from a combined use of pattern recognition and stereo

vision.

The word stereo comes from the Greek stereos, which means solid. Stereo vision is

the acquisition and analysis of 3D information, through the capture of scene images

from different points of view. It can be performed by using more than one camera, or

one moving camera with respect to a rigid scene. Once again, the human visual system

itself is an amazingly powerful stereo vision system, but it lacks quantitative accuracy

in the evaluation of distances. As will be demonstrated in the course of this thesis, a

calibrated stereo system can easily achieve an accuracy of distance measurement that

most human beings cannot approach. This makes stereo vision setups ideally suited

for non-contact measurements. Parts inspection systems, space robotics and crime

scene analysis software exploit this interesting potential.
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1.1 Problem Description

One of the main challenges inherent to the use of images from a large number of

viewpoints is the issue of camera pose estimation. For 3D reconstruction to be pos-

sible, the location and orientation of the cameras at the instant of capture must be

accurately known. This is typically achieved through bundle adjustment, in which,

assuming the intrinsic calibration parameters of the cameras and a large number of

matches between pairs of views are known, the 3D location of the feature points and

the position of the cameras are computed. This method relies on a human opera-

tor, who has to supply the matches since there is typically a small number of widely

separated views.

Bundle adjustment is widely accepted, and commercial software is available. It is

used for a wide spectrum of applications, such as accident reconstruction, animation

and graphics, archaeology, forensics, engineering and architecture 1. The main draw-

back of bundle adjustment is its instability. In many situations, the algorithm will

fail to converge to an accurate solution. To overcome this problem, it is recommended

that the user starts with a small subset of the available pictures, with a small number

of feature points that can be seen in many pictures. Once the algorithm succeeded in

converging to a first reasonable solution, additional intermediate pictures and more

feature points can be added to improve the accuracy. In some instances, even with

a few pictures and a small number of feature points, bundle adjustment fails to con-

verge, forcing the user to eliminate some apparently good feature points. This lack of

robustness can be related to the iterative nature of bundle adjustment, which implies

initial estimates of the camera positions. If these estimates are very far from the

actual solution, the algorithm may fail to converge.

This problem is amplified when one wants to automate the whole process. Matches

between narrowly separated views can be found automatically through correlation.

Unfortunately, nothing can guarantee the matches will all be good. Bad matches

will definitely prevent the convergence of the bundle adjustment algorithm. The

1www.photomodeler.com
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constraint on the maximum separation between the views prevents the use of a small

number of widely separated pictures, as a first step. Therefore, in a typical scenario,

a large number of narrowly separated pictures should be used from the start, with

the well-known instability that such a situation implies. On top of that, a small

percentage of bad matches will make proper convergence very unlikely. Automation

is where the proposed method becomes interesting.

It is the goal of this thesis to provide a technique that fully automates the

process of estimating the camera poses, with respect to a rigid scene. It will

be assumed that a stereo setup is available and the position change from one capture

to the next is small, to simplify feature points tracking. The cameras will move rigidly

with respect to each other, preserving the stereo configuration. The system will have

to be robust with respect to matching and tracking errors. Additionally, it will have

to compensate for error accumulation, as a post-processing step.

Scene feature points will be detected and matched, so their 3D locations will be

computed by the calibrated stereo setup. Then, they will be tracked in each camera

view, and reconstructed again after the rigid motion. The two clouds of 3D points

will be robustly registered, allowing the calculation of the new camera positions. This

process will be repeated along a sequence. The error accumulation in the camera

positions will have to be corrected through the detection of loops in the general path

of the cameras.

1.2 Contributions

This thesis brings contributions to the specific fields of camera calibration and 3D

reconstruction in the context of a stereoscopic system.

In Chapter 2, we experimentally found the optimal configuration of the stereo

setup we were using by finding the baseline distance between the cameras such that

the reconstruction error doesn’t improve anymore with an increase of baseline.

We also experimentally showed, in Section 3.3, that the calibration of the stereo
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setup can be done by independently calibrating the cameras individually. The stereo

geometry, as encoded in the fundamental matrix, can be constructed from these

calibration data, and there is no need to use the eight-point algorithm.

To solve the stereo pair positioning problem, we implemented an algorithm to

register two clouds of 3D points in which we integrated a random sampling strategy

to make it robust to the unavoidable presence of outliers.

The problem of camera motion tracking with a stereo setup has been studied

by several researchers ([22], [23], [24]). They however limited their analysis to a

single registration or a short sequence, such that the cameras field of view would not

change drastically from the first to the last picture. To the best of our knowledge, long

stereo sequences, where registration error accumulation is significant, have never been

reported. A fortiori, no error correction scheme based on automatic loop detection

has been reported.

We proposed a novel automatic loop detection technique. When, in the course of

the acquisition process, a camera finds itself in a position close by a previously visited

location, the system automatically rectifies the image to facilitate matching with the

past images. Such detection of path intersection has the benefit of short-circuiting

the undesirable accumulation of errors in pose estimation.

In addition, to reduce the impact of error accumulation, we proposed a novel

error correction scheme based on the computation of a correction matrix that can be

interpolated to the intermediate views. We showed experimentally that the proposed

error correction scheme reduces the accumulated error, through a comparison with a

commercial bundle adjustment software.

Finally, in order to demonstrate the validity of our approach, we have proposed

two applications: object reconstruction and scene augmentation. We have therefore

implemented a shape-from-silhouette algorithm that uses the camera positions com-

puted by our approach. It results an original free-hand 3D object reconstruction

system. The fact that, from our approach, the position of the object with respect to

the camera system is known allows one to add a virtual reference frame to the scene
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that rigidly moves with the observed object.

1.3 Thesis organization

Chapter 2 and the appendices provide an overview of the theoretical and mathe-

matical tools that will be used to achieve the proposed goal. Chapters 3 through 6

provide detailed experimental results on various aspects of the project. Of particular

importance is chapter 4, which provides an overview of the whole proposed method.



Chapter 2

The Stereoscopic Setup

An image is a projection of a tridimensional scene on a plane. The distance from a

given point to the projection center is lost in the process. To recover this information,

multiple projections of the same point must be performed. For instance, evolved

animals have two eyes in order to get a mental volumetric representation of the world.

In robotics applications, arrays of cameras are often distributed around the working

area. Once the geometry of the setup is known along with a few key parameters of

the sensors, tridimensional euclidian coordinates of feature points can be computed.

This process is referred to as 3D reconstruction.

A stereoscopic setup is a set of at least two cameras which record the same scene

from different viewpoints. The redundancy of information increases with the number

of cameras, yielding to a more and more precise reconstruction. In this chapter,

we will present the theoretical bases of a two-cameras stereo setup. The calibration

procedures will be covered in Chapter 3.

2.1 Linear Pinhole Camera Model

In the framework of the present thesis, we will be using a linear pinhole camera model.

A pinhole camera is one that performs imaging through a pinhole aperture. In reality,

cameras use a large aperture and image the input scene with a lens or a combination

7
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of lenses. The reason for doing so is one of efficiency. The more light goes through the

aperture, the easier it is for detectors to work. A pinhole camera would be simpler to

manufacture, but would have to work with very small light intensities. The optics of

a real camera aim at imaging the input scene on the image plane, just what a pinhole

camera does (actually, a pinhole camera images on any plane behind the pinhole: it

is always in focus). For these reasons, the pinhole camera model is suitable for most

real cameras.

The main problems introduced by optics are the blurring effect caused by an object

being far from the object plane and the radial distortions created by lenses with a

large numerical aperture. We will assume that the scene being looked at is within

the depth of field of the camera, and therefore no feature points will be blurred by

an out-of-focus effect. Regarding the radial distortions, we will neglect it in the first

approximation, yielding to a linear model. Radial distortions might originate from

difficulties in manufacturing the exact optimal shape of a lens, or from a trade-off in

the design itself. In some cases, some distortions at the border of the image might

be a reasonable price to pay to get a wider field of view or cheaper manufacturing

cost. The webcam industry is a good example of such a marketing choice. These

devices produce strongly distorted, wide field of view images, at a very low price.

We will be using narrow field of view cameras (f = 0.12 m) and assume the radial

distortions will be small. If it happens that, for a given set of cameras, it is not the

case, radial distortion coefficients have to be computed. Along with the location of

the optical center of the camera, they allow one to translate distorted pixel values

into undistorted pixel values, for which the linear pinhole camera model holds.

The pinhole camera model images the scene by allowing the light to go through

a small aperture (the pinhole). The inverted image can be seen as a projection on

the image plane located at an arbitrary distance behind the pinhole. This distance

is called the focal length (although there is no lens involved in a pinhole camera

model). An image projected on a plane with inverted axes behind the pinhole is

mathematically equivalent to a non-inverted image formed at a focal distance in front
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Figure 2.1: Linear pinhole camera model

of the pinhole. For simplicity, we will use the later interpretation, as depicted in

Figure 2.1. This mathematical feature does not have any physical meaning: it is just

a way to avoid the double inversion of the pixel coordinates.

Let us assume an object point is being imaged on the image plane of a camera.

The 3D coordinates of this image point are known, and we want to compute the

location of this point in pixels. This task is carried out by the intrinsic calibration

matrix. It is a 3 × 3 matrix that converts 3D coordinates in the image plane into

homogeneous pixel coordinates.

In Figure 2.1, a 3D point (X ′, Y ′, f) located in the image plane of the camera is

shown, along with its relationship with the pixel values. The principal point, (cx, cy)

is the point, expressed in pixels, where the optical axis (the Z axis) crosses the

image plane. The horizontal and vertical spacing of the sensor elements in the sensor

array are denoted by lx and ly respectively. Along with the focal distance, f , they

represent the intrinsic calibration parameters of the camera. The equation linking

the pixel values (u, v) with the 3D coordinates (X ′, Y ′, f) and the intrinsic calibration

parameters is:
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


u

v

1


 =




1
lx

0 cx

f

0 1
ly

cy

f

0 0 1
f







x′

y′

f


 (2.1)

Equation (2.1) gives us an insight of the way an arbitrary 3D point, expressed

in the reference system of the camera, will be projected in the image plane. Any

point ~x = (X,Y, Z) can be seen as the product of a scaling factor α times the 3D

coordinates of a 3D point in the image plane ~x′ = (X ′, Y ′, f). All points belonging to

the line ~l = α[X ′, Y ′, f ]T will be projected in the image plane at position (X ′, Y ′, f)

since the origin is the center of projection. Hence, for any point ~x = (X, Y, Z) as

expressed in the reference system of the camera, its pixel coordinates are given by:




u

v

1


 =

1

α




1
lx

0 cx

f

0 1
ly

cy

f

0 0 1
f







X

Y

Z


 (2.2)

The parameter 1
α

must be adjusted such that the third element in the left-hand

side of equation (2.2) is unity. This procedure reflects the loss of information that

takes place in imaging: an infinity of 3D points are imaged on a single 2D point.

Since this parameter is floating and has no physical significance, it can absorb the 1
f

factor of equation (2.2) to yield:




u

v

1


 = λ




f
lx

0 cx

0 f
ly

cy

0 0 1







X

Y

Z


 (2.3)

~u = λK~x (2.4)

where K is the intrinsic calibration matrix. K is a property of a camera. In general,

the focal length f of a camera is supplied by the manufacturer, but the focal length

- to - pixel dimensions ratios, f
lx

and f
ly

, along with the principal point (cx, cy) must

be computed through a calibration procedure.
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2.2 Projection Matrix

Equation (2.4) allows one to compute the pixel values of the image of a 3D point,

assuming this point is expressed in the reference system of the camera. A more general

approach would require the computation of the pixel values of an image, starting from

a 3D point expressed in an arbitrary reference system. This work is carried out by

the projection matrix, P . It is a 3×4 matrix that premultiplies a 4×1 column vector

~X, that expresses homogeneous 3D coordinates in a global reference system, to yield

pixel values.

The construction of the projection matrix P can be done in three steps:

1. Convert the coordinates in the global reference frame into coordinates in the

camera reference frame

2. Suppress the “1” at the bottom of the homogeneous 3D coordinates

3. Project the 3D coordinates in the reference system of the camera in the image

plane through the intrinsic calibration matrix K

Conversion of Coordinates in the Global Reference Frame into Coordi-

nates in the Camera Reference Frame

As covered in Section A.2, this task is carried out by a homogeneous transformation

matrix. According to the convention expressed in (A.46), the homogeneous transfor-

mation matrix linking the two coordinates systems will be defined by:

~X|global = Qcam/world
~X|cam (2.5)

Since we are interested in the coordinates expressed in the reference frame of the

camera, given some coordinates expressed in the global reference frame:

~X|cam = Q−1
cam/world

~X|global (2.6)

Suppression of the “1” at the Bottom of the Homogeneous 3D Coordi-

nates



12

In order to have a 3× 1 column vector ~x to apply to the intrinsic calibration matrix,

the fourth element of the homogeneous coordinates ~X must be discarded. This is

done by premultiplying the homogeneous coordinates by the [I|0]3×4 matrix:




X

Y

Z




camera

=




1 0 0 0

0 1 0 0

0 0 1 0







X

Y

Z

1




camera

(2.7)

~x = [I|0]3×4
~X (2.8)

Projection of the 3D Coordinates in the Reference System of the Cam-

era in the Image Plane

As seen in equation (2.4), the projection of a non homogeneous 3D point ~x as ex-

pressed in the reference system of the camera can be obtained by using the intrinsic

calibration matrix K.

Combining (2.4), (2.8) and (2.6) yields to:

~u = λK~x = λK × [I|0]3×4
~X|camera = λK[I|0]3×4Q

−1
cam/world

~X|world (2.9)

~u = λP ~X|world (2.10)

where

P = K[I|0]3×4Q
−1
cam/world (2.11)

The projection matrix P is the most compact representation of how a camera

captures the information of a scene. The projection matrix encapsulates the intrinsic

calibration parameters of the camera, along with the camera’s location and orienta-

tion with respect to a global reference frame. Therefore, performing the complete

calibration of a camera is synonymous to computing its projection matrix.
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Figure 2.2: Geometry of a two cameras stereo setup
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2.3 Stereoscopic Setup Geometry

The geometry of a general stereoscopic setup is depicted in Figure 2.2. It is worth

noticing that we won’t assume at this point that the camera frames are parallel. In

chapter 4, when we will be concerned with matching, we will add the requirements

that the two cameras have their Y-axes (or X-axes) nearly parallel and their separation

is not too big. These requirements come from the matching algorithm that we will

implement, based on window correlation, but they are not features of the general

stereoscopic geometry we are discussing now.

A stereo setup is essentially defined by the homogeneous transformation matrix

relating the reference systems of the two cameras, Qcam2/cam1, and the focal lengths

of the cameras, f1 and f2. The most important feature of this configuration is the

segment O1O2 that joins the two centers of projection. The points where this segment

intersects the image planes of the cameras are called the epipoles, ~e1 and ~e2.

From the geometry of the configuration, an interesting observation can be formu-

lated. Let us assume the image point ~u1 of the scene point ~X has been identified in

image 1. It is known that the 3D point ~X must lie in the line defined by the two

points ~O1 and ~x′1 (the 3D point in the image plane corresponding to the pixels point

~u1). This line, when projected in the image plane of camera 2, yields to an epipolar

line. This name comes from the fact that all the epipolar lines must go through the

epipole of a camera. Using this information, finding the image point ~u2 of the scene

point ~X can be restricted to searching along the epipolar line corresponding to ~u1.

Identifying matches is usually done through correlation. Without this knowledge,

finding the match for ~u1 requires a 2D search over the entire image. Knowing the

location of the epipoles allow us to turn this task into a 1D search of correlation

matches.
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2.4 Essential Matrix and Fundamental Matrix

The essential and fundamental matrices express mathematically what was observed

in section 2.3, namely the image point - to - epipolar line correspondence of a stereo

setup. The essential matrix E is a 3× 3 matrix that allows to compute a 3D line in

the image plane of camera 2, given a 3D point ~x′1 in the image plane of camera 1,

and vice-versa:

~x′
T

2 E~x′1 = 0 (2.12)

The fundamental matrix is a 3 × 3 matrix that expresses the same relationship,

with pixel points. Given an image point ~u1 from camera 1, the fundamental matrix

F allows to compute the corresponding epipolar line in image 2, and vice-versa:

~uT
2 F~u1 = 0 (2.13)

The explicit form of the essential and the fundamental matrices are the following:

E = RT
cam2/cam1Scam2/cam1 (2.14)

F = K−T
2 RT

cam2/cam1Scam2/cam1K
−1
1 = K−T

2 EK−1
1 (2.15)

where

Scam2/cam1 =




0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0




cam2/cam1

(2.16)

Tx, Ty, Tz being the components of the translation vector ~T and K1 and K2 being

the intrinsic calibration matrices.

Proof. Preliminary result:

~V × ~T = ST ~V (2.17)

where

S ≡




0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0


 (2.18)
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Figure 2.3: Coplanarity of Rcam2/cam1
~X|cam2, ~X|cam1 and ~X|cam2/cam1

Proof of 2.17

~V × ~T = det




∧
i

∧
j

∧
k

Vx Vy Vz

Tx Ty Tz


 =




VyTz − VzTy

VzTx − VxTz

VxTy − VyTx




=




0 Tz −Ty

−Tz 0 Tx

Ty −Tx 0







Vx

Vy

Vz


 = ST ~V (2.19)

Let us define a two cameras stereo setup. A 3D point ~X is imaged in both cameras,

corresponding to the 3D points ~x′1 and ~x′2 respectively. The reference systems of the

two cameras are related by a rotation Rcam2/cam1 and a translation ~Tcam2/cam1, such

that:

~X|cam1 = Rcam2/cam1
~X|cam2 + ~Tcam2/cam1 (2.20)

In order for (2.20) to be possible, the vector Rcam2/cam1
~X|cam2 must lie in the plane

defined by the vectors ~X|cam1 and ~Tcam2/cam1 (see Figure 2.3). Therefore, their mixed

double product is zero:

(Rcam2/cam1
~X|cam2 × ~Tcam2/cam1)

T · ~X|cam1 = 0 (2.21)

Inserting (2.17) into (2.21):
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(ST
cam2/cam1Rcam2/cam1

~X|cam2)
T · ~X|cam1 = 0 (2.22)

~X|Tcam2R
T
cam2/cam1S

~X|cam1 = 0 (2.23)

Since ~x′1 = α ~X|cam1 and ~x′2 = β ~X|cam2 where α and β are scalars, (2.23) becomes:

1

αβ
~x′

T

2 RT
cam2/cam1Scam2/cam1

~x′1 = 0 (2.24)

~x′
T

2 RT
cam2/cam1Scam2/cam1

~x′1 = 0 (2.25)

~x′
T

2 E~x′1 = 0 (2.26)

where

E = RT
cam2/cam1Scam2/cam1 (2.27)

S =




0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0


 (2.28)

Inserting (2.4) into (2.25):

(
1

λ2

K−1
2 ~u2)

T RT
cam2/cam1Scam2/cam1(

1

λ1

K−1
1 ~u1) = 0 (2.29)

~uT
2 K−T

2 RT
cam2/cam1Scam2/cam1K

−1
1 ~u1 = 0 (2.30)

~uT
2 F~u1 = 0 (2.31)

where

F = K−T
2 RT

cam2/cam1Scam2/cam1K
−1
1 (2.32)
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2.4.1 Eigenvalues and Rank of E

Computing the eigenvalues of E yields to the following characteristic equation:

λ(λ2 + λb(R, ~T ) + c(R, ~T )) = 0 (2.33)

where

b(R, ~T ) ≡ (r12 − r21)Tx + (r20 − r02)Ty + (r01 − r10)Tz (2.34)

c(R, ~T ) ≡ (r11r22 − r12r21)T
2
x + (r00r22 − r02r20)T

2
y

+(r00r11 − r01r10)T
2
z + (r02r21 − r01r22 + r12r20 − r10r22)TxTy

+(r01r12 − r02r11 + r10r21 − r11r20)TxTz

+(r01r20 − r00r21 + r02r10 − r00r12)TyTz (2.35)

The eigenvalues of E are therefore




λ1

λ2

λ3




E

=




0

−b(R,~T )+
√

b2(R,~T )−4c(R,~T )

2

−b(R,~T )−
√

b2(R,~T )−4c(R,~T )

2


 (2.36)

Since E has rank 2 and the intrinsic calibration matrices are full-rank (see(2.2)),

F has rank 2. Hence, the essential and the fundamental matrices are defined up to

a scale factor. In order to facilitate comparisons of different matrices, it is common

practice to set a scaling factor such that one of the non-zero elements of the matrix

(typically the upper-left entry) is unity.

2.4.2 Eight-Point Algorithm

The eight-point algorithm allows one to compute the fundamental matrix of a stereo

setup from a set of matches. It was first introduced by Longuet-Higgins [2]. Each of

the matches (~u1, ~u2) can be used to build a homogeneous linear equation, from (2.13):

~uT
2 F~u1 = 0 (2.37)
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The problem of computing the entries of F can be seen as searching for nine

numbers, from the homogeneous linear equations in nine unknowns provided by each

match. It can be solved by computing the non-trivial solution of a minimum set of

eight homogeneous linear equations. As a consequence, the fundamental matrix can

be computed from a minimum of eight matches.

The singularity of the fundamental matrix must be enforced [1]. This can be

done by performing singular value decomposition (SVD) on the obtained matrix F ′:

F ′ = UD′V T . If the decomposed matrix is singular, the diagonal matrix D′ will

contain a null value. In practice, the smallest singular value may not be identically

zero. To obtain a genuine singular matrix, the diagonal matrix D′ must be replaced

by another diagonal matrix D whose entries are equal to those of D′, except for the

smallest entry of D′ that must be replaced by a 0. Then, F = UDV T is the singular

matrix that is the closest of F ′, in the sense of the Frobenius norm [3].

This simple version of the eight-point algorithm presents a flaw. It is well known

that its implementation yields to numerical instabilities. Hartley [3] showed the subtle

origin of this problem. While evaluating the least-square solution of the system

A~f = 0 where ~f contains the entries of F , one has to compute the least eigenvector

of AT A. This square matrix typically has a wide range of variation in the orders

of magnitude of its entries, when usual pixel values are used, with the origin as the

upper left corner. Hartley showed that, by proper scaling and translation of the pixel

values, such that their transformed centroid is (0, 0, 1) and their average modulus is

around 1, the entries of the obtained A′T A′ are much more uniform. This procedure

is referred to as the normalization of image points. It yields to a more stable solution

of A′f ′ = 0. The original fundamental matrix can then be retrieved by undoing the

transformations, i.e. F = T T
2 F ′T1, where T1 and T2 are the transformation matrices

applied to the original image coordinates of images 1 and 2 respectively.

The eight-point algorithm allows one to estimate the fundamental matrix from

matches, with no information about the intrinsic and extrinsic calibration of the

cameras. It is therefore a powerful tool in the case of uncalibrated images. In the
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case where the calibration of the setup is known, the next chapter will address the

issue of whether it is worthwhile to compute the fundamental matrix through the

eight-point algorithm.

2.5 3D Reconstruction

Tridimensional reconstruction is the task of computing the euclidian coordinates of

a feature point from its pixel coordinates in multiple images and the knowledge of

the calibration parameters of the stereo setup. Two alternative approaches will be

presented in this section: the triangulation and the least-square solving from the pro-

jection matrices. These two techniques aim at minimizing different error quantities.

The triangulation, which is presented for two cameras, finds the 3D point that mini-

mizes its 3D distance with two non-crossing lines in space. In order words, it returns

the middle of the segment perpendicular to both lines. Least-square solving from the

projection matrices aims at minimizing an algebraic quantity such that ~u = λP ~X

holds well for every camera. Both methods are valid and produce very similar results

in practice.

2.5.1 Triangulation

This method is described in [1].

Figure 2.4 shows the geometry of two cameras projecting the images ~u1 and ~u2

of the 3D point x. Let x′1 and x′2 be the 3D points in the image planes of camera 1

and 2 respectively, located at the image points ~u1 and ~u2. In an ideal situation, the

extension of the lines
−−→
O1x

′
1 and

−−→
O2x

′
2 should cross each other in space at the location

of the projected 3D point x. In reality, the two lines may not cross. We will be

searching for the point x that is the middle of the segment −−→x1x2, perpendicular to
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Figure 2.4: Geometry of the triangulation procedure

both lines. From (2.4),

~uj = λjKj~xj|camj (2.38)

~x1|cam1 =
1

λ1

K−1
1 ~u1 (2.39)

~x2|cam2 =
1

λ2

K−1
2 ~u2 (2.40)

Applying the convention of Section A.2:

~x2|cam1 = R~x2|cam2 + ~T (2.41)

~x2|cam1 =
1

λ2

RK−1
2 ~u2 + ~T (2.42)

Let us define the vector ~d (see Figure 2.4), that is proportional to the cross product

of ~x1|cam1 and (~x2|cam1 − ~T ):

~d ≡ λ1λ2~x1|cam1 × (~x2|cam1 − ~T )

= K−1
1 ~u1 ×RK−1

2 ~u2 (2.43)
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The vector ~d is therefore parallel to the vector −−→x1x2. Let us now define three

scalars a, b and c such that the path O1x1x2O2O1 forms a closed loop:

aK−1
1 ~u1 + b~d + cRK−1

2 ~u2 − ~T = 0 (2.44)

aK−1
1 ~u1 + b[K−1

1 ~u1 ×RK−1
2 ~u2] + cRK−1

2 ~u2 = ~T (2.45)

Equation (2.45) provides three linear equations in three unknowns, a, b and c.

Once this system is solved for a given match (~u1, ~u2), the location of the point x can

be calculated:

~x|cam1 = aK−1
1 ~u1 +

1

2
b[K−1

1 ~u1 ×RK−1
2 ~u2] (2.46)

2.5.2 Least-Squares Solving from the Projection Matrices

An alternative approach for 3D reconstruction under the assumption of complete

knowledge of the calibration involves the use of the projective equation (2.10). Let us

assume we have n cameras imaging a point x with global homogeneous coordinates

~X, through their respective projection matrices Pi. Each of the cameras provides us

with three non-linear equations in four unknowns, λi, X, Y , and Z.

λi




p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23




i




X

Y

Z

1




=




u

v

1




i

(2.47)

As discussed in Section 2.1, the λi parameter reflects the loss of information that

occurs when a 3D point in projected into a 2D image plane, and must be set such that

the homogeneity of the equation is preserved (the third entry of ~ui is one). This infor-

mation is not relevant, since we are searching for the 3D coordinates of x, (X, Y, Z).

As a consequence, eliminating the λi from the set of unknowns would greatly simplify

the formulation. This can be performed by a few algebraic manipulations, which also

make the system to be solved linear.
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Let us isolate λi:

λi =
1

(p20X + p21Y + p22Z + p23)i

(2.48)

Inserting (2.48) into the two first lines of (2.47):

(p00 − up20)iX + (p01 − up21)iY + (p02 − up22)iZ = (up23 − p03)i (2.49)

(p10 − vp20)iX + (p11 − vp21)iY + (p12 − vp22)iZ = (vp23 − p13)i (2.50)

Each camera providing 2 linear equations in three unknowns (X, Y, Z), we get a

system of 2n linear equations in three unknowns:



(p00 − up20)1 (p01 − up21)1 (p02 − up22)1

(p10 − vp20)1 (p11 − vp21)1 (p12 − vp22)1

(p00 − up20)2 (p01 − up21)2 (p02 − up22)2

(p10 − vp20)2 (p11 − vp21)2 (p12 − vp22)2

... ... ...

(p00 − up20)n (p01 − up21)n (p02 − up22)n

(p10 − vp20)n (p11 − vp21)n (p12 − vp22)n







X

Y

Z


 =




(up23 − p03)1

(vp23 − p13)1

(up23 − p03)2

(vp23 − p13)2

...

(up23 − p03)n

(vp23 − p13)n




(2.51)

The system (2.51) can be solved using a least-squares linear method.

2.6 Configuration of the Cameras

The spatial configuration of a pair of cameras (the relative orientation and location)

have an impact on the quality of the 3D reconstruction. From inspection of Figure

2.4, one can infer that the closer the two cameras are to each other, the more parallel

the two projection rays will be. Hence, the more imprecise the intersection point will

be, especially in the Z-direction. As can be observed from Figure 2.5, if one wants to

increase the baseline (the distance between the centers of projection of the cameras),

one must increase the angle between the Z-axes of the cameras in order to keep a

given working area.

A limiting factor on the angle between the Z-axes of the cameras is the ability to

perform point matching between the views. As will be discussed in Section 4.1, we will
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Figure 2.5: Necessity to increase the angle between the cameras Z-axes, as the baseline
is increased
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use correlation to identify matches. This family of techniques cannot tolerate large

perspective distortion in the surrounding of a pixel of interest. As far as matching is

concerned, the more parallel the camera frames, the better.

We performed an experiment in which we built three stereo setups with different

baselines (0.139 m, 0.416 m and 0.756 m). The angles between the Z-axes of the

two cameras were adjusted in such a way that a given working volume was preserved,

resulting in angles of 0.112 rad, 0.463 rad and 1.05 rad respectively. Reconstruction

was performed using least-squares solving from the projection matrices, as described

in Section 2.5.2. A calibration pattern (Figure 2.6) was used, allowing easy detection

of its feature points with sub-pixel resolution, through Hough transform. The position

of the calibration pattern with respect to the table was measured with a ruler. This

procedure provides the ground truth value of the feature points position, with an

estimated accuracy of a fraction of a millimeter.

Figure 2.7 shows the reconstruction error (|~xcalculated − ~xmeasured|) averaged over

the 20 feature points of a calibration pattern as a function of the Z position of the

calibration pattern, for three different baselines. It can be observed that the recon-

struction error is higher for the stereo setup with the smallest baseline, as expected.

No significant difference can be observed by comparing the results of the stereo setups

with baselines of 0.416 m and 0.756 m. Since matching requires the cameras to be as

parallel as possible, we can state that there is no need to increase the baseline of our

stereo setup above 0.4 m, since it does not provide any improvement in reconstruction

accuracy and it would make the matching process more difficult.
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Figure 2.6: Calibration pattern
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Figure 2.7: Average reconstruction error over a plane of 20 feature points, for three
different baselines



Chapter 3

Stereo Setup Calibration

The calibration of a stereo setup is a critical step in any computer vision applica-

tion where physical measurements have to be performed. The intrinsic and extrinsic

calibration parameters of the cameras are the settings of the model that need to

be estimated. If they are accurate, so will be the reconstruction data. If they are

approximate, so will be the reconstruction data. Among the approaches existing in

the literature, many involve direct measurements of the physical camera parameters.

For example, one could measure the relative position between two cameras, and their

relative orientation in order to figure out the homogeneous transformation that links

them. In the scope of this thesis, we will not investigate these methods. The only

physical measurements that will need to be performed will be on a calibration pattern,

which is a pattern of regularly spaced and easy to detect feature points. Determining

the position of the feature points on a calibration pattern is a straightforward pro-

cedure, and can be done with high precision. Furthermore, it will be assumed that

the calibration pattern can be positioned in a global reference system with sufficient

precision. No angular measurements will be performed. Starting with the basic in-

formation of the 3D location of feature points on a calibration pattern, along with

the corresponding image points in pixels, we will be processing the data to compute

the calibration parameters.

We will be using an intrinsic calibration matrix built with 4 parameters, as seen

28
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in equation (2.3). Many authors include a 5th intrinsic parameter, the skew factor, γ:

K(
f

lx
,
f

ly
, cx, cy, γ) =




f
lx

γ cx

0 f
ly

cy

0 0 1


 (3.1)

The skew factor accounts for any non-orthogonality between the axes of the de-

tector array. It is typically a small factor with respect to f
lx

and f
ly

(in other words,

the array of detectors of most cameras is very close to being orthogonal). It has been

observed that the introduction of this parameter does not improve significantly the

calibration quality and, in some instances, may induce computation instability. For

these reasons, we chose to neglect this effect by setting γ = 0.

The extrinsic calibration parameters are the rotation and the translation linking

a camera’s reference frame with a global reference frame. Combining the rotation

and the translation in a single 4 × 4 matrix gives the extrinsic calibration matrix

Qcam/world that obeys the convention of (A.46):

~X|world = Qcam/world
~X|cam (3.2)

3.1 Single Camera Calibration

We decided to implement a calibration algorithm ourselves, after having tried software

packages that did not yield repeatable results. Since intrinsic calibration parameters

are independent of the camera pose, repetitions of the calibration procedure on dif-

ferent stereo setup must provide similar intrinsic parameters.

The calibration of a single camera has been the object of extensive research. In

[4], Tsai argues that any stereo setup whose cameras are linearly modelled suffers

important 3D reconstruction error. This postulate justifies the need to take radial

distortion into account. A two-stage calibration technique is described that allows the

computation of the extrinsic calibration parameters, the focal length of the camera
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and the first order coefficient of the radial distortion phenomenon. The principal

point and the pixel sizes are assumed to be known. The first stage exploits the radial

alignment constraint, i.e. the fact that a distorted image point must lie on a line

defined by the principal point and the undistorted image point. The radial alignment

constraint is a set of equations allowing the computation of R, Tx and Ty. The second

stage involves an iterative method to compute f , Tz and κ (the first order distortion

parameter). The initial guess is computed linearly by neglecting lens distortion. This

approach uses known 3D points and their image locations.

In [5], Zhang proposes a single camera calibration technique that exploits ho-

mographies between different views of a planar calibration pattern. This method

takes radial distortion into account by computing the two first order coefficients. The

homographies allow the computation of the intrinsic calibration matrix K (which in-

cludes the skewness parameter γ). The extrinsic calibration parameters can then be

calculated, with respect to the locations of the calibration patterns. Finally, all the

calibration parameters are refined through an iterative method. The advantage of

this method is the fact that all the calibration patterns don’t need to be precisely po-

sitioned: the 3D points that are needed are the relative position of the feature points

on the calibration pattern. The extrinsic calibration parameters that are returned

are relative to the locations of the calibration patterns, one of which may be taken as

the world reference frame.

In [10], Seo and Hong propose a method to calibrate a linear camera that is

allowed to zoom and rotate around its center of projection, but not to translate.

This situation corresponds to a rotating and zooming camera mounted on a tripod,

observing a scene that is far away. The calibration can then be used to build a mosaic

of images. The method is based on the computation of the homography between

images from matching points on a planar surface.

Artificial intelligence tools have also inspired many researchers working on camera

calibration, especially genetic algorithms ([42], [43]).

The simplest method to achieve single camera calibration linearly is described in
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[49]. It is composed of two steps:

1. Estimate the projection matrix

2. Decompose the projection matrix to retrieve K and Qcam/world

3.1.1 Estimation of the Projection Matrix

Let us assume we have a set of n 3D points for which we know the global homogeneous

coordinates ~Xi. Each point, along with its corresponding image coordinates ~ui, allows

one to write an equation of the form (2.10):




u

v

1




i

= λi




p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23







x

y

z

1




i

(3.3)

where pij represents entry (i, j) of the projection matrix P . Eliminating the λi from

the expressions yields the following pair of linear equations:

p00xi + p01yi + p02zi + p03 − p20uixi − p21uiyi − p22uizi − p23ui = 0 (3.4)

p10xi + p11yi + p12zi + p13 − p20vixi − p21viyi − p22vizi − p23vi = 0 (3.5)
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Putting together the information of the n 3D points (n ≥ 6) gives 2n linear equations

in the 12 unknowns p00, p01, ..., p23:




x1 y1 z1 1 0 0 0 0 −u1x1 −u1y1 −u1z1 −u1

0 0 0 0 x1 y1 z1 1 −v1x1 −v1y1 −v1z1 −v1

x2 y2 z2 1 0 0 0 0 −u2x2 −u2y2 −u2z2 −u2

0 0 0 0 x2 y2 z2 1 −v2x2 −v2y2 −v2z2 −v2

... ... ... ... ... ... ... ... ... ... ... ...

xn yn zn 1 0 0 0 0 −unxn −unyn −unzn −un

0 0 0 0 xn yn zn 1 −vnxn −vnyn −vnzn −vn







p00

p01

p02

p03

p10

p11

p12

p13

p20

p21

p22

p23




=




0

0

0

0

...

0

0




(3.6)

Since the projection matrix P is defined up to a scale factor, eleven of the twelve

unknowns can be found as the non-trivial solution of this homogeneous equation.
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3.1.2 Decomposition of the Projection Matrix

This method is described in [1], [50]. The explicit form of the projection matrix is,

from (2.11):

P = K[I|0]Q−1
cam/world (3.7)

p00 = r00
f

lx
+ r02cx (3.8)

p01 = r10
f

lx
+ r12cx (3.9)

p02 = r20
f

lx
+ r22cx (3.10)

p03 = − f

lx
(r00Tx + r10Ty + r20Tz)− cx(r02Tx + r12Ty + r22Tz) (3.11)

p10 = r01
f

ly
+ r02cy (3.12)

p11 = r11
f

ly
+ r12cy (3.13)

p12 = r21
f

ly
+ r22cy (3.14)

p13 = − f

ly
(r01Tx + r11Ty + r21Tz)− cy(r02Tx + r12Ty + r22Tz) (3.15)

p20 = r02 (3.16)

p21 = r12 (3.17)

p22 = r22 (3.18)

p23 = −r02Tx − r12Ty − r22Tz (3.19)

From equations (3.16) to (3.18), it can be seen that the third column of the rotation

matrix is directly available from inspection of the first three entries of the third row of

P . At this point, a scale factor must be calculated such that the sum r2
02+r2

12+r2
22 = 1,

from the orthogonality property (A.16). The scale factor 1√
p2
20+p2

21+p2
22

is applied to

the projection matrix before any further computation.
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Let us define the three vectors [1]:

~q1 ≡




p00

p01

p02


 =




r00
f
lx

+ r02cx

r10
f
lx

+ r12cx

r20
f
lx

+ r22cx


 (3.20)

~q2 ≡




p10

p11

p12


 =




r01
f
ly

+ r02cy

r11
f
ly

+ r12cy

r21
f
ly

+ r22cy


 (3.21)

~q3 ≡




p20

p21

p22


 =




r02

r12

r22


 (3.22)

By making use of the orthogonality properties of the rotation matrix (A.15) and

(A.16), the following equations can be derived, expressing most of the remaining

calibration parameters:

cx = ~q1 · ~q3 (3.23)

cy = ~q2 · ~q3 (3.24)
f

lx
=

√
~q1 · ~q1 − c2

x (3.25)

f

ly
=

√
~q2 · ~q2 − c2

y (3.26)

r00 =
p00 − r02cx

f
lx

(3.27)

r01 =
p10 − r02cy

f
ly

(3.28)

r10 =
p01 − r12cx

f
lx

(3.29)

r11 =
p11 − r12cy

f
ly

(3.30)

r20 =
p02 − r22cx

f
lx

(3.31)

r21 =
p12 − r22cy

f
ly

(3.32)
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In a typical situation, the obtained rotation matrix will not be perfectly ortho-

gonal. Orthogonality must be enforced, e.g. through singular value decomposition. If

the obtained first estimate of the rotation matrix is R′ = UD′V T , then the orthogonal

matrix R that is the closest to R′ in the sense of the Frobenius norm will be computed

by replacing D′ by an identity matrix, i.e. R = UV T .

The three last parameters Tx, Ty and Tz can be retrieved by solving a system of

three linear equations in three unknowns, given by the expressions of p03, p13 and p23.

3.2 Calibration of a Pair of Cameras

In [9], Ramanathan et al. propose a method to refine the knowledge of the extrinsic

calibration parameters, from an estimate of the location of the views. The intrinsic

calibration parameters are assumed to be known. The main idea is based on the

projection of the silhouette cone of an object, as defined by another view. In case

of perfect knowledge of the cameras locations, the projected cone would be a trian-

gle that is tangent to the object surface as seen in the image of interest. In case of

imperfect knowledge of the cameras poses, the triangle will not be perfectly tangent

to the object silhouette. A measure of mismatch is defined, and an error gradient

is monitored as the extrinsic calibration parameters of both cameras are perturbed.

The procedure is repeated iteratively on all the possible pairs of views.

In [6], Malm and Heyden use the single camera procedure described by Zhang in

[5] and extend it to a stereo setup, with the exception that radial distortion is not

considered. The availability of two cameras provides additional constraints, obtained

by arbitrarily setting the position of the planar calibration pattern in the plane Z = 0.

This special configuration leads to a homography between the pixel coordinates of

the image points and the (X, Y ) coordinates of the calibration pattern feature points.

Using images from a minimum of two positions of the stereoscopic setup, the homo-

graphies are built and their relationship is used to compute the intrinsic calibration
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matrices. In a second step, the homogeneous transformation matrix linking the two

cameras is obtained. This method is claimed to be robust to noise and especially

efficient when one of the cameras is better than the other.

Memon and Khan [16] approached the stereo calibration problem in an original

way. Instead of trying to compute calibration parameters, they trained a neural

network to perform 3D reconstruction from a match of image points. They pre-

cisely positioned a calibration pattern with respect to a global reference system, and

recorded the image points corresponding to the feature points. They supplied the

data to a neural network for training. Each training data had, as input, the matched

image coordinates of a feature point and, as output, its 3D coordinates. The neural

network could learn to perform 3D reconstruction, but nothing was known about the

actual values of the calibration parameters.

Do [17] exploits basically the same idea, with the difference that his neural network

has the task of computing the difference between the image coordinates predicted by

a linear model and the actual observed image coordinates.

Additional research topics on stereo calibration can be found in the literature

([45], [46], [47], [48]).

One possible new approach is to take advantage of the fundamental matrix, which

might provide additional information about intrinsic and extrinsic calibration param-

eters. It is computable from matches, as described in Section 2.4.2. Those matches

can be obtained by making use of a calibration pattern exhibiting features that are

easily identified.

3.2.1 Two Ways to Compute the Fundamental Matrix

Let us assume the two cameras have been calibrated independently through the

procedure described in Sections 3.1.1 and 3.1.2, providing K1, K2, Qcam1/world and
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Qcam2/world. The homogeneous transformation linking the two cameras can be com-

puted:

Qcam2/cam1 = Q−1
cam1/worldQcam2/world (3.33)

Then, the fundamental matrix can be built, from (2.15):

F = K−T
2 RT

cam2/cam1Scam2/cam1K
−1
1 (3.34)

As seen in Section 2.4.2, the fundamental matrix can also be estimated from

matches in two views (eight-point algorithm). Let us suppose the matrix obtained by

the eight-point algorithm differs substantially from the one obtained by independent

calibration of the two cameras (3.34). Which one should we trust? The remainder of

this chapter will be used to determine which is the best approach.

The main problem associated with the fundamental matrix obtained from the

eight-point algorithm is the potential inconsistency with the intrinsic calibration pa-

rameters. Keeping only F and the intrinsic calibration matrices K1 and K2, from

(2.14) and (2.15), the essential matrix can be computed:

E = RT
cam2/cam1Scam2/cam1 = KT

2 FK1 (3.35)

The rotation Rcam2/cam1 and the translation ~Tcam2/cam1 can be retrieved through

the decomposition of the essential matrix (cf. Section 3.2.2). It will be shown that

the expression of E obtained from (3.35), using F from the eight-point algorithm may

lead to a matrix that cannot be a valid essential matrix.

3.2.2 Decomposition of the Essential Matrix

This technique is described by Longuet-Higgins in [2]. The first observation that can

be done about the essential matrix is the fact that the product of its transpose by
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itself is solely dependent on the translation vector entries:

ET E = (RT S)T ·RT S = ST RRT S
(A.12)
= ST RR−1S = ST S

(2.16)
=




0 Tz −Ty

−Tz 0 Tx

Ty −Tx 0







0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0




=




T 2
y + T 2

z −TxTy −TxTz

−TxTy T 2
x + T 2

z −TyTz

−TxTz −TyTz T 2
x + T 2

y


 (3.36)

The trace of ET E will provide us with the scale factor such that the length of the

translation vector is normalized to 1. This is allowed since the matrix S has rank 2

(its eigenvalues are 0,±i
√

T 2
x + T 2

y + T 2
z ) and therefore is defined up to a scale factor.

trace(ET E) = 2T 2
x + 2T 2

y + 2T 2
z = 2|~T |2 (3.37)

N ≡ |~T | =
√

trace(ET E)

2
(3.38)

The Ŝ (normalized S) and Ê (normalized E) matrices can be defined:

Ŝ ≡ 1

N
S (3.39)

Ê ≡ 1

N
E = RT Ŝ (3.40)

ÊT Ê = ŜT Ŝ

=




1− T̂x
2 −T̂xT̂y −T̂xT̂z

−T̂xT̂y 1− T̂y
2 −T̂yT̂z

−T̂xT̂z −T̂yT̂z 1− T̂z
2


 (3.41)

From inspection of (3.41), the normalized components of the translation vector,

T̂x, T̂y and T̂z can be evaluated. Notice that some unrealistic situations can arise:

• entries on the main diagonal of ÊT Ê can be outside the range [0, 1]

• the redundancy of information can be contradictory
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This is where the discrepancy between the fundamental matrix and the intrinsic

calibration matrices obtained independently becomes apparent.

The matrix ÊT Ê has rank 2 (its eigenvalues are 0, 1, 1). Its singular value

decomposition should return a diagonal matrix with singular values 1, 1 and 0. In

practice, it might not be the case, as just pointed out. If SVD returns ÊT Êinitial =

UD′V T such that the diagonal matrix D′ has two entries slightly off unity and one

entry slightly off 0, it should be replaced by another diagonal matrix D with two

entries which are exactly one and one null entry. Then, ÊT Êcorrected = UDV T is the

valid matrix closest to ÊT Êinitial in the sense of the Frobenius norm.

For now, it is important to recognize the ambiguity on the signs of the compo-

nents, that comes from the quadratic terms on the main diagonal of ÊT Ê. It will be

resolved by first assuming a given sign combination, and confirm or prove wrong the

assumption later on:

• choose one of the non-zero components (T̂x for instance) and assume its sign is

positive

• compute the remaining components in accordance with the sign assumption

We will define ~ci as the vector whose entries are the ith column of the rotation

matrix Rcam2/cam1. From (A.26):

~cα = ~cβ × ~cγ (3.42)

where (α, β, γ) is an even permutation of (1, 2, 3).

By direct computation of the entries of Ê = RT Ŝ, it can be shown that the vector

~̂ei built with the entries of the ith row of Ê obeys to the following identity:

~̂ei = ~ci × ~̂
T (3.43)

Let us define the vector ~wi as the cross product of
~̂
T and ~̂ei:

~wi ≡ ~̂
T × ~̂ei (3.44)
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Figure 3.1: Vectors defined for the decomposition of the essential matrix

Since ~ci lies in the plane defined by the vectors
~̂
T and ~wi (see Figure 3.1), it can

be expressed by a linear combination of these two orthogonal vectors:

~ci = ai
~̂
T + bi ~wi (3.45)

Inserting (3.45) into (3.43):

~̂ei = (ai
~̂
T + bi ~wi)× ~̂

T (3.46)

= bi ~wi × ~̂
T (3.47)

(3.44)
= bi

~̂
T × ~̂ei × ~̂

T (3.48)

Since the modulus of
~̂
T is 1 and

~̂
T is perpendicular to ~̂ei (3.43),

~̂
T × ~̂ei × ~̂

T = ~̂ei

(see Figure 3.2) and

bi = 1 (3.49)

Inserting (3.49) and (3.45) into (3.42):

aα
~̂
T + ~wα = (aβ

~̂
T + ~wβ)× (aγ

~̂
T + ~wγ) (3.50)

aα
~̂
T + ~wα = aβ

~̂
T × ~wγ + aγ ~wβ × ~̂

T + ~wβ × ~wγ (3.51)
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Figure 3.2:
~̂
T × ~̂ei × ~̂

T

From (3.44), ~wi is orthogonal to
~̂
T . Hence, we can equalize the first term of the

left-hand side with the third term on the right-hand side of (3.51):

aα
~̂
T = ~wβ × ~wγ (3.52)

Inserting (3.49) and (3.52) into (3.42) gives the central result of the essential

matrix decomposition:

~cα = ~wα + ~wβ × ~wγ (3.53)

where (α, β, γ) is an even permutation of (1, 2, 3). Equation (3.53) allows us to

compute the rotation matrix columns from the normalized translation vector
~̂
T and

the normalized essential matrix Ê.

At this point, since K1, K2, Rcam2/cam1 and
~̂
Tcam2/cam1 are known, 3D reconstruc-

tion up to a scale factor can be performed using the techniques of Section 2.5. In order

to resolve the ambiguity regarding the signs combination of the translation compo-

nents, it is necessary to perform 3D reconstruction on a pair of matching points. The

3D location of any point seen by the cameras, with respect to the reference system
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of camera 1, must have positive Z-coordinate. If the computed Z-coordinate is nega-

tive, this is an indication that the assumed sign for one of the non-zero components

was wrong. Therefore, it must be negated and the rest of the computations must be

redone from this point.

The decomposition of the essential matrix supplies the translation vector normal-

ized to a unity norm. In order to get a translation vector consistent with the distance

units of the coordinates systems (in meters, for example), it is necessary to denormal-

ize the translation vector. The scale factor can be obtained by computing the ratio of

the absolute distance between two points and their normalized distance, as computed

with the normalized translation vector. Of course, it is better to use a large number

of measurements, and average out. The obtained scale factor is multiplied with the

normalized translation vector, and the homogeneous transformation matrix between

camera 1 and camera 2 can be built.

3.2.3 Least-Square Refinement of the Intrinsic Calibration

Parameters

The observation of a case where the SVD of ÊT Ê doesn’t lead to singular values of

(1, 1, 0) means that something is wrong in the initial estimates. In practice, it is

frequently the case when we combine intrinsic calibration matrices obtained indepen-

dently with a fundamental matrix obtained through the eight-point algorithm. The

observation of an inconsistency in ÊT Ê means that either the intrinsic calibration

matrices or the fundamental matrix are inaccurate. We aim at comparing the valid-

ity of the fundamental matrix as obtained through the eight-point algorithm with the

one computed after independent calibration of the cameras. As a consequence, we

will interpret this inconsistency as a result of inaccuracies in the intrinsic calibration

matrices.

We will reconciliate our intrinsic matrices with the fundamental matrix through

an iterative refinement technique. We will aim at minimizing the reprojection error.
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Starting from known 3D points, we will be searching for the intrinsic parameters of

both cameras such that the 3D points are projected as close as possible to their ob-

served respective image points.

We will assume the homogeneous transformation matrices between the global ref-

erence frame and the cameras are known. This is where the iterative procedure comes

into play: we start with an estimate of the intrinsic parameters to compute an esti-

mate of the extrinsic parameters, that in turn are used to compute a better estimate

of the intrinsic parameters, and so on. Once again, the mathematical treatment will

start with (2.10):

um = λmP ~Xm (3.54)
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Let us define the known constants a, b, c, ..., l that are computed from:

[I3|0]Q−1 ≡
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We can get rid of the non-linearity by evaluating λm, for each 3D point:

λm =
1

iXm + jYm + kZm + l
(3.59)

Let us assume we have two cameras. In this case, we will denote λp,m the λ-factor

obtained with camera p (p = {1, 2}) and feature point m. Inserting (3.59) into (3.58)

gives an over-determined linear system with 4n equations in 8 unknowns, the intrinsic

calibration parameters of the two cameras.
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(3.60)

where, for m = {0, 1, 2, ..., n− 1}, ~κm being the mth row of κ:

~κ4m =
[

λ1,m(a1Xm + b1Ym + c1Zm + d1) 0 λ1,m(i1Xm + j1Ym + k1Zm + l1) 01×5

]

~κ4m+1 =
[

0 λ1,m(e1Xm + f1Ym + g1Zm + h1) 0 λ1,m(i1Xm + j1Ym + k1Zm + l1) 01×4

]

~κ4m+2 =
[

01×4 λ2,m(a2Xm + b2Ym + c2Zm + d2) 0 λ2,m(i2Xm + j2Ym + k2Zm + l2) 0
]

~κ4m+3 =
[

01×5 λ2,m(e2Xm + f2Ym + g2Zm + h2) 0 λ2,m(i2Xm + j2Ym + k2Zm + l2)
]
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Solving (3.60) through a least-square error technique will minimize (u1,1measured −
u1,1reprojected)

2 + (v1,1measured − v1,1reprojected)
2 + ... + (v2,nmeasured − v2,nreprojected)

2. In

other words, the reprojection error will be minimized.

3.2.4 Iterative Algorithm for Stereo Setup Calibration

We now have all the mathematical tools to describe the iterative algorithm that mod-

ifies the intrinsic calibration parameters of a two-camera stereo setup, to make them

consistent with the fundamental matrix obtained through the eight-point algorithm.

• Input data:

– An estimate of the intrinsic calibration matrices K1 and K2;

– A fundamental matrix F obtained from a large number of good matches(∼
300);

– A large number of 3D points (∼ 200) with their corresponding image points

in both images.

• Output data: Projection matrices P1 and P2 that are in agreement with F .

1. From F and the actual estimates of K1 and K2, compute the essential matrix:

E = KT
2 FK1.

2. Decompose E, through the technique described in section 3.2.2 to get Rcam2/cam1

and
~̂
Tcam2/cam1.

3. Perform 3D reconstruction of the 3D points using their pairs of image points

through the technique described in section 2.5 to get the normalized calculated

3D locations, with respect to camera 1.

4. Denormalize the 3D locations to get the modulus of the translation vector.
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5. Register the cloud of denormalized 3D points with the cloud of measured 3D

points through the technique of section A.4 to get the homogeneous transformation

linking the first camera with the global reference frame, Qcam1/world.

6. From Qcam1/world, Rcam2/cam1 and ~Tcam2/cam1, compute the homogeneous transfor-

mation linking camera 2 with the global reference frame, Qcam2/world.

7. Compute the new estimates of P1 and P2 through equation (2.11).

8. From Qcam1/world, Qcam2/world, the measured 3D points and their observed image

points, refine the intrinsic calibration parameters through least-square solving of

(3.60). Better estimates of K1 and K2 are obtained.

9. If the reprojection error is sufficiently small, exit. Otherwise, go back to step 1.

3.3 Experimental Comparison Between Calibration

of a Pair of Cameras Independently and the

Iterative Algorithm

3.3.1 Repeatability of the Fundamental Matrix and the Pro-

jection Matrices

A stereo setup has been calibrated twice to observe the repeatability of both methods.

The subscript a refers to the first set of data while the subscript b refers to the second

set of data. The numerical subscripts 1 and 2 will refer to the first and the second

camera, respectively. The fundamental matrices F (a) and F (b) are given in Table

3.1.

These two fundamental matrices were computed with the eight-point algorithm,

using 600 matches. Despite the large number of matches, significant variation can be

observed between the corresponding entries of the two matrices.
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Table 3.1: Comparison of two fundamental matrices obtained through a repetition of
the eight-point algorithm on the same stereo setup

Data set F

F (a)




1 −5.35854 −2953.42
−9.62767 −1.27071 61249.6
6184.38 −57162 −3.35226e + 006




F (b)




1 −4.72328 −2940.52
−10.4527 −0.41363 59487.8
6244.39 −55604.9 −3.2822e + 006




Table 3.2: Comparison of the projection matrices of the two cameras, obtained
through a repetition of the manipulation on the same stereo setup (method of Section
3.1.1)

Data set P

P1(a)




1280.18 19.4154 −174.738 375.071
81.8363 −1240.17 −12.5186 318.709
0.168546 −0.152118 −0.973885 0.772105




P1(b)




1280.6 19.8226 −174.772 375.092
81.7831 −1240.42 −12.476 318.77
0.16843 −0.151046 −0.974072 0.772125




P2(a)




1163.23 −40.0977 −566.029 244.562
−12.3381 −1269.95 −74.4566 337.468
−0.212123 −0.139376 −0.967253 0.740569




P2(b)




1165.58 −39.8649 −566.936 244.986
−12.1115 −1272.12 −74.0658 338.13
−0.211713 −0.138431 −0.967479 0.741964



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Table 3.3: Comparison of the intrinsic calibration matrices of the cameras, obtained
from decomposition of the initial projection matrices of Table 3.2.

Data set K

K1(a)




1234.14 0 382.991
0 1224.26 214.637
0 0 1




K1(b)




1234.6 0 382.938
0 1224.74 213.288
0 0 1




K2(a)




1257.48 0 306.334
0 1247.06 251.636
0 0 1




K2(b)




1259.83 0 307.248
0 1249.5 250.322
0 0 1




As can be seen from Table 3.2, the projection matrices obtained through a rep-

etition of the manipulations of Section 3.1.1 are very similar to each other. As a

consequence, the intrinsic calibration matrices that can be extracted from these pro-

jection matrices are similar (cf. Table 3.3).

3.3.2 Repeatability of the Intrinsic Calibration Matrices Ob-

tained through Iterative Refinement Versus Decompo-

sition of the Initial Projection Matrices

The fundamental matrices F (a) and F (b) as shown in Table 3.1 were used to refine

the initial intrinsic calibration matrices, in order to make them consistent with each

other. The obtained intrinsic calibration matrices are shown in Table 3.4.

Since the initial intrinsic calibration matrices used to seed the iterative refinement

algorithm were very similar (cf. Table 3.3), the slight discrepancies observed in the

final intrinsic calibration matrices shown in Table 3.4 can only be explained in terms of

the differences in the computed fundamental matrices. In other words, the relatively

poor repeatability of the fundamental matrix obtained from the eight-point algorithm
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Table 3.4: Comparison of the intrinsic calibration matrices of the two cameras, after
iterative refinement to make them consistent with the fundamental matrices of Table
3.1.

Data set K

K1(a)




1296.77 0 352.238
0 1285.61 190.565
0 0 1




K1(b)




1284.91 0 358.397
0 1273.93 184.015
0 0 1




K2(a)




1313.03 0 340.128
0 1302.6 224.831
0 0 1




K2(b)




1291.92 0 332.384
0 1282 242.497
0 0 1




has a negative impact on the repeatability of the intrinsic calibration matrices, in the

case of the iterative refinement method of Section 3.2.4. On the other hand, the

repeatability of the projection matrices obtained with known 3D locations of feature

points, as described in Section 3.1.1, is excellent.

3.3.3 Reprojection Error and Reconstruction Error

The parameters of interest in the context of evaluating the performance of a pair

of projection matrices are the reprojection error and the reconstruction error. The

reprojection error is the distance, in pixels, between the location of the image of a

known 3D point and the location predicted by the projection matrix. The recon-

struction error, for a stereo setup, is the distance, in meters, between the calculated

location of a 3D point from the match coordinates and its actual location as physically

measured.

We will compare the performance of the pairs of projection matrices of the two

approaches. We will use the two sets of 3D points that were used to compute the initial

projection matrices, for each comparison, in an attempt to reveal any overfitting that
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Table 3.5: Comparison of the reprojection and reconstruction standard error obtained
with the initial projection matrices versus the projection matrices obtained after
iterative refinement of the intrinsic calibration matrices, for the first manipulation

Set of points a Set of points b

Initial P1(a) and P2(a)
σreprojection = 0.279pixels
σreconstruction = 0.388mm

σreprojection = 0.295pixels
σreconstruction = 0.401mm

P1(a) and P2(a) after 500
refinement iterations

σreprojection = 0.538pixels
σreconstruction = 0.775mm

σreprojection = 0.539pixels
σreconstruction = 0.754mm

Table 3.6: Comparison of the reprojection and reconstruction standard error obtained
with the initial projection matrices versus the projection matrices obtained after
iterative refinement of the intrinsic calibration matrices, for the second manipulation

Set of points a Set of points b

Initial P1(b) and P2(b)
σreprojection = 0.285pixels
σreconstruction = 0.398mm

σreprojection = 0.295pixels
σreconstruction = 0.393mm

P1(b) and P2(b) after 500
refinement iterations

σreprojection = 0.433pixels
σreconstruction = 0.652mm

σreprojection = 0.435pixels
σreconstruction = 0.627mm

could be present.

Comparing between the left and the right column of Tables 3.5 and 3.6 shows

that the reconstruction results are not affected by the set of 3D points used, showing

that there is no overfitting phenomenon that would strongly link a pair of projection

matrices to the set of 3D points that was used to compute it. Comparing between the

top and the bottom row of Tables 3.5 and 3.6 shows that the initial projection matrices

perform better than the projection matrices resulting from iterative refinement of the

intrinsic calibration matrices, both in terms of reprojection error and reconstruction

error. This comes from the fact that, at each iteration, we perform 3D reconstruction

using intrinsic calibration matrices that are corrupted by the error in the fundamental

matrix. Although the error does decrease with the number of iteration, it never gets to

the level obtained using only the initial projection matrices. Therefore, the process

of reconciliating the intrinsic calibration matrices with the computed fundamental

matrices leads to a significant loss in performance of the projection matrices. Now,

in light of these experimental results, the question arises: Wouldn’t it be better if,
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Table 3.7: Comparison of the standard error of the distance between a feature point
match and its associated epipolar line, using fundamental matrices computed through
the eight-point algorithm versus computed by decomposition of the initial projection
matrices, for the first manipulation

F (a)eight−point F (a)initialP ′s

Freely moving pattern a 0.306 0.634
Precisely positioned pattern a 0.237 0.146

Freely moving pattern b 0.292 0.425
Precisely positioned pattern b 0.241 0.152

instead, we would discard the fundamental matrix obtained through the eight-point

algorithm (which seems to be somehow unrepeatable, as seen in section 3.3.1) and

replace it by the one extracted from the initial projection matrices, as explained in

Section 3.2? In terms of reconstruction, there would be a clear advantage, as just

shown. The next question is: how would such a fundamental matrix compare with a

fundamental matrix computed through the eight-point algorithm?

3.3.4 Comparison Between the Fundamental Matrix Obtained

by Eight-Point Algorithm and the Fundamental Matrix

Obtained by Decomposition of the Initial Projection

Matrices

The task of the fundamental matrix is, given some feature point in one of the images,

to provide an epipolar line along which the corresponding feature point must lie.

Therefore, an appropriate performance measurement is the standard error in pixels

between the actual location of a feature point match and its associated epipolar line.

As opposed to the measurements displayed in Section 3.3.3 where 3D locations are

needed, this comparison only requires 2D matches. As a consequence, we will be able

to use sets of matches obtained with the calibration pattern moving freely, in addition

to the sets of matches whose 3D locations are known.
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Table 3.8: Comparison of the standard error (in pixels) of the distance between
a feature point match and its associated epipolar line, using fundamental matrices
computed through the eight-point algorithm versus computed by decomposition of
the initial projection matrices, for the second manipulation

F (b)eight−point F (b)initialP ′s

Freely moving pattern a 0.346 0.622
Precisely positioned pattern a 0.214 0.152

Freely moving pattern b 0.262 0.418
Precisely positioned pattern b 0.218 0.156

Tables 3.7 and 3.8 show that the fundamental matrix computed through the eight-

point algorithm performs better with the matches from a pattern moving freely in the

volume of interest, while the fundamental matrix obtained through decomposition of

the initial projection matrices performs better with the matches from the calibration

pattern precisely located at known positions (the sets of points used to compute the

initial projection matrices). This observation can be explained by recalling the linear-

ity of the model. As we know, radial distortions become more and more important the

further we get from the center of the image. The set of matches from a freely moving

calibration pattern contains more matches in the periphery of the images, while the

set of matches from the precisely positioned calibration pattern are concentrated in

the center of the images. As a consequence, the fundamental matrix obtained through

the eight-point algorithm does a better job at finding a compromise fundamental ma-

trix that will allow the eccentric matches to be fairly well taken into account. On the

other hand, the fundamental matrix computed through decomposition of the projec-

tion matrices started with matches in the linear region of the images, and performs

better in this domain, but worse in the borders where non-linear effects get more

important. In all cases, the measured standard errors are below 1 pixel. We cannot

realistically expect improvement on this figure without introducing radial distortion

in the model, which would increase significantly the complexity of calculation. To

summarize, the comparison between the fundamental matrix obtained through the

eight-point algorithm and the fundamental matrix obtained through decomposition



53

of the projection matrices is a tie match.

Typically, the work area of a stereo setup will be concentrated in the center of

the image of the cameras. The justification is straightforward: points that lie far

away from the center of an image have a high probability to be invisible by the other

camera. This simple fact makes us confident that we don’t need to worry about

strongly distorted eccentric image points.

3.4 Discussion

Experimental results showed the superiority of the projection matrices obtained in-

dependently over the projection matrices resulting from the iterative refinement of

the intrinsic calibration matrices, both in terms of reprojection error and reconstruc-

tion error. This is assumed to be due to the inaccuracy in the fundamental matrix

computed through the eight-point algorithm, which corrupts the intrinsic calibration

matrices when they are forced to be consistent with F through iterative refinement.

It has been demonstrated that the fundamental matrix obtained through eight-point

algorithm and the fundamental matrix obtained through decomposition of the initial

projection matrices perform equally well, in terms of capacity to produce epipolar

lines that go through the actual matches of feature points. In conclusion, we can

state that, based on experiment, the best approach for the stereo setup calibration

is to compute the projection matrices independently from feature points whose 3D

locations are known. For the sake of consistency, the fundamental matrix used for

matching can be computed by decomposition of the projection matrices, and the

eight-point algorithm need not be invoked.

The eight-point algorithm minimizes quantities on the image plane, allowing one

to get a fair guide for matching without any knowledge of the 3D geometry. In

our case, estimation and decomposition of the projection matrices gives us the 3D

geometry of the setup, as long as the positioning of the calibration pattern can be
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made with sufficient precision. The experimental results show that it is the case. We

can therefore use safely the information we have to build the fundamental matrix

from (3.34) and get a self-consistent model of our stereo setup.



Chapter 4

Evaluation of the Camera Positions

through 3D Reconstruction of

Tracked Points

A calibrated stereo setup allows one to keep track of the motions in 3D space that

a rigid object is experiencing in front of the cameras. Alternatively, a stereo setup

mounted on a vehicle or a robot can compute its displacement, assuming a fixed rigid

environment (or, at least, the fixed rigid environment represents a significant fraction

of the fields of views of the cameras). In order to achieve such a task, matches must

be identified between both images at a given starting frame. For each camera, the

feature points corresponding to the matches must be tracked until the next frame.

Reconstruction of the 3D points at the instant of the starting frame and at the instant

of the next frame can be performed, and the two clouds of 3D points registered, as

explained previously. Outliers must be identified, as they corrupt significantly the

3D registration results. This can be accomplished through a RANSAC algorithm, as

will be explained in the next sections, and demonstrated experimentally.

The problem of camera pose estimation from a stereo setup has been addressed by

various researchers, through different paths. In [22], a binocular or trinocular stereo-

scopic setup is used and its path along a sequence is computed by using tridimensional

55
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reconstruction and registration. The robustness to matching and tracking errors is

provided by two means. First, trilinear tensors are computed between image triplets.

The features that support the trilinear tensors are known to be reliable. Second, a

random sample consensus (RANSAC) [8] algorithm is applied to the 3D registration

procedure. It is assumed that the disparities of the tracked feature points across the

whole sequence is less than one third of the image size, thus constraining the camera

movements.

In [23], the goal is to compute the registration of two consecutive scene captures

along with the extrinsic calibration parameters of the stereo setup and the 3D location

of a minimum of four matched and tracked feature points. The essential matrix of the

stereo setup is calculated from the eight correspondences given by the four feature

points in both captures, and nonlinear methods are used to enforce its constraints.

The essential matrix is decomposed to retrieve the extrinsic calibration parameters

up to a scale factor of the translation vector. At this point, 3D reconstruction can

be applied to the feature points, yielding two clouds of a minimum of four 3D points.

The registration between the two captures can then be calculated. This approach

differs from the proposed method in the fact that they do not compute the extrinsic

calibration parameters of the stereo setup prior to the computation of the registration.

As a consequence, the matching process cannot be guided by the epipolar constraint.

No experimental results along a sequence were shown to display the accumulation of

error.

In [24], stereoscopic vision and shape-from-motion are combined in an attempt to

exploit the strengths of both approaches, i.e. accurate 3D reconstruction for stereo

and easy feature tracking for visual motion. The authors compute 3D reconstruction

of feature points and the camera motion in two separate steps. They limited their

experimentations to short sequences where the viewpoints don’t change dramatically

from the first to the last capture.

The interested reader can find additional research topics on motion of a stereo-

scopic setup in the literature ([37], [38], [39]), [40], [41]).
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4.1 Matching

In the scope of this thesis, the word “matching” will be used to designate the task

of finding matches between the left and the right camera at a given instant. We will

assume that the fundamental matrix is available, obtained through decomposition

of the projection matrices. Furthermore, it will be assumed that the cameras have

approximately the same orientation, and have moderately small baselines. These as-

sumptions are required to facilitate the matching. Under these assumptions, when

comparing small windows around a given pair of pixels, these pixels will be acknowl-

edged as a match if their surrounding windows look alike. If these assumptions are

not satisfied, it would be a case of wide-baseline matching, which is a significant chal-

lenge in itself (cf. [25], [26], [27], [28], [29], [30]). Since it is not the core of this thesis,

it won’t be addressed.

Vincent and Laganière presented a comparative study of the narrow-baseline

matching strategies in [31]. Although they assumed an uncalibrated image pair,

we can adapt the general matching procedure they used:

1. Identify corners in both images;

2. Identify, for a given corner in image 1, the corners in image 2 that are close

enough to the corresponding epipolar line;

3. Compute the level of dissimilarity between the corner in image 1 to be matched

with each of the candidate corners in image 2.

The first step accomplished by the implemented matching function is to identify

the corners in both images. This is performed by the function cvPreCornerDetect(),

which is part of the Intel OpenCV package. This function itself calls a function which

performs an edge detection operation twice (once in the x-direction, once in the y-

direction) through a convolution with a 3 × 3 Sobel kernel. After this operation,

each pixel has a value associated with its corner strength. A threshold is passed as a

parameter that allows to filter out the pixels whose corner strength is too low.
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The second step is to identify, for a given corner in image 1, the corners in image

2 that are close enough to the corresponding epipolar line, obtained from the funda-

mental matrix. The maximum distance of a candidate corner to the epipolar line is

passed as a parameter. Experiments showed that a maximum distance of 1 pixel is a

good choice in the vast majority of the cases (c.f. Section 3.3.4).

The third step is to compute the level of dissimilarity between the corner in

image 1 to be matched with each of the candidate corners in image 2, that are close

enough to the epipolar line. This is achieved by defining a square window around

the corner of interest in image 1, and comparing with the surrounding windows of

each candidate corner in image 2. The two windows to be compared are removed

of their respective average value (in order to compensate somehow for illumination

differences), then subtracted, and the obtained error is the sum of the squares of the

entries of the difference matrix, divided by the number of pixels in the window. This

is the dissimilarity measurement.

dissimilarity =

∑
window[(GLleft − µleft)− (GLright − µright)]

2

Nwindow

(4.1)

where GL stands for gray level, µ is the average gray level over a given window and

Nwindow is the number of pixels in the window.

The best match is the candidate corner that has the lowest dissimilarity level.

The maximum dissimilarity level is passed as a parameter, that determines whether

the best match for a given corner of interest in image 1 is good enough to be kept as

part of the returned list of matches.

The values of the three parameters (the corner strength threshold, the maximum

distance from the epipolar line and the maximum dissimilarity) must be determined

manually, based on the sharpness of the images, the desired number of matches that

must be found and the available processing time.

Figure 4.1 shows a pair of stereo images with the matched points found by the

algorithm just described. For those interested in research topics on stereo matching,

there is a vast literature available (cf., for instance, [32], [33], [34], [35])
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Figure 4.1: Stereo pair with matched points

4.2 Tracking

The tracking function takes two images taken by the same camera at different instants,

and a list of feature points to be tracked from instant 1 to instant 2. Instead of

searching in a linear area defined by an epipolar line and a tolerance distance as in

the case of the matching function, the tracking function must search in a disk whose

center and radius are parameters. In general, the number of candidate matches is

a lot larger than in the case of the matching function, because the area of search is

larger. The mechanisms of identifying corners and measuring dissimilarity through

windows is the same as described in Section 4.1, although the values of the optimal

parameters may differ for tracking and matching, when applied to a given sequence.

Figure 4.2 shows the result of the tracking algorithm, with corresponding feature

points that were tracked.

4.3 Robust Registration Algorithm

After having found matches and tracked the points in both sequences, two clouds of

3D points can be constructed, based on the matches at instant 1 and their tracked

correspondents at instant 2. These two clouds of 3D points can be registered to find
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Figure 4.2: Pair of consecutive captures with tracked feature points

the rigid motion of the object, as described in Section A.3. Unfortunately, direct use

of the raw data is not appropriate, since the false matches and the tracking errors will

corrupt the result. Instead, it is necessary to incorporate a random sample consensus

(RANSAC) algorithm that will filter out the bad pairs of 3D points.

A minimum of 3 pairs of non-collinear 3D points are necessary to perform a 3D

registration. As a consequence, the first step of the algorithm will consist of finding

a trio of pairs of 3D points that do not constitute a degenerate case.

4.3.1 Random Drawing of a Trio of 3D Matches

In order to make sure that a randomly drawn trio of 3D matches are not in a collinear

configuration neither clustered together, two conditions must be imposed:

• The distance between any two points in the trio must be greater than a given

minimum. This condition excludes tight clusters of points;

• The area defined by the three points must be greater than a given minimum.

This condition excludes collinear configurations.

The first item alone is not sufficient since three collinear points that are located far

apart would satisfy it, while the second item alone would allow a trio constituted of
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two points close from each other with a third point far away, such that the area of

the triangle is sufficient. A third condition, which is not related to collinearity of the

points, must be added before accepting a trio of 3D matches as a valid candidate.

The trio must agree itself with its corresponding registration, i.e. when applying

~X|Ref1 = Rreg
~X|Ref2 + ~Treg, the error between a 3D point and the transformation of

its counterpart must be less than a given distance. This condition ensures that the

3D matches agree with each other, and therefore excludes any obvious outlier from

the candidate trio.

4.3.2 Count of the Number of Matches that Agree with the

Candidate Registration

Given a candidate registration, as the transformation linking the two trios of 3D

points, a count of the number of agreeing pairs can be performed (the support set).

For each pair of 3D points, if the distance between ~X|Ref1 and Rreg
~X|Ref2 + ~Treg is

less than a maximum distance (a parameter), then this pair is said to agree with the

candidate registration. The whole procedure of Sections 4.3.1 and 4.3.2 is repeated

several times. The number of trials can be set such that the probability of success

at finding at least one trio of good matches is above a desired value (cf. [8]). The

candidate registration having the highest number of agreeing matches is declared the

best candidate registration.

The maximum distance parameter chosen was 2 mm. It is significantly higher that

the reconstruction error displayed on Figure 2.7. The experiment of Figure 2.7 was

performed using sub-pixel accuracy with a calibration pattern, which is not achievable

on a real-world object.
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4.3.3 Identification of the Good Matches and Final Registra-

tion

Finally, all the matches that agreed with the best candidate registration are used

to compute the final output registration. The list of the good 3D pairs can also be

supplied. The size of this list is a good indication of the quality of the registration.

4.3.4 Summary of the Algorithm

1. Do

(a) Randomly draw a candidate trio of 3D matches that is not in a degenerate

configuration

(b) Compute Rreg and ~Treg with the candidate trio, through the algorithm

described in Section A.3.

(c) Count the number of matches that agree with the candidate registration

while the probability of success at finding at least one trio of good matches is

below a desired value

2. Identify all trios that agree with the candidate registration having the highest

score and perform the final registration with these trios

4.4 Computation of the New Camera Positions

From the registration homogeneous transformation Qreg, the new positions of the

cameras can be computed, from (A.79). The projection matrices of the cameras at

the new positions can therefore be built from (2.11). It is not necessary to match and

perform 3D reconstruction at every capture: one could simply track feature points

and match at a lower frequency (1 capture out of 5, for instance).

One of the main problems associated with such a technique is the accumulation of

error, since every new position is computed from the previous. It is assumed that no
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special target points that could allow recalibration are available on the object or in

the environment. Instead, one must rely on the knowledge of the approximate camera

positions to identify points of view that were previously captured (loop detection).

This information will be used to correct for the drift, each time the cameras pass by

a location where they have been before.

4.5 Detection of Previously Viewed Locations

The goal of this procedure is to identify, in a sequence, camera positions that are

close to their previous positions in an earlier image capture. Whenever such a loop

is detected, tracking is possible between the earlier and the later pair of views. This

allows the registration between the two positions and correction of the accumulated

error.

As pointed out in Section 4.1, we won’t address the situations of wide-baseline

matching or tracking. This means that, in order for the described tracking scheme to

work, two conditions must be met:

• The Z-axes of the two views must be nearly parallel;

• The distance between the center of projection of the views must be sufficiently

small.

At first sight, it is not sufficient that the Z-axes be nearly parallel, it is also nec-

essary that the Y - (or the X-) axes be nearly parallel for the correlation technique to

work. Nevertheless, we can relax this constraint since our knowledge of the approx-

imate camera positions will allow us to de-rotate the images around their Z-axes in

such a way that they are sufficiently aligned.

The distance between the center of projection of the views is directly calculated

from the length of the vector going from one center to the other. In order to calculate

the maximum distance we can afford, we must take into consideration the fact that

the two views may be collinear along their parallel Z-axes (i.e. one view may be
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in front of the other), resulting in a scale difference between the two images. The

closer the object of interest will be to the cameras, the smaller the tolerance on the

distance between the views will be, since the tracking algorithm is obviously not scale

invariant.

The angle between the Z-axes of two views can be computed through a scalar

product of unit vectors parallel to the Z-axes of the two cameras, as expressed in the

world reference frame:

k̂M |W = QCM/W




0

0

1

0




(4.2)

k̂N |W = QCN/W




0

0

1

0




(4.3)

cos(θ) = k̂M |W · k̂N |W (4.4)

where QCM/W and QCN/W are the homogeneous transformation matrices linking a

camera at Capture M and at Capture N with respect to the world reference frame.

The angle between the Z-axes of the left camera at capture M and N need not

be the same as the equivalent for the right camera. In a sequence, the minimal angle

(or distance) with respect to a given frame may not happen at the same frame for the

left and the right camera. When trying to identify the best capture to be matched

with an earlier capture, we must find a compromise between the two cameras.

Whenever a view is detected as being close to a previously captured view, the drift

of the later view can be compensated. Of course, it is assumed that the earlier the

view, the better the accuracy, since its location has been computed from a smaller

number of cascaded transformations.
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4.6 Tracking between Non-Consecutive Captures

4.6.1 Identification of the Rotation Angle Around the Z-Axis

As discussed previously, a pair of views are similar if their Z-axes are nearly parallel,

but they can have a wide angular difference around their Z-axes. Since the tracking

algorithm is not rotation invariant, this situation could prevent the identification of

correspondences. We can overcome this difficulty by making use of the knowledge

we have of the approximate positions of the camera. We will be searching for the

rotation that must be applied to the images of the later view, such that it is as aligned

as possible with the earlier view.

Aligning the Y -Axes

In a first approach, we will aim at minimizing the angle between the Y -axes of two

views by applying a rotation around the Z-axis of the second view. Let us state the

result:

Let rij be the element (i, j) of the rotation matrix linking the view 2 with the

view 1, RC2/C1.

If r10sin(arctan(− r10

r11
)) < r11cos(arctan(− r10

r11
)), then:

αY = arctan(−r10

r11

) (4.5)

else:

αY = arctan(−r10

r11

) + π (4.6)

Proof. The rotation component of a reference system built with a pure rotation α

around the Z-axis of the second reference system is:

RC2/C1R(α,0,0) =




r00 cos(α) + r01 sin(α) −r00 sin(α) + r01 cos(α) r02

r10 cos(α) + r11 sin(α) −r10 sin(α) + r11 cos(α) r12

r20 cos(α) + r21 sin(α) −r20 sin(α) + r21 cos(α) r22


 (4.7)
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A unit vector, oriented along the Y -axis of the camera 2 will be expressed, in the

reference frame of camera 1:

ĵ2|C1 = RC2/C1R(α,0,0)




0

1

0


 (4.8)

(4.7)
=



−r00 sin(α) + r01 cos(α)

−r10 sin(α) + r11 cos(α)

−r20 sin(α) + r21 cos(α)


 (4.9)

We aim at maximizing the scalar product between the Y -axes of the two cameras:

ĵ2|C1 · ĵ1|C1 = ĵ2|C1 ·




0

1

0


 (4.10)

= −r10 sin(α) + r11 cos(α) (4.11)

To maximize the scalar product (4.11), we pose its first derivative with respect to

α equal to 0 and we pose its second derivative negative:

∂

∂α
(ĵ2|C1 · ĵ1|C1) =

∂

∂α
(−r10 sin(α) + r11 cos(α)) (4.12)

= −r10 cos(α)− r11 sin(α) = 0 (4.13)

∂2

∂α2
(ĵ2|C1 · ĵ1|C1) =

∂

∂α
(−r10 cos(α)− r11 sin(α)) (4.14)

= r10 sin(α)− r11 cos(α) < 0 (4.15)

Together, constraints (4.13) and (4.15) yield to (4.5) and (4.6).

Aligning the X-Axes

Alternatively, one can aim at minimizing the angle between the X-axes of the two

cameras by applying a rotation αX around the Z-axis of the later view. It can be

shown that, in the case where the Z-axes are perfectly aligned, the two angles αY

and αX are equal (the two reference frames can be made to coincide). In the general
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case where the Z-axes are not perfectly parallel, the optimal angles αY and αX will

not be equal. The optimal angle αX that will minimize the angle between the X-axes

is given by the following relations:

If −r00 cos(arctan( r01

r00
)) < r01 sin(arctan( r01

r00
)), then:

αX = arctan(
r01

r00

) (4.16)

else:

αX = arctan(
r01

r00

) + π (4.17)

Proof. The scalar product of the unit vectors parallel to the X-axes of both cameras

will be:

î2|C1 · î1|C1 = (RC2/C1R(α,0,0)




1

0

0


) ·




1

0

0


 (4.18)

(4.7)
= r00 cos(α) + r01 sin(α) (4.19)

Setting the first derivative of (4.19) with respect to α equal to 0 and its second

derivative negative:

∂

∂α
(̂i2|C1 · î1|C1) =

∂

∂α
(r00 cos(α) + r01 sin(α)) (4.20)

= −r00 sin(α) + r01 cos(α) = 0 (4.21)

∂2

∂α2
(̂i2|C1 · î1|C1) =

∂

∂α
(−r00 sin(α) + r01 cos(α)) (4.22)

= −r00 cos(α)− r01 sin(α) < 0 (4.23)

Together, constraints (4.21) and (4.23) yield to (4.16) and (4.17).

Since there is no a priori reason to believe that it is more important to align

the X-axes nor the Y -axes, we will use a rotation angle that is the average value of

αX and αY . The center of the rotation that must be applied to the later images is
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the principal point of the camera, as it is defined as the location where the Z-axis

intersects the image plane.

4.6.2 Estimation of the Location of the Feature Points to

Track

Theoretically, we have everything we need to apply the tracking algorithm described in

Section 4.2: From an earlier pair of images, matches are extracted, that will constitute

feature points to track. These feature points can be searched for in the rotated later

images, such that a correlation technique can be applied. The 3D reconstructions of

the feature points in the earlier pair and their tracked correspondences (de-rotated,

so they correspond to pixel values of the non-rotated cameras) give two clouds of 3D

points that can be used to compute the new locations of the cameras at later time

N . In practice, the tracking algorithm can be enhanced significantly, because we can

predict where, in the rotated images, the feature points should be found. In the basic

tracking algorithm where we track feature points in a sequence of images, we assume

the feature points at time M + 1 will lie close to their location at time M , so the

search area will be a disk of a given radius around its location at time M . In the

case we are dealing with, such an assumption is not justified, but we still can predict

where a given feature point should be, by using our approximate knowledge of the

projection matrices. We know the 3D location of all the feature points, so all we have

to do is to project these 3D locations using the approximate projection matrices of

both cameras to obtain a good estimate of the location of the feature points at later

time N . Of course, these locations must be rotated around the principal point, to

correspond to pixel values of the rotated images.
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4.7 Accumulated Error Correction

Let us assume the view N has been identified as being close to the earlier view M , and

corrected accordingly. We computed a correction matrix that can be premultiplied

to the initially computed location of the view N .

QN(corrected) ≡ Qcorrection,NQN(initial) (4.24)

The problem we would like to address now is how to correct the intermediary views,

which cannot be tracked from previous views other than their immediate neighbors.

We assume we now have a high level of confidence in the knowledge of the location

of the view M and the view N , N > M . How can we correct the views M + 1,M +

2, ..., N − 1 ?

4.7.1 Linear Interpolation

The most naive approach would be to consider the correction matrix parameters

{θ, φ, ψ, Tx, Ty, Tz} as independent, and linearly interpolate them through

pn = pN × n−M

N −M
(4.25)

where pn is the parameter of interest {θ, φ, ψ, Tx, Ty, Tz} of the correction matrix

of view n. This approach will be referred to as the linear interpolation method.

4.7.2 Uniform Distribution of The Correction

Let us assume the drift in the calculated location of the views was uniformly dis-

tributed over all the registration steps. Furthermore, let us assume the individual

registration steps along with the error in the registration had small rotation compo-

nents. Let us model the uniform error in the following way, rewriting (A.79) with the

introduction of Qerror, the unit error transformation matrix that happened at every

registration:
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Qn(calculated) = QerrorQreg,n−1Qn−1(calculated) (4.26)

Through a cascade of these matrices:

Qn(calculated) =

(
M∏

i=n−1

QerrorQreg,i

)
×QCM/World (4.27)

Under the assumption of small rotation components of {Qreg,i} and Qerror, we can

commute matrices in such a way that we gather the error matrices to the left and

take them out of the product, using (B.27)

Qn(calculated)

(B.27)' Qn−M
error

(
M∏

i=n−1

Qreg,i

)
×QCM/World (4.28)

The correction matrix is assumed to annihilate the error of the view N . Therefore

Qcorrection,N = (QN−M
error )−1 = QM−N

error (4.29)

Qerror = Q
1

M−N

correction,N (4.30)

The correction matrix at view n will have to annihilate the error at view n, i.e.

Qcorrection,n = (Qn−M
error)

−1 = QM−n
error (4.31)

(4.30)
= Q

M−n
M−N

correction,N (4.32)

= Q
n−M
N−M

correction,N (4.33)

Equation (4.33) gives the correction matrix that must be premultiplied to the

calculated location of a camera at view n, given the correction matrix at view N , under

the assumption of uniform distribution of the error along the registration steps, and

under the assumption of small rotation components of both the registration matrices

and the error transformation matrix.

Both the linear interpolation technique and the uniform distribution of the cor-

rection can be extended to the case of non-uniform distribution of the error. One can
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have some information about which registration steps contributed most to the overall

error, according to some suspicion level. In this scheme, the ratio n−M
N−M

in equations

(4.25) and (4.33) would be replaced by some factor α. This factor would increase

smoothly between 0 (for view M) and 1 (for view N) according to the suspicion level

of each registration step. For instance, the number of 3D pairs of points that were

used in the robust registration procedure could be used as a measure of the suspicion

level (a high number of 3D pairs corresponds to a low suspicion level). In all cases,

the correction matrix takes care of the average component of the error. If the error

of the intermediary views had an oscillating behavior around the average component,

there is no way to correct it.

4.8 Experimental Results

The movement of a Russian headstock was recorded by a stereo setup. Figure 4.3

shows the sequence, as recorded by the right camera.

The number of initial matches and the number of good 3D pairs are plotted in

Figure 4.4. The number of initial matches lie in the range of a few thousands and the

number of 3D pairs used for registration lie in the range of a few tens to a thousand.

The filtering of the RANSAC algorithm is severe. This can be explained by the

conditions that are necessary for a given initial match to be used by the RANSAC

algorithm: it must be a good match correctly tracked in both the left and the right

image.

The projection matrices of the cameras at each position have been computed by

matching, tracking and 3D registration of reconstructed points. The estimated angles

between the Z-axes and distances between the centers of projection, with respect to

the first capture, have been plotted in Figure 4.5. The minimum angle and distance

happens at Capture 19 for the left camera. For the right camera, the minimum

distance happens at Capture 15, while the minimum angle happens at Capture 16.

For the sake of the illustration, we will correct the error at Capture 18, but it probably
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Figure 4.3: Russian headstock sequence recorded by the right camera

Figure 4.4: Number of initial matches and 3D pairs used for registration of the Russian
Headstock sequence
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could have been done for Captures 16 to 19.

(a) (b)

Figure 4.5: (a) Angle and distance of the left camera, with respect to the first capture
(b) Angle and distance of the right camera, with respect to the first capture

The rotation angles around the Z-axes of the left and right cameras were estimated

to be -1.54 rad and -1.49 rad respectively. The corresponding rectified images are

shown in Figure 4.6.

Matches were identified in the two images of the first capture, and tracked in their

correspondent image in Capture 18, searching in the vicinity of where the features

are expected to be found, according to the approximate projection matrices available.

The corrected projection matrices perform better than the initial projection matrices,

obtained by a cumulation of transformations. This can be seen from Figure 4.7, where

the 3D points obtained from the robust registration procedure between Capture 1 and

Capture 2 (in other words, good 3D points) have been projected in the left image,

using the uncorrected and the corrected projection matrices, respectively. It can

be observed, especially on the circumferences of the face, the center flower and the

right flower, that the projections fall precisely on the features in the case of the

corrected matrix, while they fall a little below their expected location, in the case of

the uncorrected matrix. The error is not huge. In the worst case, it is around 15

pixels, which means that the error accumulation is low. After 17 registrations, the

feature points observed on the first pair of images can still be found in a radius of 15

pixels around their expected locations.
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Figure 4.6: (a) Initial left image; (b) Initial right image; (c) Left image after 17
registrations; (d) Right image after 17 registrations; (e) Optimally rotated left image;
(f) Optimally rotated right image. These two transformed images can now be matched
with images (a) and (b). The top and the bottom of the images were discarded since
the tracking function takes only images of the same format.
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(a)

(b)

Figure 4.7: (a) Projection of original 3D points in the left image (capture 18) using
the uncorrected projection matrix. In order to emphasize the reprojection error, lines
have been drawn between reprojected and expected locations, for some points. (b)
Projection of original 3D points in the left image (capture 18) using the corrected
projection matrix



Chapter 5

Comparison between 3D

Reconstruction Methods

At the core of the technique described in chapter 4 lies the 3D reconstruction; It is a

fundamental tool in stereoscopic vision applications. The task of 3D reconstruction

of a feature point can be carried out in a number of ways. All the experimental

results generated thus far were obtained by least-squares solving from the projection

matrices, as described in section 2.5.2. This chapter will provide an experimental

justification for doing so. We will also assess the validity of the error correction

scheme proposed in section 4.7, through an experimental comparison with a bundle

adjustment commercial software.

5.1 Comparative Results between Least-Square Solv-

ing from the Projection Matrices and Triangu-

lation

Starting with the same calibration information, least-squares solving from the pro-

jection matrices and the triangulation method (c.f. section 2.5.1) are two competing

techniques. The first one aims at minimizing an algebraic error quantity while the

76
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Figure 5.1: Comparison between the triangulation method and least- squares solving
from the projection matrices, with synthetic data

second one aims at minimizing the reconstruction error in the euclidian space.

5.1.1 Synthetic Data

One thousand random 3D points were generated in a volume of 30 cm × 30 cm ×
30 cm. A virtual stereo setup typical of those presented in section 2.6 was created.

Uncorrelated uniform random noise was progressively added to the image points and

the standard reconstruction error was measured. As can be seen on figure 5.1, as

soon as the standard error on the image points get higher than 0.2 pixels, the two

curves are undistinguishable. In most situations, feature points will be rounded to the

nearest pixel, which itself induces a standard error of roughly 0.4 pixels (the standard

deviation from the exact 2D location, when uniform noise between -0.5 and +0.5

pixel is added, c.f. (B.29)). Therefore, the two reconstruction techniques are equally

tolerant to errors in image points.
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5.1.2 Measured Data

To evaluate the performance of the two methods with real data, we measured their

ability to retrieve 3D points whose locations are known, starting with the same cali-

bration information. We carefully positioned a calibration pattern at given locations

with respect to a global reference frame. The volume over which the points were

distributed was 12 cm × 9 cm × 27 cm. The stereo setup configuration was typical

of those presented in section 2.6. The standard reconstruction error, in this case, is

the standard deviation of the difference between the computed 3D location and its

measured location. Of course, this is not an absolute accuracy since the measured

location is itself subject to an error that we estimate to be well under one millimeter.

Nevertheless, as can be seen in figure 5.2, least-squares solving from the projection

matrices gives, consistently, slightly lower reconstruction error. This is assumed to

be due to the additional numerical manipulations required prior to the triangulation

reconstruction algorithm, to decompose the projection matrices. Since the chosen

calibration procedure provides the projection matrices, it seems natural, and now it

is confirmed experimentally, that the best reconstruction technique is least-square

solving from the projection matrices.

5.2 Bundle Adjustment

Bundle adjustment is an iterative method of computing the camera pose and the

3D location of feature points, given a set of matches from different cameras and the

intrinsic calibration parameters of the cameras. Strictly speaking, it is more than

a 3D reconstruction technique: it performs, at the same time, extrinsic calibration

of cameras and reconstruction of feature points. The initial estimates of the camera

positions can be obtained through essential matrix decomposition (after computing

the fundamental matrix or trifocal tensors) [18]. The problem is to minimize the sum

of the euclidian squared distance between the reprojection of the 3D points and their

corresponding image points ([19], [36]), by varying the cameras and the 3D points
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Figure 5.2: Comparison between the triangulation method and least- squares solving
from the projection matrices, with real data

locations:

minP,Q[
∑

i

∑
j

d2(~u(observed)i,j, ~u(reprojected)i,j] (5.1)

where P is the set of the extrinsic parameters of the cameras, Q is the set of the

3D points locations, ~u(observed)i,j and ~u(reprojected)i,j are the i − th image point,

observed and reprojected respectively, in the j − th image and d(·, ·) is the euclidian

distance.

When it converges correctly, bundle adjustment gives an optimal solution, i.e. the

3D configuration that best explains the observations in all views. For this reason,

the bundle adjustment solution will be considered as the ground truth in order to

validate our error correction scheme.

Bundle adjustment can hardly be automated, since it is very sensitive to false

matches. Most commercial implementations of bundle adjustment rely on manual

selection of matches, assuming they will all be good. PhotoModeler 1 is a commercial

1EOS Systems Technology (www.photomodeler.com)
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software that implements bundle adjustment from a set of manually identified matches

in a set of images. In order to compare the proposed method with bundle adjustment,

PhotoModeler has been used to process a subset of the Duck sequence. The whole

sequence could not be used, since the manual selection of matches is extremely time-

consuming. Fourteen images were manually matched with 68 feature points. The

returned camera positions are displayed in Figure 5.4, along with the 3D location of

the selected feature points. The camera path forms two loops: 360o in the X − Y

plane and a half-turn under the duck. These loops allow for error correction between

captures 1 and 40 (for captures 2 through 40) and between captures 17 and 64 (for

captures 41 through 64). Figure 5.3 shows the left images of captures 17 and 64, along

with the projection of the 3D points used to register these two positions. During the

second error correction, captures 17 to 40 were left untouched. The error correction

matrix computed between captures 17 and 64 has been uniformly distributed in the

position of captures 41 through 64.

(a) (b)

Figure 5.3: (a) Left image at capture 17, with the projection of the 3D points used
for registration (b) Left image at capture 64, with the projection of the 3D points
used for registration

Figure 5.5 shows the disagreement (in the position and the orientation of the

cameras) between PhotoModeler and the proposed method, without error correction.

The position disagreement is the distance between the computed centers of projection

for both methods. The orientation disagreement is the angle between the Z−axes
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Figure 5.4: Positions of the left camera in the Duck sequence, as computed by Pho-
toModeler

of the camera reference frames, for both methods. As expected, the magnitude of

the disagreement increases with the number of registrations, as the proposed method

accumulates error. The PhotoModeler project had matches between the first and

the last image, allowing for a closed loop configuration and thus preventing error

accumulation.

It is worth noticing the fact that, as opposed to the proposed method, bundle

adjustment does not grant any special status to the first capture. It can be adjusted,

like every other camera position. In contrast, the proposed method gives a higher level

of confidence in the earlier captures. The discrepancy between the two methods at

the first capture is most probably related to errors in the bundle adjustment solution.

The bundle adjustment algorithm, in a first step, returns camera positions up to

a scale factor and a global homogeneous transformation. To link it with absolute

dimensions and a given reference frame, the user must provide the 3D locations of a

triplet of feature points. As opposed to the calibration procedure described in section

3.1.1 where we used a large number of 3D points (a few hundreds), PhotoModeler

uses only three 3D points to relate its arbitrary reference system to the one chosen

by the user.
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(a) (b)

Figure 5.5: (a) Position disagreement between PhotoModeler and the proposed
method, without error correction (b) Z-axis orientation disagreement between Pho-
toModeler and the proposed method, without error correction

Figure 5.6 shows the disagreement between PhotoModeler and the proposed method

after the two passes of error correction through uniform distribution of the correction

matrix. It can be seen that the disagreement magnitude increases a lot more slowly

with the number of registrations, as compared with Figure 5.5, indicating that the

error correction provided an improvement in the projection matrices.

Obviously, as the error increases with the number of registration, at a certain

point, it won’t be possible anymore to detect a loop since the feature points we’ll be

searching for will lie outside the searching area. Therefore, the error correction must

be performed before the pose drift too much.

5.3 Summary

In this chapter, we performed experiments to identify the best 3D reconstruction

method and to compare the proposed method with bundle adjustment. In particular,

we investigated the validity of our error correction scheme, showing that it does

provide an improvement on the calculated camera positions.
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(a) (b)

Figure 5.6: (a) Position disagreement between PhotoModeler and the proposed
method, after error correction (b) Z-axis orientation disagreement between Photo-
Modeler and the proposed method, after error correction



Chapter 6

Applications of the Camera Pose

Estimation

6.1 Shape from Silhouette 3D Modelling

The action of building a volumetric representation of an object is referred to as 3D

modelling. Virtual environments are populated by virtual objects, which are 3D mod-

els. They are building blocks in computer games, simulations and training applica-

tions. Furthermore, modelled heritage artifacts are extremely useful to archeologists,

allowing them to virtually manipulate objects for which they cannot have a direct

physical access.

In some instances, models must be built manually by a programmer, stitching

together volumetric primitives. It is often the case in the video games industry,

where most virtual objects are the offspring of an especially creative mind. In other

instances, it is not the way to go. In heritage applications, the model has to be

an accurate replica of the physical object, with all its imperfections. In medical

training applications, it is reasonable to assume that it might be simpler to model

automatically an existing physical model of a biological structure, rather than to

manually reproduce its intricate shape.

Vision-based 3D modelling techniques can be subdivided in two broad categories:
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• Active modelling;

• Passive modelling.

Active modelling techniques are those who send some form of probing energy

towards the scene, under the form of a laser beam, a radar or a sonar. The two latter

are used for modelling large scale environments, while the laser beam is most often

used to build the model of a smaller artifact.

Passive modelling techniques use ambient light as the probing energy. One possible

passive modelling technique would be to use a stereo setup, match every pixel of the

images and perform 3D reconstruction on this large set of matches. A dense depth

map would be obtained, and a mesh of triangular surfaces could be built from them.

This approach would be computationally intensive, and the false matches could not

be removed easily. Furthermore, complete volumetric reconstruction would require

fusing the information from multiple depth maps, which would be difficult to achieve.

Shape from silhouette is another, simpler instance of passive 3D modelling technique.

The basic idea behind shape from silhouette is the intersection of the silhouette

cones. A silhouette cone is a volume defined by the silhouette of an object (i.e. the

pixels identified as being different from the previously acquired background) projected

through the center of projection of the camera (see Figure 6.1). A silhouette cone

is completely determined by an image whose background has been extracted and

the projection matrix of the camera. The silhouette cone provides a constraint on

the volume occupancy of the object, since the object must be totally included inside

it. When one has access to many silhouette cones, this upper limit on the volume

occupancy gets tighter and tighter as the silhouette cones are intersected. In the limit,

when an infinite number of silhouette cones from every possible view (outside the

convex hull) are intersected, we get the visual hull. This concept has been introduced

and analyzed by Laurentini ([11]). The visual hull is an upper limit to the volume

occupancy of an object. An important feature to notice is the fact that if the object

has hollows, such as the inside of a cup, the procedure described won’t remove the

voxels inside the hollows.
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Figure 6.1: A silhouette cone

Shape from silhouette techniques have been the object of research for many years.

Most of the papers in the literature make use of a turntable with step motors on which

the object to be modelled is rotated in front of a camera. This feature facilitates the

computation of the camera position, allowing the researchers to concentrate their

efforts on voxel carving or model representation. In our case, our focus is on the

computation of the camera positions, when they are allowed to move freely in space.

In [12], Kuzu and Rodehorst present a modelling system based on a single camera

capturing images of an object on a turntable whose movement is known. Voxels

are removed according to a voting scheme. As an additional feature, concavities are

detected through a block-matching (correlation) algorithm.

In [13], Jones and Oakley introduce the radial intersection set, which is claimed to

be a more compact representation of the visual hull than the octree, for an equivalent

resolution. In this scheme, boundaries are represented by their intersection with

radial lines, whose center is along the rotation axis of a turntable. The object to
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be modelled is placed on the turntable such that the origin of the polar coordinates

system is located inside the object.

In [14], Matusik et al. introduce a technique whose goal is to generate new views

of an object in real time. Given a desired view and a reference (i.e. acquired) view,

the epipolar geometry is computed. Then, every pixel of the desired view is scanned

and an epipolar line is drawn in every reference view. Whenever any of the epipolar

lines in the reference images lie outside the silhouette, the pixel of interest is declared

as being part of the background. Otherwise, it is declared as being part of the object.

This technique doesn’t generate a list of opaque voxels and, as a consequence, is

claimed to minimize artifacts resulting from volume quantization.

In [15], Snow, Viola and Zabih formulate the problem of labelling the voxels as

an energy minimization problem. Their energy function includes a penalty term for

assigning a given label to a given voxel and a penalty term that takes into account

the labelling difference between a given voxel and its neighbors. This second term

is a smoothness factor, which contributes to eliminate the hole drilling effect often

observed when the background is not correctly extracted. This energy function is

shown to be a member of a class of minimization problems that can be solved through

a graph cut algorithm.

We used a simple voxel carving algorithm. Basically, we kept a given voxel label

as “opaque” until its eight vertices were projected out of the silhouette, in one of the

views:

• Input:

– A list of silhouettes

– A list of projection matrices corresponding to the silhouettes

– A list of initially opaque voxels

• Output: A list of opaque voxels belonging to the object volume occupancy

• Algorithm:
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– For each silhouette and its projection matrix

∗ For each opaque voxel in the list

· Project the eight voxel vertices in the silhouette image using the

projection matrix

· If the eight projections fall out of the object silhouette, then re-

move the voxel from the list

· Otherwise, keep it

This algorithm is “careful”: if any of the vertices is projected in the positive

area of the silhouette, this voxel won’t be removed. This approach is justified in

this situation since false negative pixels have a stronger impact on the model than

false positive pixels. False negative pixels (i.e. those labelled as background while

they should be labelled as part of the object) will drill a hole through the model.

False positive pixels (i.e. those labelled as part of the object while they should be

labelled as background) will keep as opaque a voxel where there is nothing. Most

probably, these false opaque voxels will be removed by other views of the object. The

probability that a given empty voxel be labelled as opaque for all the views is very

low.

We present results of 3D modelling with shape from silhouette because it is ex-

tremely sensitive to the camera location. Any error in the estimated position or

orientation of the camera would result in removing a significant part of the voxels,

that should not have been removed if the position of the camera had been computed

accurately. For this reason, shape from silhouette is often used in the context of a

single camera, where the object is rotated by a turntable, such that its movement can

be calibrated by an independent system. In our case, the stereo setup will provide

the motion of the cameras. Furthermore, the use of color images is very useful, since

it makes background extraction very easy to perform. In our case, we used black and

white images, which means the task of background extraction (a basic operation in

shape from silhouette implementation) had to be done by correlation of windows.
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Figure 6.2: Samples of the Running Shoe sequence, as captured by the right camera

6.1.1 Experimental Results

Figure 6.2 shows samples of the Running Shoe sequence. The projection matrices

were corrected using the linear interpolation of the correction matrix parameters

described in section 4.7.1. The silhouettes were built through correlation of windows

surrounding a pixel of interest in the scene image with the background image.

Figure 6.3 shows an example of the background extraction results. This figure

emphasizes the difficulties encountered in this task, when using large correlation win-

dows (to compensate the lack of color information): the rounding effect is due to the

use of windows (in this case 9 × 9 pixels); False negative “holes” are present in the

middle of the silhouette because the object gray level is too close to the background’s;

False positive “snow” appears everywhere around the object.
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(a) (b) (c)

Figure 6.3: (a) Background for the right camera of the Running Shoe sequence (b)
Sample of the Running Shoe sequence (c) Extracted silhouette with three distinctive
features: rounding effect by the use of correlation windows, false negative “holes” and
false positive “snow”

Figure 6.4 shows the 3D model obtained through silhouette intersection. Each

voxel is a cube whose side is 5 mm.

Figure 6.5 shows samples of the Duck sequence. The projection matrices were

corrected using the linear interpolation of the correction matrix parameters described

in section 4.7.1. A few views of the obtained 3D model are shown in Figure 6.6. Each

cubic voxel has a side of 5 mm.

Figure 6.7 shows another model built from the Duck sequence, with voxels of 2

mm. It emphasizes a number of holes transpiercing the volume, some being real (the

object has two holes transpiercing the body, cf. Figure 6.5), some being the result of

bad background extraction. This is an example of the catastrophic impact of a group

of pixels falsely identified as part of the background.

6.2 Augmented Reality

An augmented reality application is a system in which computer-generated data is

supplied to the user, in addition to its own perception of the real world [20], [21]. This

data can be audio, video (text, map, moving picture) or kinesthetic. The important

point is that it must be superimposed with real-world data, either directly acquired by

the user or through sensors. In the case one wants to augment reality with 3D virtual
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Figure 6.4: Views of the Running Shoe model
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Figure 6.5: Samples of the Duck sequence, as captured by the left camera

objects, the registration between the real-world reference frame and the virtual object

reference frame must be maintained. The camera pose estimation from a stereo setup

can be used to keep track of the position of the cameras, and therefore project the

virtual object in the images in a realistic way.

6.2.1 Experimental Results

Figure 6.8 shows samples of the Duck sequence, over which the axes of a reference

system attached to the object have been drawn, according to the raw projection

matrices. The reference system was arbitrarily positioned with its origin inside the

object volume, with its axes parallel to the object surfaces (Z−axis pointing up).

The axes of the reference system can be displayed on the image by drawing segments

whose endpoints are the reference system origin and unity vectors in the principal

directions ([0, 0, L]T , [0, L, 0]T , [L, 0, 0]T ). Once it is proved that a reference frame can

be inserted in an image, any other virtual object can easily be added. It means that

the registration between the cameras and the object is preserved along the sequence,
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Figure 6.6: Views of the Duck model
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Figure 6.7: A view of the Duck model, with a resolution of 2 mm

allowing realistic display of virtual objects in the real scene.

From Figure 6.8, it can clearly be observed that one of the registrations between

the 9th displayed capture and the 10th displayed capture is not accurate (one out

of three images are displayed, hence there are two more captures in between these

two). Of course, since every new position is computed with respect to the previous

one, all the views after the 9th displayed capture show an obvious misalignment of

their reference frame. Although it is easy to pinpoint which registration step is wrong

through visual inspection, it is extremely difficult to achieve through an algorithmic

procedure. We decided not to investigate such a research path, and limited ourself to

the uniform error distribution along the sequence.

Figure 6.9 shows the same sequence with the axes of its attached reference frame,

after a loop has been detected and after having linearly interpolated the correction

matrix parameters. The drawn axes remain reasonably fixed with respect to the

object, indicating an overall gain in the tracking of the object location. Although we
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Figure 6.8: Samples of the Duck sequence with an attached reference system, before
correction of the projection matrices
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Figure 6.9: Samples of the Duck sequence with an attached reference system, after
correction of the projection matrices
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know that most of the error was due to some specific registration steps, we distributed

the registration error along the whole sequence, and no obvious break occurs in the

perceived accuracy of the axes location.

Figure 6.10 shows the Russian Headstock sequence with the axes of a reference

system fixed to the base of the object. The projection matrices were corrected through

a linear interpolation of the correction matrix parameters. The equivalent sequence,

before error correction, does not show a significant difference since the error accumu-

lation was very low for this sequence.
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Figure 6.10: Russian Headstock sequence with an attached reference system, after
correction of the projection matrices



Chapter 7

Conclusion

In this thesis, we addressed the problem of camera pose estimation, which is equivalent

to the problem of 3D registration of a rigid object moving in front of the cameras. We

used a calibrated stereoscopic vision setup to track the camera positions with respect

to a moving rigid object, along image sequences. We reviewed the mathematics

of rigid transformations in space and the geometry of the stereoscopic setup. We

showed that the cameras must be calibrated independently and the fundamental

matrix constructed from the calibration parameters, without invoking the eight-point

algorithm. We proposed a robust 3D registration procedure that exploits the rigidity

of the scene to automatically filter out the reconstructed points originating from false

matches and errors in feature tracking. An error correction scheme was introduced,

which takes advantage of loops in the movement of the cameras to compensate for

the accumulated error. Comparison with a bundle adjustment commercial software

showed that the correction scheme brings the error to a baseline level of disagreement

between the two techniques. Through experimental results, we showed the validity

of the obtained projection matrices and that their accuracy was sufficient for tasks

such as model building or scene augmentation.
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7.1 Difficulties and Problems

For technical reasons, the experiments were conducted with black and white images,

which caused a lot of difficulties, especially for the task of background extraction. It

would force us to use correlation windows instead of simple single pixel color com-

parison. It is believed that the introduction of color images would improve both

experimental results and speed.

The goal of the present thesis was to provide a feasibility study of the proposed

method. Some applications, especially those involving tool tracking, require real-time

processing, which was not the case in the actual implementations. Table 7.1 shows

some typical time values of the actual implementations, setting the parameters such

that the initial number of feature matches would be around 1000.

It can be observed that most of the time was spent on matching and tracking

tasks. Although libraries exist which provide implementations of these functions, we

chose to implement them ourself, in order to have a limited number of well understood

parameters. This fact can explain the obvious inefficiency of these steps, which can be

performed in real-time by optimized code, perhaps with a smaller number of feature

points. Thus, the first possible improvement toward faster execution would be to

replace the matching and tracking functions by optimized code, after having tuned

all the parameters by trials and errors.

The reconstruction and the robust registration steps are very sensitive to the

number of tracked feature points. Thus, the second possible improvement would

be to set the matching function parameters such that the number of feature points

returned is around 20 (instead of 1000).

7.2 Future Work

In addition to the most obvious improvements to the implementation code (use of

color images, real-time video), some applications of the proposed method can be

investigated further. Among the most promising ones, let us mention tool tracking
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Table 7.1: Typical time values of the functions actually implemented

Step
Typical time
per execution

Typical number
of executions

per registration

Typical time
per registration

Matching 90 s 1 90 s
Tracking 340 s 2 680 s

3D Reconstruction 7× 10−5 s 2000 0.14 s
Robust registration 6 s 1 6 s

Computation of
the new camera

positions
1× 10−6 s 2 2× 10−6 s

Detection of
previously

viewed locations
9× 10−5 s 40 0.0036 s

Matching, tracking
and robust registration

between non-consecutive
captures

130 s 2 260 s

Accumulated error
correction

4× 10−6 s 2 8× 10−6 s
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and robotics.

7.2.1 Tool Tracking

In many simulations and training applications, a user has to freely manipulate a tool.

For instance, in the medical area, virtual reality training requires the apprentice to

handle surgical instruments while performing a simulated operation. Furthermore,

some commercial software exist to guide the surgeon during a real-world surgery by

tracking the position of their instrument 1. In military training, an immersive virtual

reality system can be built to simulate a combat situation, in which the precise

location of the soldier’s weapon must be tracked.

The previous section showed experimentally that the proposed technique can be

used to track the 3D location of an object with respect to a global reference frame.

The main additional constraint is the real-time requirement of a tracking system. In

this scheme, when a loop is detected, the accumulated error can be compensated for,

but there is no need to correct the intermediate matrices. Therefore, the error in the

position of the tool would accumulate with time, and would be reset each time the

tool gets back into a position such that the Z-axis of the cameras would be parallel

and close enough to the Z-axis of the cameras at the time of first capture (c.f. section

4.5).

7.2.2 Robotics

A common problem in robotics applications is the error accumulation in the recorded

position of a freely moving robot or a robotic arm. Due to a large number of factors

(inaccuracy in parts manufacturing, delays, temperature changes, etc.), the encoders

embedded in a robotic system accumulate error after having been calibrated. For some

critical applications, calibration must be done regularly. Camera pose estimation from

a stereo setup mounted on the robot may help simplify the recalibration procedure.

1www.orthosoft.ca
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The cameras must record images at the starting position, after the stereo setup has

been calibrated. Then, when the robot needs to recalibrate, it orients its stereo setup

in the direction of the initial capture. As depicted in section 4.7, the error in the

position can then be corrected, resetting the accumulated error. This scenario would

be applicable in situations where the resultant position of the stereo head is more

important than the individual state of all the joints of the robot.
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Appendix A

Transformations in Space

Coordinates in space are data relative to a reference system. A single point x may

have coordinates
→
xtable with respect to a table,

→
xcorner with respect to the corner of

the room, and
→
xworld with respect to a third global reference frame. The way to pre-

serve the consistency of these valid representations is through the use of homogeneous

transformation matrices. They are 4 × 4 matrices built with two basic objects: a

rotation matrix and a translation vector. Alternatively, they can be used to represent

the movement of a solid object. In this scheme, the transformation is applied to

compute the new location of each of the points of the object, in the same reference

system, after rotation and translation took place. This chapter introduces the con-

ventions that will be used in this thesis, along with important results and properties

of homogeneous transformation matrices.

A.1 Rotation Matrix

To completely describe a three-dimensional rotation, one needs to supply the values

of three angles. For instance, these may be the azimuth, the elevation and the spin.

This representation is visually simple, but mathematically complicated. A better

way of expressing a rotation in space would be the following: first, rotate the set of

axes around the X-axis by an angle ψ. Then, rotate the obtained set of axes around

111
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Figure A.1: Rotation of two reference systems around the Z axis

its own Y -axis by an angle φ. Finally, rotate the obtained set of axes around its

own Z-axis by an angle θ. The triplet (θ, φ, ψ) are called the Euler angles. They

don’t relate easily to the more visually attractive azimuth, elevation and spin, but

the corresponding rotation matrix is easy to construct.

This way of defining the rotation from the three elementary angles is arbitrary.

One could have chosen to first apply a rotation around the Z-axis, followed by a

rotation along the obtained Y -axis, followed by a rotation around the obtained X-axis,

and still get a valid rotation matrix, although with a different analytical expression.

Let us state the expression of the rotation matrix, as a function of the Euler angles.

R(θ, φ, ψ) =




cos θ cos φ cos θ sin φ sin ψ − sin θ cos ψ cos θ sin φ cos ψ + sin θ sin ψ

sin θ cos φ sin θ sin φ sin ψ + cos θ cos ψ sin θ sin φ cos ψ − cos θ sin ψ

− sin φ cos φ sin ψ cos φ cos ψ




(A.1)

Proof. Let us assume we have two sets of orthonormal axes called global and remote.

They share the same origin, but they are rotated one with respect to the other
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by an angle θ in the X − Y plane (see Figure A.1). A point having coordinates

(xremote, yremote) in the remote reference system will have (ρ, θ) polar coordinates:




xremote

yremote

zremote


 =




ρ cos α

ρ sin α

zremote


 (A.2)

The same point in space, expressed in the global reference system, can be written:




xglobal

yglobal

zglobal


 =




ρ cos (α + θ)

ρ sin (α + θ)

zremote


 =




ρ cos α cos θ − ρ sin α sin θ

ρ cos α sin θ + ρ sin α cos θ

zremote


 (A.3)

Inserting (A.2) in (A.3):




xglobal

yglobal

zglobal


 =




xremote cos θ − yremote sin θ

xremote sin θ + yremote cos θ

zremote


 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







xremote

yremote

zremote




(A.4)

Let us define R(θ, 0, 0) the rotation matrix around the Z axis by an angle θ (the

RPY convention is used, i.e. the roll is quoted first, followed by the pitch and the

yaw):

R(θ, 0, 0) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (A.5)

Then, by symmetry:

R(0, φ, 0) =




cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ


 (A.6)

R(0, 0, ψ) =




1 0 0

0 cos ψ − sin ψ

0 sin ψ cos ψ


 (A.7)
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where φ and ψ are the rotation angles around the Y and the X axis, respectively.

The rotation matrix can be computed by the cascade of a rotation of ψ around the X

axis, premultiplied by a rotation of φ around the Y axis, premultiplied by a rotation

of θ around the Z axis, that is:

R(θ, φ, ψ) = R(θ, 0, 0)R(0, φ, 0)R(0, 0, ψ) (A.8)

That can be rewritten as:

R(θ, φ, ψ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ







1 0 0

0 cos ψ − sin ψ

0 sin ψ cos ψ




(A.9)

and resulting in:

R(θ, φ, ψ) =




cos θ cos φ cos θ sin φ sin ψ − sin θ cos ψ cos θ sin φ cos ψ + sin θ sin ψ

sin θ cos φ sin θ sin φ sin ψ + cos θ cos ψ sin θ sin φ cos ψ − cos θ sin ψ

− sin φ cos φ sin ψ cos φ cos ψ




(A.10)

A.1.1 Dual Angular Representation

When using the convention of angular representation described above, two sets of

angles will yield to the same rotation matrix. This must be taken into account

whenever one wants to compute the constituting angles from a given rotation matrix.

It is indeed easy to show that:

R(θ − π, π − φ, π + ψ) = R(θ, φ, ψ) (A.11)

A.1.2 Orthogonality of a Rotation Matrix

The inverse of a rotation matrix is its transpose. As a consequence, the rotation

matrix is orthogonal.



115

R−1 = RT (A.12)

Proof.

RT (θ, φ, ψ)R(θ, φ, ψ) =


cos θ cos φ sin θ cos φ − sin φ

cos θ sin φ sin ψ − sin θ cos ψ sin θ sin φ sin ψ + cos θ cos ψ cos φ sin ψ

cos θ sin φ cos ψ + sin θ sin ψ sin θ sin φ cos ψ − cos θ sin ψ cos φ cos ψ







cos θ cos φ cos θ sin φ sin ψ − sin θ cos ψ cos θ sin φ cos ψ + sin θ sin ψ

sin θ cos φ sin θ sin φ sin ψ + cos θ cos ψ sin θ sin φ cos ψ − cos θ sin ψ

− sin φ cos φ sin ψ cos φ cos ψ




=




1 0 0

0 1 0

0 0 1


 (A.13)

Therefore:

RT = R−1 (A.14)

The transpose of a rotation matrix is another rotation matrix.

Proof. Since RT R = I, the effect of premultiplying the transpose of a rotation matrix

to a rotated vector cancels out the effect of the rotation. In other words, it is another

rotation in the opposite direction.

This result is especially useful when demonstrating properties of rows or columns

of a rotation matrix. If one demonstrates a given property of the rows of a rotation

matrix, the same property will hold for the columns, and vice-versa.
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A.1.3 Orthogonality of the Columns and the Rows Vectors

Let
→
r k be the vector built with the entries of the kth row of a rotation matrix

R(θ, φ, ψ). Let
→
c k be the vector built with the entries of the kth column of a ro-

tation matrix R(θ, φ, ψ). Then,

→
r i · →r j= δ[i− j] (A.15)

→
c i · →c j= δ[i− j] (A.16)

Proof. From (A.12), we can write:

RRT = I (A.17)


→
r 1

→
r 2

→
r 3




[ →
r

T

1

→
r

T

2

→
r

T

3

]
=




1 0 0

0 1 0

0 0 1


 (A.18)

→
r i · →r j= δ[i− j] (A.19)

and reciprocally:

RT R = I (A.20)


→
c

T

1
→
c

T

2
→
c

T

3




[ →
c 1

→
c 2

→
c 3

]
=




1 0 0

0 1 0

0 0 1


 (A.21)

→
c i · →c j= δ[i− j] (A.22)
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A.1.4 Cross Product of the Rows or the Columns Vectors

Let
→
r k be the column vector built with the entries of the kth row (or column) of a

rotation matrix. Then,

→
r 1 =

→
r 2 × →

r 3 (A.23)
→
r 2 =

→
r 3 × →

r 1 (A.24)
→
r 3 =

→
r 1 × →

r 2 (A.25)

Or, in a more compact formulation:

→
r α=

→
r β × →

r γ (A.26)

where (α, β, γ) is an even permutation of (1, 2, 3).

Proof. Let us use the row vectors for the demonstration.

→
r 2 × →

r 3=

det




∧
i

∧
j

∧
k

sin θ cos φ sin θ sin φ sin ψ + cos θ cos ψ sin θ sin φ cos ψ − cos θ sin ψ

− sin φ cos φ sin ψ cos φ cos ψ




=




cos θ cos φ

cos θ sin φ sin ψ − sin θ cos ψ

sin θ sin ψ + cos θ sin φ cos ψ




=
→
r 1 (A.27)
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→
r 3 × →

r 1=

det




∧
i

∧
j

∧
k

− sin φ cos φ sin ψ cos φ cos ψ

cos θ cos φ cos θ sin φ sin ψ − sin θ cos ψ cos θ sin φ cos ψ + sin θ sin ψ




=




sin θ cos φ

cos θ cos ψ + sin θ sin φ sin ψ

sin θ sin φ cos ψ − cos θ sin ψ




=
→
r 2 (A.28)

→
r 1 × →

r 2=

det




∧
i

∧
j

∧
k

cos θ cos φ cos θ sin φ sin ψ − sin θ cos ψ cos θ sin φ cos ψ + sin θ sin ψ

sin θ cos φ sin θ sin φ sin ψ + cos θ cos ψ sin θ sin φ cos ψ − cos θ sin ψ




=




− sin φ

cos φ sin ψ

cos φ cos ψ




=
→
r 3 (A.29)

A.1.5 Eigenvalues of a Rotation Matrix

The three eigenvalues (λ1, λ2, λ3) of R(θ, φ, ψ) are




λ1

λ2

λ3


 =




1
d(θ,φ,ψ)−1+

√
d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2

d(θ,φ,ψ)−1−
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2


 (A.30)
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where

d(θ, φ, ψ) = cos θ cos φ + cos θ cos ψ + cos φ cos ψ + sin θ sin φ sin ψ (A.31)

Proof. We are searching for the values of λ that will satisfy

det (λI −R) = 0 (A.32)

det




λ− cos θ cos φ sin θ cos ψ − cos θ sin φ sin ψ − cos θ sin φ cos ψ − sin θ sin ψ

− sin θ cos φ λ− sin θ sin φ sin ψ − cos θ cos ψ − sin θ sin φ cos ψ + cos θ sin ψ

sin φ − cos φ sin ψ λ− cos φ cos ψ




= 0 (A.33)

(λ− cos θ cos φ)[λ2 − λ cos φ cos ψ − λ sin θ sin φ sin ψ + sin θ sin φ cos φ sin ψ cos ψ

−λ cos θ cos ψ + cos θ cos φ cos2 ψ − (sin θ sin φ cos φ sin ψ cos ψ − cos θ cos φ sin2 ψ)]

−(sin θ cos ψ − cos θ sin φ sin ψ)[−λ sin θ cos φ + sin θ cos2 φ cos ψ

−(− sin θ sin2 φ cos ψ + cos θ sin φ sin ψ)]

+(− cos θ sin φ cos ψ − sin θ sin ψ)[sin θ cos2 φ sin ψ

−(λ sin φ− sin θ sin2 φ sin ψ − cos θ sin φ cos ψ)]

= 0 (A.34)

λ3 − λ2[cos θ cos φ + cos θ cos ψ + cos φ cos ψ + sin θ sin φ sin ψ]

+λ[cos θ cos φ + cos θ cos ψ + cos φ cos ψ + sin θ sin φ sin ψ]− 1

= 0 (A.35)

λ3 − d(θ, φ, ψ)λ2 + d(θ, φ, ψ)λ− 1 = 0 (A.36)

where

d(θ, φ, ψ) ≡ cos θ cos φ + cos θ cos ψ + cos φ cos ψ + sin θ sin φ sin ψ (A.37)
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The characteristic equation (A.36) has the root λ = 1.

λ3 − d(θ, φ, ψ)λ2 + d(θ, φ, ψ)λ− 1 = (λ− 1)[λ2 + λ(1− d(θ, φ, ψ)) + 1]

= (λ− 1)(λ− d(θ,φ,ψ)−1+
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2
)×

(λ− d(θ,φ,ψ)−1−
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2
) = 0 (A.38)

Hence, the eigenvalues of the rotation matrix are:




λ1

λ2

λ3


 =




1
d(θ,φ,ψ)−1+

√
d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2

d(θ,φ,ψ)−1−
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2


 (A.39)

where

d(θ, φ, ψ) = cos θ cos φ + cos θ cos ψ + cos φ cos ψ + sin θ sin φ sin ψ (A.40)

The unitary eigenvalue of the rotation matrix corresponds to the situation where

a vector lying in the axis of rotation is premultiplied by the rotation matrix, leaving

the vector unaffected. Thus, the axis of rotation is the eigenvector corresponding

to λ = 1 and can be computed by solving the non-trivial solution of the following

homogeneous equation:

(R− I)~a = ~0 (A.41)

The two other eigenvalues can be written e±iα, where α is the global rotation

around the axis.
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A.1.6 Determinant of a Rotation Matrix

An orthogonal matrix must have a determinant of 1 or -1. This can be seen by the

defining property of orthogonal matrices:

A−1 = AT

det (A−1) = det (AT )
1

det (A)
= det (A)

det (A) = ±1 (A.42)

In the case of a rotation matrix, its determinant must be 1. An orthogonal trans-

formation matrix that would have a determinant of -1 would represent a reflection.

det (R(θ, φ, ψ)) = 1 (A.43)

Proof. We will use the identity

|A| (B.22)
=

n∏
i=1

λi

with the eigenvalues given by (A.30):

det (R(θ, φ, ψ)) = 1× d(θ,φ,ψ)−1+
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2
×

d(θ,φ,ψ)−1−
√

d2(θ,φ,ψ)−2d(θ,φ,ψ)−3

2
= 1 (A.44)

A.2 Homogeneous Transformation Matrix

General homogeneous transformations are constituted of a rotation and a translation.

These two quantities must be defined by the way they relate a remote reference system

with a global reference system. By definition, we will set:

~xglobal ≡ R~xremote + ~T (A.45)
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In order to allow the transformation to be expressed in a single matrix, homoge-

neous coordinates must be introduced. A homogeneous coordinates vector is a 4× 1

column vector whose three first entries are the x, y and z components of a 3D point,

and whose 4th entry is 1. Homogeneous coordinates are written in uppercase. If ~X is

the homogeneous coordinates representation of ~x in (A.45), then




x

y

z

1




global

=




r00 r01 r02 Tx

r10 r11 r12 Tx

r20 r21 r22 Tx

0 0 0 1







x

y

z

1




remote

~X|global = Qremote/global
~X|remote (A.46)

where

Qremote/global ≡




r00 r01 r02 Tx

r10 r11 r12 Tx

r20 r21 r22 Tx

0 0 0 1




(A.47)

Homogeneous transformation matrices are especially useful when used in conjunc-

tion with transformation graphs. A transformation graph is a pictorial representation

of the objects of the world at hand, along with their reference systems. Homogeneous

transformations are depicted by arrows. The origin of the arrow is the global refer-

ence system of the transformation, while the head of the arrow is the remote reference

system of the transformation.

In Figure A.2, a 3D point x will have homogeneous coordinates ~X|global, ~X|table or

~X|camera, depending on the reference system used. The homogeneous transformation

matrices Qtable/world (the transformation matrix of the table with respect to the world),

Qcam/world and Qcam/table define the relative positions of these objects. Notice the

redundancy of the information supplied: Qcam/table can be computed from the two

other matrices.

Qcam/table = Q−1
table/worldQcam/world
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Figure A.2: A transformation graph

Proof.

~X|world = Qtable/world
~X|table ⇒ ~X|table = Q−1

table/world
~X|world (A.48)

~X|world = Qcam/world
~X|camera (A.49)

Inserting (A.49) into (A.48):

~X|table = Q−1
table/worldQcam/world

~X|camera (A.50)

Qcam/table = Q−1
table/worldQcam/world (A.51)

This simple example shows how one can follow the direction of the arrows (invert-

ing the matrix when going in the opposite direction) to build transformation matrices

relationships from inspection of a transformation graph.

Inverting a homogeneous transformation matrix is always possible. From (A.47),

it can be seen that the determinant of a homogeneous transformation matrix equals

the determinant of the rotation matrix, which is 1 (A.43).
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A.3 Registration of Two Clouds of 3D Points

A key technique that will be used in this thesis is the ability to register two clouds of

3D points, that is, given two sets of corresponding points, to find the homogeneous

transformation that makes the best overlap of the points. This method is described in

[7]. In a first approach, we will derive the main results assuming that all the matches

are good. In Chapter 4, we will introduce random sampling consensus (RANSAC) to

get rid of the possible outliers.

A.3.1 Decoupling of the Optimal Rotation and the Optimal

Translation

We will show that it is possible to find the optimal rotation R̃ independently, and

then compute the optimal translation ~̃T . Let us suppose there are n 3D points on

a rigid object, for which we know their 3D location in two different positions of the

object (see Figure A.3). Let {~pi} be the set of n 3D points in position 1 and let {~p′i}
be the corresponding n 3D points in position 2, such that

~p′i = R~pi + ~T + ~εi(R, ~T ) (A.52)

where ~εi(R, ~T ) is the error vector associated with a particular choice of rotation matrix

and translation vector, including some noise in the measurements. Let R̃ and ~̃T

represent the optimal transformation that will minimize σ2(R, ~T ), the sum of the

squared norm of the error vectors:

σ2(R, ~T ) ≡
n−1∑
i=0

‖ ~p′i −R~pi − ~T ‖2 (A.53)

Let {~p′′i} be the set of points obtained by applying the optimal transformation to

the set of points in position 1:

~p′′i ≡ R̃~pi + ~̃T (A.54)
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Figure A.3: Registration of two positions of a rigid object

Let ~p, ~p′ and ~p′′ be the centroids of the corresponding points sets:

~p ≡ 1

n

n−1∑
i=0

~pi (A.55)

~p′ ≡ 1

n

n−1∑
i=0

~p′i (A.56)

~p′′ ≡ 1

n

n−1∑
i=0

~p′′i (A.57)

Then, the centroid of the points in position 2 coincide with the centroid of the

points obtained by the optimal transformation:

~p′ = ~p′′ = R̃~p + ~̃T (A.58)

Proof. Let the error vector ~εi(R, ~T ) be constituted of an average component ~µ(R, ~T )

and a varying component with a zero average ~δi(R, ~T ):

εi(R, ~T ) = ~µ(R, ~T ) + ~δi(R, ~T ) (A.59)
n−1∑
i=0

~δi(R, ~T ) = ~0 (A.60)
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Inserting (A.59) into (A.52):

~p′i = R~pi + ~T + ~µ(R, ~T ) + ~δi(R, ~T ) (A.61)

σ2(R, ~T )
(A.53)
=

n−1∑
i=0

‖ ~p′i −R~pi − ~T ‖2

(A.61)
=

n−1∑
i=0

‖ R~pi + ~T + ~µ(R, ~T ) + ~δi(R, ~T )−R~pi − ~T ‖2

=
n−1∑
i=0

‖ ~µ(R, ~T ) + ~δi(R, ~T ) ‖2

=
n−1∑
i=0

(~µ(R, ~T ) + ~δi(R, ~T ))T (~µ(R, ~T ) + ~δi(R, ~T ))

=
n−1∑
i=0

(‖ ~µ(R, ~T ) ‖2 +2~µT (R, ~T )~δi(R, ~T )+ ‖ ~δi(R, ~T ) ‖2

= 2~µT (R, ~T )
n−1∑
i=0

~δi(R, ~T ) +
n−1∑
i=0

(‖ ~µ(R, ~T ) ‖2 + ‖ ~δi(R, ~T ) ‖2)

(A.60)
= n ‖ ~µ(R, ~T ) ‖2 +

n−1∑
i=0

‖ ~δi(R, ~T ) ‖2 (A.62)

There is a gain in forcing ~µ(R, ~T ) = ~0 when one is trying to minimize σ2(R, ~T ), as

can be seen by inspection of (A.62). Since ~µ(R, ~T ) can be absorbed in ~T (cf. (A.61)),

for the optimal transformation R̃ and ~̃T , we will have ~µ(R̃, ~̃T ) = ~0.

~p′i = R̃~pi + ~̃T + ~δi(R̃, ~̃T ) (A.63)
n−1∑
i=0

~δi(R̃, ~̃T ) = ~0 (A.64)
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~p′
(A.56)
=

1

n

n−1∑
i=0

~p′i
(A.63)
=

1

n

n−1∑
i=0

(R̃~pi + ~̃T + ~δi(R̃, ~̃T ))

=
1

n

n−1∑
i=0

(R̃~pi + ~̃T ) +
1

n

n−1∑
i=0

~δi(R̃, ~̃T )

(A.54)
=

1

n

n−1∑
i=0

~p′′i +
1

n
~0

~p′
(A.57)
= ~p′′

(A.54)
=

1

n

n−1∑
i=0

(R̃~pi + ~̃T )
(A.55)
= R̃~p + ~̃T

Let us introduce the shifted 3D points ~qi and ~q′i:

~qi ≡ ~pi − ~p (A.65)

~q′i ≡ ~p′i − ~p′ (A.66)

σ2(R, ~T )
(A.53)
=

n−1∑
i=0

‖ ~p′i −R~pi − ~T ‖2

(A.65),(A.66)
=

n−1∑
i=0

‖ ~q′i + ~p′ −R(~qi + ~p)− ~T ‖2

(A.58)
=

n−1∑
i=0

‖ ~q′i + R̃~p + ~̃T −R~qi −R~p− ~T ‖2 (A.67)

σ2
min(R, ~T ) = σ2(R̃, ~̃T ) =

n−1∑
i=0

‖ ~q′i − R̃~qi ‖2 (A.68)

Equation (A.68) shows that R̃ can be isolated independently of ~̃T , which can be

computed afterwards from (A.58): ~̃T = ~p′−R̃~p. The next step is therefore to compute

R̃.

A.3.2 Computation of the Optimal Rotation

Our goal now is to find the rotation matrix R̃ such that the sum of the error vectors

squared norms is minimized. Let us develop our expression of the error vectors



128

squared norms sum:

σ2(R̃, ~̃T )
(A.68)
=

n−1∑
i=0

‖ ~q′i − R̃~qi ‖2

=
n−1∑
i=0

(~q′i − R̃~qi)
T (~q′i − R̃~qi)

=
n−1∑
i=0

(‖ ~q′i ‖2 −~q′
T

i R̃~qi − ~qT
i R̃T ~q′i + ~qT

i R̃T R̃~qi)

=
n−1∑
i=0

(‖ ~q′i ‖2 −2~q′
T

i R̃~qi+ ‖ ~qi ‖2) (A.69)

From inspection of (A.69), minimizing σ2(R̃, ~̃T ) is equivalent to maximizing

G ≡
n−1∑
i=0

~q′
T

i R̃~qi (A.70)

Let us use identity (B.1) in (A.70):

G =
n−1∑
i=0

~q′
T

i R̃~qi
(B.1)
=

n−1∑
i=0

trace(R̃~qi
~q′

T

i )

= trace(R̃
n−1∑
i=0

~qi
~q′

T

i ) = trace(R̃H) (A.71)

where

H ≡
n−1∑
i=0

~qi
~q′

T

i (A.72)

We are now searching for the rotation matrix R̃ that maximizes G = trace(R̃H).

Let us define the matrix X, built from UH and VH , the orthogonal matrices obtained

from SVD of H, i.e. H = UHDHV T
H .

X ≡ VHUT
H (A.73)

X is an orthogonal matrix.
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Proof.

XT X = UHV T
H · VHUT

H = UHUT
H = I (A.74)

XH is a symmetric matrix.

Proof.

(XH)T = (VHUT
H · UHDHV T

H )T = (VHDHV T
H )T = VHDT

HV T
H = VHDHV T

H

= XH

Since XH is positive definite (i.e. symmetric with eigenvalues ≥ 0), it can be

expressed in the form

XH = AAT (A.75)

This allows us to apply (B.11) to the matrix XH:

trace(XH) ≥ trace(RXH) (A.76)

where R is an orthogonal matrix. Therefore, there is no rotation matrix that could

be premultiplied to XH, such that the trace of the obtained matrix RXH would

have a greater trace than XH. Hence, X is the solution we were searching for that

maximizes G = trace(R̂H).

R̃
(A.73)
= VHUT

H (A.77)

~̃T
(A.58)
= ~p′ − R̃~p (A.78)
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A.3.3 Summary of the 3D Registration Procedure

To summarize the 3D registration procedure, let us restate the algorithm: Given two

sets of corresponding 3D points {~p} and {~p′}, expressed in the same reference system.

We are searching for the optimal rotation R̃ and the optimal translation ~̃T such that

~p′i = R~pi + ~T + ~εi(R, ~T ) minimizes the square error sum

σ2(R, ~T ) =
n−1∑
i=0

‖ ~p′i −R~pi − ~T ‖2

1. Compute the centroids of the two sets of points, ~p and ~p′

2. Shift the points with their respective centroids:

~qi = ~pi − ~p

~q′i = ~p′i − ~p′

3. Compute the matrix H, obtained from the shifted points:

H =
n−1∑
i=0

~qi
~q′

T

i

4. Perform SVD on H: H = UHDHV T
H

5. The optimal rotation is R̃ = VHUT
H

6. The optimal translation is ~̃T = ~p′ − R̃~p

A.4 Transformation of a Moving Reference Frame

with Respect to a Fixed Scene

Let us suppose a camera is moving around a rigid object which is fixed with respect

to a global reference frame. From the camera point of view, it is as if the scene had

undergone a rigid motion with respect to its reference frame. With a sufficient number
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Figure A.4: Registration of two positions of a moving camera

of points in position 1 and in position 2, this transformation can be computed, as

shown in Section A.3. We want to use this information to obtain the transformation

the camera has gone through between position 1 and position 2.

Figure A.4 shows a camera C at instants 1 and 2, along with the global reference

frame W and the location of the virtual reference frame W(cam) that has rigidly

followed the movement of the camera. The new position QC′/W of the camera is given

by:

QC′/W = QregQC/W (A.79)

where

Qreg ≡



[
Rreg

] [
Treg

]

0T 1


 (A.80)

Proof. From Section A.3, we could compute the optimal rotation R̃ = Rreg and

translation ~̃T = ~Treg that best fit ~X|W = Rreg
~X|W (cam) + ~Treg. From the convention

of the homogeneous transformation matrices (A.46), we see that the homogeneous

transformation relating the World reference frame with the World(camera) reference

frames is simply
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QW (cam)/W = Qreg (A.81)

with the definition of Qreg given in equation (A.80).

Following the transformation arrows of the graph:

QC′/W = QW (cam)QC/W (A.82)

QC′/W = QregQC/W (A.83)



Appendix B

Mathematical Identities

This appendix gathers useful mathematical identities that are used in the course of

the text, whose derivation is not central in the comprehension of the subject.

B.1 Properties of the Trace of a Matrix

B.1.1 Trace of B~c~aT

Let ~a be a [n× 1] vector, B a [n×m] matrix and ~c a [m× 1] vector;

~aT B~c = trace(B~c~aT ) (B.1)

133
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Proof.

~aT B~c =
[

a0 a1 ... an−1

]




b0,0 b0,1 ... b0,m−1

b1,0 b1,1 ... b1,m−1

... ... ... ...

bn−1,0 bn−1,1 ... bn−1,m−1







c0

c1

...

cm−1




=
[

a0 a1 ... an−1

]




b0,0c0 + b0,1c1 + ... + b0,m−1cm−1

b1,0c0 + b1,1c1 + ... + b1,m−1cm−1

...

bn−1,0c0 + bn−1,1c1 + ... + bn−1,m−1cm−1




= a0(b0,0c0 + b0,1c1 + ... + b0,m−1cm−1) + a1(b1,0c0 + b1,1c1 + ... + b1,m−1cm−1)

+... + an−1(bn−1,0c0 + bn−1,1c1 + ... + bn−1,m−1cm−1) (B.2)

trace(Bc~aT ) = trace







b0,0 b0,1 ... b0,m−1

b1,0 b1,1 ... b1,m−1

... ... ... ...

bn−1,0 bn−1,1 ... bn−1,m−1







c0

c1

...

cm−1




[
a0 a1 ... an−1

]




= trace







b0,0c0 + b0,1c1 + ... + b0,m−1cm−1

b1,0c0 + b1,1c1 + ... + b1,m−1cm−1

...

bn−1,0c0 + bn−1,1c1 + ... + bn−1,m−1cm−1




[
a0 a1 ... an−1

]




= a0(b0,0c0 + b0,1c1 + ... + b0,m−1cm−1) + a1(b1,0c0 + b1,1c1 + ... + b1,m−1cm−1)

+... + an−1(bn−1,0c0 + bn−1,1c1 + ... + bn−1,m−1cm−1) (B.3)

Equating (B.2) and (B.3):

~aT B~c = trace(B~c~aT )
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B.1.2 Commutability of the Argument of trace()

Let A be a [n×m] matrix and B be a [m× n] matrix.

trace(AB) = trace(BA) (B.4)

Proof.

trace(AB) = trace







a0,0 a0,1 ... a0,m−1

a1,0 a1,1 ... a1,m−1

... ... ... ...

an−1,0 an−1,1 ... an−1,m−1







b0,0 b0,1 ... b0,n−1

b1,0 b1,1 ... b1,n−1

... ... ... ...

bm−1,0 bm−1,1 ... bm−1,n−1







= a0,0b0,0 + a0,1b1,0 + ... + a0,m−1bm−1,0 + a1,0b0,1 + a1,1b1,1 + ... + a1,m−1bm−1,1

+... + an−1,0b0,n−1 + an−1,1b1,n−1 + ... + an−1,m−1bm−1,n−1 (B.5)

trace(BA) = trace







b0,0 b0,1 ... b0,n−1

b1,0 b1,1 ... b1,n−1

... ... ... ...

bm−1,0 bm−1,1 ... bm−1,n−1







a0,0 a0,1 ... a0,m−1

a1,0 a1,1 ... a1,m−1

... ... ... ...

an−1,0 an−1,1 ... an−1,m−1







= a0,0b0,0 + a1,0b0,1 + ... + an−1,0b0,n−1 + a0,1b1,0 + a1,1b1,1 + ... + an−1,1b1,n−1

+... + a0,m−1bm−1,0 + a1,m−1bm−1,1 + ... + an−1,m−1bm−1,n−1

= a0,0b0,0 + a0,1b1,0 + ... + a0,m−1bm−1,0 + a1,0b0,1 + a1,1b1,1 + ... + a1,m−1bm−1,1

+... + an−1,0b0,n−1 + an−1,1b1,n−1 + ... + an−1,m−1bm−1,n−1 (B.6)

Equating (B.5) and (B.6):

trace(AB) = trace(BA)

B.1.3 Trace of a Product of Matrices

Let {Ai} be a set of N matrices whose dimensions are such that their product is

defined with their neighbors and such that the number of rows of A1 equals the
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number of columns of AN .

trace(A1 · A2 · ... · AN) = trace(Aj · Aj+1 · ... · AN · A1 · A2 · ... · Aj−1) (B.7)

Proof.

trace(A1 · A2 · ... · AN) = trace(A1 · (A2 · ... · AN))

(B.4)
= trace(A2 · A3 · ... · AN · A1) (B.8)

Applying (B.8) (j − 1) times:

trace(A1 · A2 · ... · AN) = trace(Aj · Aj+1 · ... · AN · A1 · A2 · ... · Aj−1)

B.1.4 Trace of ATBA

Let A and B be two [n× n] matrices.

trace(AT BA) =
n−1∑
i=0

~aT
i B~ai (B.9)

where ~ai is the ith column of A.

Proof.

AT BA =




~aT
0

~aT
1

...

~aT
n−1




[
B~a0 B~a1 ... B~an−1

]

=




~aT
0 B~a0 ~aT

0 B~a1 ... ~aT
0 B~an−1

~aT
1 B~a0 ~aT

1 B~a1 ... ~aT
1 B~an−1

... ... ... ...

~aT
n−1B~a0 ~aT

n−1B~a1 ... ~aT
n−1B~an−1



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trace(AT BA) = ~aT
0 B~a0 + ~aT

1 B~a1 + ... + ~aT
n−1B~an−1

=
n−1∑
i=0

~aT
i B~ai

B.1.5 Schwartz-Cauchy Inequality Applied to Vectors of Di-

mension n

Let ~a and ~b be two vectors of dimension [n× 1] whose values are real.

(~aT~b)2 ≤ (~aT~a) · (~bT~b) (B.10)

Proof.
n−1∑
i=0

n−1∑
j=0

(aibj − ajbi)
2 ≥ 0

(a2
0b

2
0 − 2a2

0b
2
0 + a2

0b
2
0) + (a2

0b
2
1 − 2a0a1b0b1 + a2

1b
2
0)

+... + (a2
0b

2
n−1 − 2a0an−1b0bn−1 + a2

n−1b
2
0) + (a2

1b
2
0 − 2a0a1b0b1 + a2

0b
2
1)

+(a2
1b

2
1 − 2a2

1b
2
1 + a2

1b
2
1) + ... + (a2

1b
2
n−1 − 2a1an−1b1bn−1 + a2

n−1b
2
1) + ...+

(a2
n−1b

2
0 − 2a0an−1b0bn−1 + a2

0b
2
n−1) + (a2

n−1b
2
1 − 2a1an−1b1bn−1 + a2

1b
2
n−1)

+... + (a2
n−1b

2
n−1 − 2a2

n−1b
2
n−1 + a2

n−1b
2
n−1) ≥ 0

2[a2
0b

2
0 + a2

0b
2
1 + ... + a2

0b
2
n−1

+a2
1b

2
0 + a2

1b
2
1 + ... + a2

1b
2
n−1

+... + a2
n−1b

2
0 + a2

n−1b
2
1 + ... + a2

n−1b
2
n−1] ≥

2[a2
0b

2
0 + 2a0a1b0b1 + 2a0a2b0b2 + ... + 2a0an−1b0bn−1

+a2
1b

2
1 + 2a1a2b1b2 + ... + 2a1an−1b1bn−1

+...

+a2
n−1b

2
n−1]
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(a2
0 + a2

1 + ... + a2
n−1)(b

2
0 + b2

1 + ... + b2
n−1) ≥ (a0b0 + a1b1 + ... + an−1bn−1)

2

(~aT~a) · (~bT~b) ≥ (~aT~b)2

B.1.6 Maximum Trace of RAAT

Let R be an [n× n] orthogonal matrix and let A be an [n× n] matrix.

trace(AAT ) ≥ trace(RAAT ) (B.11)

Proof.

trace(RAAT )
(B.7)
= trace(AT RA)

(B.9)
=

n−1∑
i=0

~aT
i R~ai (B.12)

where ~ai is the ith column of A. Let us apply the Schwartz-Cauchy inequality (B.10)

to the vectors ~ai and R~ai:

(~aT
i (R~ai))

2 ≤ (~aT
i ~ai) · ((R~ai)

T ·R~ai)

~aT
i R~ai ≤

√
(~aT

i ~ai)(~aT
i RT R~ai)

~aT
i R~ai ≤

√
(~aT

i ~ai)(~aT
i ~ai)

~aT
i R~ai ≤ ~aT

i ~ai (B.13)

trace(RAAT )
(B.12)
=

n−1∑
i=0

~aT
i R~ai

trace(RAAT )
(B.13)

≤
n−1∑
i=0

~aT
i ~ai

trace(RAAT ) ≤ trace(AAT )
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B.2 Properties of the Determinant of a Matrix

B.2.1 Effect of the Sign Inversion of a Row on the Determi-

nant

Let B be an n× n matrix built by inverting the sign of one of the rows of the n× n

matrix A. Then,

|B| = −|A| (B.14)

Proof. Let A be

A ≡




a0,0 a0,1 ... a0,n−1

a1,0 a1,1 ... a1,n−1

... ... ... ...

am,0 am,1 ... am,n−1

... ... ... ...

an−1,0 an−1,1 ... an−1,n−1




(B.15)

|A| = (−1)mam,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0,1 a0,2 ... a0,n−1

... ... ... ...

am−1,1 am−1,2 ... am−1,n−1

am+1,1 am+1,2 ... am+1,n−1

... ... ... ...

an−1,1 an−1,2 ... an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(−1)mam,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0,0 a0,2 ... a0,n−1

... ... ... ...

am−1,0 am−1,2 ... am−1,n−1

am+1,0 am+1,2 ... am+1,n−1

... ... ... ...

an−1,0 an−1,2 ... an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.16)

+− ...

B ≡




a0,0 a0,1 ... a0,n−1

a1,0 a1,1 ... a1,n−1

... ... ... ...

−am,0 −am,1 ... −am,n−1

... ... ... ...

an−1,0 an−1,1 ... an−1,n−1




(B.17)
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|B| = −(−1)mam,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0,1 a0,2 ... a0,n−1

... ... ... ...

am−1,1 am−1,2 ... am−1,n−1

am+1,1 am+1,2 ... am+1,n−1

... ... ... ...

an−1,1 an−1,2 ... an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)mam,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0,0 a0,2 ... a0,n−1

... ... ... ...

am−1,0 am−1,2 ... am−1,n−1

am+1,0 am+1,2 ... am+1,n−1

... ... ... ...

an−1,0 an−1,2 ... an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.18)

−+ ...

|B| = −|A| (B.19)

B.2.2 Determinant of −A

Let A be an n× n matrix.

| − A| = (−1)n|A| (B.20)

Proof. Applying n times equation (B.14):

| − A| = (−1)n|A| (B.21)

B.2.3 Product of Eigenvalues

Let A be an n× n matrix whose eigenvalues are λ1, λ2, ..., λn.

n∏
i=1

λi = |A| (B.22)

Proof. Let f(λ) be the characteristic equation of A:

f(λ) ≡ |λI − A| = (λ− λ1)(λ− λ2)...(λ− λn) (B.23)

f(0) = | − A| = (−λ1)(−λ2)...(−λn) (B.24)
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From (B.20):

(−1)n|A| = (−1)n

n∏
i=1

λi (B.25)

|A| =
n∏

i=1

λi (B.26)

B.3 Properties of Homogeneous Transformation Ma-

trices

B.3.1 Commutability of Matrices Whose Rotation Compo-

nents Are Small

Let Q1 and Q2 be two homogeneous transformation matrices whose roll, pitch and

yaw are much smaller than 1. In the first approximation,

Q1Q2 = Q2Q1 (B.27)

Proof. Let us approximate Q1 and Q2 in the first order of small angles, i.e. for a

small angle α, sin(α) ' α and cos(α) ' 1:

Q1Q2 '




1 −θ1 φ1 Tx1

θ1 1 −ψ1 Ty1

−φ1 ψ1 1 Tz1

0 0 0 1







1 −θ2 φ2 Tx2

θ2 1 −ψ2 Ty2

−φ2 ψ2 1 Tz2

0 0 0 1




'




1 −θ1 − θ2 φ1 + φ2 Tx1 + Tx2

θ1 + θ2 1 −ψ1 − ψ2 Ty1 + Ty2

−φ1 − φ2 ψ1 + ψ2 1 Tz1 + Tz2

0 0 0 1




(B.28)
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Since each entry of (B.28) is symmetrical with respect to the subscripts, Q1Q2 =

Q2Q1.

B.4 Effect of rounding to the closest integer pixel

Let us assume a 3D point should be imaged at point ~uideal. Due to rounding to the

closest integer pixel, its image will be detected as ~urounded. The net difference between

these two vectors is a random vector whose values in the U− and V− directions

are random variables, uniformly distributed between -0.5 and +0.5. The standard

deviation between the ideal and the rounded feature point will be:

σ =

√
1

6
= 0.408 (B.29)

Proof.

σ2 =

∫ 0.5

−0.5

∫ 0.5

−0.5

(u2 + v2)dudv

=

∫ 0.5

−0.5

[(
u3

3
+ uv2)|0.5

−0.5]dv

=

∫ 0.5

−0.5

[
1

12
+ y2]dy = (

y

12
+

y3

3
)|0.5
−0.5

=
1

6

σ =

√
1

6
= 0.408

(B.30)


