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Abstract

In recent years feature matching using invariant features has gained significant im-

portance due to its application in various recognition problems. Such techniques have

enabled us to match images irrespective of various geometric and photometric transfor-

mations between images. The thesis being presented here focusses on developing such a

feature matching technique which can be used to identify corresponding regions in im-

ages. A feature detection approach is proposed, which finds features that are invariant

to image rotation and scaling, and are also robust to illumination changes. A descrip-

tion is computed for each feature using the local neighborhood around it and then acts

as a unique identifier for the feature. These feature identifiers (or feature descriptors)

are then used to identify point to point correspondences between images. A systematic

comparison is made between this feature detector, and others that are described in the

literature.

Later in this work, we apply the feature matching technique developed here to perform

image retrieval for panoramic images. Our objective here is to retrieve a panoramic image

similar to a query image from a database. We show how such a retrieval task can be

performed by giving results for both indoor and outdoor sequences.
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Chapter 1

Introduction

Computer vision is a discipline of artificial intelligence which focuses on providing com-

puters with the ability to perceive the world as humans would see it. This ability to

mimic human perception constitutes an important step in designing systems which can

perform intelligent tasks.

The real world around us is rich in visual information and interpreting the vast

amount of data can be a challenging process. Vision based systems rely on extracting

information from the images captured in order to carry out a certain task. The type of

information extracted and its analysis depends upon the application to be performed.

More often than not, the ultimate goal is to use this information to gain an understanding

of different objects present in the environment along with their physical and geometrical

attributes.

In the diverse field of vision, recognition is one of the most important problems. It

can be described as the process of perceiving or observing something which is known

a priori. Usually, this a priori information is an object or a pattern or some kind of

activity whose presence we are trying to ascertain. Thus, recognition can be thought of

as an identification process where the description of a certain object is compared to the

reference data to affirm its presence.

Recognition can be classified into numerous sub-fields depending upon the context

in which it is used. One of the frequently used contexts is objects where the goal is to

identify the presence of specific objects or a class of objects along with their locations in

the scene. Apart from objects, recognition is also used in identification of a wide variety

of other patterns like textures, characters, fingerprints and faces just to name a few. It

also forms an important part of applications like content based image retrieval where the

1
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objective is to find an image similar to a given query image.

A common step in most recognition algorithms requires representing image content

in terms of features. These features which represent specific patterns present in the

image can be used to identify corresponding structures between images. In the past,

most algorithms have relied on detecting low level features like edges, groups of edges,

contours, interest points in order to perform recognition. Although these features work

well for certain applications, their performance degrades considerably in the presence

of background clutter and occlusions. In addition, the ability to detect features which

correspond to the same physical point or group of points significantly reduces when

images are captured from different viewpoints.

In the last decade, a lot of research has been done to study the properties of invariant

features. Invariant features is a generic term used to describe features which result from

a combination of two things; invariant region or feature detectors which detect features

like corners, blobs invariant to scale and affine changes in the image and invariant feature

descriptors which generate a description for a feature which is invariant to geometric and

photometric transformations. The rapid development in the domain of invariant features

has led to a significant improvement in the performance of recognition algorithms. In

the context of this thesis, we study the properties of such invariant features and explore

their applicability to the problem of image retrieval.

1.1 Problem Definition

The thesis being presented here focuses on two main objectives. The primary objective

of this research is to develop a robust, efficient feature matching strategy which can be

used to find correspondences between images. The emphasis here is on developing a

technique which is invariant to geometrical and photometric transformations in images.

In order to find correspondences using invariant features, a two stage approach is

adopted. In the first stage, feature points are detected which are distinctive and robust

to changes in image scale and image rotation. We propose a feature detector called Scale

Interpolated Hessian-Laplace to detect feature points. The detector uses the Hessian

matrix to locate points in the image plane and a Laplacian function to compute scale for

those points. A localization step ensures that the location and scale of the points detected

is close to their true location. Figure 1.1 shows the scale invariant points detected using

this detector. The feature points correspond to the center of the circular regions. The

radii of the circular regions have been chosen proportional to the scale of the points (a
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Figure 1.1: Feature points detected using the Scale Interpolated Hessian-Laplace detec-

tor.

factor of 3 has been chosen here). We compare the performance of this detector with

other well known detectors using the repeatability criterion.

In the next stage, feature descriptors are computed by characterizing the local region

around feature points. These descriptors act as unique signatures and are used to find

point to point correspondences. In this research we introduce a novel way to analyze

Haar descriptors which are based on the Haar wavelet transform. Haar descriptors offer

the advantage that they are easier to compute than other descriptors. We analyze these

descriptors along with SIFT and PCA-SIFT descriptors in order to determine the most

stable and robust descriptor.

Finally, different matching configurations obtained by combining different detectors

and descriptors discussed in this research are evaluated in order to find the best matching

technique. We perform this evaluation for different datasets and for different evaluation

metrics.

The second objective of this thesis is to perform image retrieval for panoramic images

using the feature matching technique developed in this research. This image retrieval

application is a part of a virtual navigation project called NAVIRE. The NAVIRE project

deals with allowing a person to virtually walk through a real world environment by

generating a virtual representation of that environment. This representation is generated

by capturing sequences of panoramic images along different paths at that site (refer to
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Figure 1.2: Virtual representation of a real world environment. Map shows panoramic

images captured at different locations

Figure 1.2). In order to navigate through this virtual environment efficiently, a user

needs to know where the different panoramic sequences intersect. At these intersection

points, the user will have the option to go in a different direction or switch paths.

The image retrieval application presented in this thesis tries to solve the above men-

tioned problem. The objective here is to find the intersection points between different

panoramic sequences. This is done by retrieving panoramic images which are close to

the intersection points (the blue images in Figure 1.2). In some cases, one of the blue

images corresponding to the intersection point is known (acts as a query image) and

the objective is to find the other blue image. In other cases, both the images may be

unknown. In this situation, each image from the one of the sequences acts as a query

image and we retrieve the closest image from the other sequence. The image pair that

gives the maximum number of matches amongst all possible pairs is then chosen as the

pair closest to the intersection point. We will discuss this in detail later in this thesis.
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1.2 Contributions

In this research, we propose a scale invariant feature detector called the Scale Interpolated

Hessian-Laplace for detecting feature points. The detector is used to detect points which

are invariant to image scale and rotation. We compare the performance of this detector

with other well known detectors for different image datasets.

This research introduces a novel method to analyze and apply Haar descriptors which

are derived using the Haar wavelet transform. These descriptors offer the advantage that

they are computationally less expensive to compute and smaller in size when compared

to other descriptors. We have evaluated different configurations of Haar descriptors in

this research and compared them with other descriptors.

The different detectors and descriptors studied in this research have been combined

to generate different matching strategies. We evaluate these matching strategies in order

to find the most optimal matching technique. We have carried out these evaluation tests

for different types of sequences using different evaluation metrics.

In the latter part of this thesis, the applicability of the matching technique developed

in this research has been explored in the context of image retrieval for panoramic images.

Here we are interested in identifying images which are close to the intersection points

between different panoramic sequences. We show how the intersection points between

different image sequences can be experimentally determined by using the number of

matches. We carry out these tests using different descriptors for both indoor and outdoor

sequences.

1.3 Overview

This section describes the organization of this thesis.

Chapter 2 describes the concept of features and discusses some of the important

feature detectors, that have been proposed through the course of literature. We then

present the concept of scale-space theory and examine different ways of constructing a

multi-scale representation for an image. The importance of normalization for detecting

the correct scale for a point is also discussed. We also review the concept of automatic

scale selection where the goal is to select the appropriate scale for analyzing an image

structure automatically.

In Chapter 3 we discuss some of the scale invariant feature detectors that are relevant

in context of this research and carry out a comparative evaluation of them. We discuss
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various important issues that are important for detecting good stable keypoints. We also

talk about a method for estimating orientation for feature points which is used to make

the descriptor of a point invariant to image rotation.

Chapter 4 introduces feature descriptors which are used to represent local regions

around feature points. We describe the formulation of well known descriptors namely

SIFT, PCA-SIFT along with a discussion on descriptors based on Haar wavelet transform.

Different similarity measures used to match descriptors have also been discussed.

Chapter 5 gives the matching results for different image datasets. We evaluate the

performance of different detectors when combined with different descriptors in order

to identify the most robust matching technique. The performance evaluation process

has been performed for different evaluation metrics. Later we discuss the problem of

image retrieval for panoramic images and show how retrieval can be performed using the

matching strategy developed in this research.

Finally, in Chapter 6 we give a summary of the work done and indicate some possible

directions for future research.



Chapter 2

Concept of Features and Scale

Given an image of a scene, a fundamental step in vision based applications is extracting

information about the image content which can act as a representation to complete the

task at hand. The information we are interested in relates to image regions which exhibit

certain properties or some specific patterns. These patterns could be edges, blobs1,

contours of objects, different kinds of junctions and many more things. The collection

of all these image patterns are labelled as image features or simply features. Such types

of features have been used in a wide range of applications like image matching, object

recognition, structure from motion, texture classification just to name a few.

Amongst all the different types of features proposed in the literature, the point based

features are the ones that are most commonly used in the context of image matching.

Feature points or interest points are characteristic points in the image where the image

intensity changes in two directions (refer to Figure 2.1). Although, feature points and

interest points is a general term which can be used to describe corners and various types

of junctions, here these terms will implicitly refer to a corner point or a blob.

In the literature, a large number of detectors have been proposed to detect point based

features. In this chapter we give a brief overview of some of the important detectors.

We also review some of the salient properties that the detectors should incorporate so

as to detect points reliably. The next part of the chapter deals with the concept of

multi-scale image representation and scale-space theory. The concept of scale is crucial

for interpreting the multi-scale nature of real world data and for finding corresponding

points across images which have been represented at different scales.

1Blobs are bright areas surrounded by dark pixels or vice versa

7
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Figure 2.1: Example of a corner point in an image. The pixels in the neighborhood of

the corner point show large variations in orthogonal directions.

2.1 Selection Criteria for Features

Detecting robust, reliable features points constitutes an important step in any matching

or recognition based application. In order to detect good feature points, various measures

have to be included in a feature detector. A number of previous works[75, 2005][77, 1994]

have discussed these measures and here we mention the same.

Localization is the property which defines the ability of a feature detector to detect

points which are as close as possible to their true location. Good localization ensures that

corners are detected exactly at locations where the signal is changing bi-dimensionally.

Robustness evaluates the sensitivity of the feature detection process to the noise

present in the image. Noisy patterns in an image can lead to false detection of points or

improper localization of points which can have a significant effect on later stages of an

algorithm. Hence, it is essential for a feature detector to be insensitive to or have less

sensitivity to noise.

Sensitivity is a property which deals with the ability to detect points in low illumi-

nation conditions. It is normally controlled by varying certain parameters of a feature

detector.

Stability is one of the most important criteria used for detecting feature points. It
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defines the ability of a detector to extract feature points at the same location in an

image, irrespective of any geometrical or photometric transformation that the image may

undergo. Stability is usually evaluated using the repeatability measure which computes

the number of repeated points between two images. A pair of points detected between two

images is termed repeatable if both the points originate from the same image structure

(i.e to say that both points are the projection of the same 3D point in space). This

number of repeated points directly affects the number of correspondences that can be

found between images. Hence, it is essential for a feature detector to have good stability.

We discuss this in more detail in the next chapter when we explain the repeatability

criterion used to evaluate feature detectors.

Complexity defines the speed at which a detector can detect feature points in an

image. Although, the speed varies depending upon individual implementations, it is

always better if the number of operations required to find features are kept as low as

possible.

It is difficult for a feature detector to satisfy all these conditions simultaneously.

Hence, depending upon the application, more importance is given to some criteria than

others.

2.2 Overview of Corner Detectors

Extracting feature points in an image involves checking for image intensity variations

using different derivative operators. In this section we give an overview of some of the

important methods that have used different order of derivatives and other operators for

extracting feature points.

One of the first interest point detectors was developed by Moravec[59, 1977]. The

detector was based on measuring intensity changes in a local window around a point

in different directions. For each pixel in the image, four sums were computed for four

directions; namely horizontal, vertical and two diagonals, using sum of squared differ-

ences with the adjacent pixels in a neighborhood. A variance measure calculated as the

minimum of these four sums was then used to select interest points in the image.

Beaudet[5, 1978] proposed a detector based on a rotationally invariant measure

termed DET which was computed using the determinant of Hessian matrix. The Hessian

matrix as derived from the second order Taylor series expansion can be used to describe

the local structure around a point. For an image I, the Hessian matrix can be expressed

as
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H =

[
Ixx Ixy

Iyx Iyy

]
(2.1)

DET = Det(H) = IxxIyy − I2
xy (2.2)

where Ixx, Iyy and Ixy are the second order derivatives of image intensity. The extrema

of the DET measure in a local neighborhood was used to detect interest points.

Kitchen and Rosenfeld[35, 1982] introduced a corner detector based on the first and

second order image derivatives. The cornerness measure was defined as

K =
IxxIy

2 + IyyIx
2 − 2IxyIxIy

Ix
2 + Iy

2 (2.3)

This measure was based on product of gradient magnitude and rate of change of

gradient direction along an edge. Before multiplying the gradient magnitude with the

curvature, a non maximum suppression is applied on the magnitude to ensure that it

assumes a maxima along the gradient direction. The local maxima of the measure K was

used to detect corner points.

Deriche and Giraudon[18, 1990] proposed a model for corner detection to improve

the localization accuracy of the Beaudet’s Hessian corner detector. Corners are detected

at two different scale levels using the DET function. The equation of the line connecting

the corner response at the two scales is found, and this is followed by computing the

Laplacian response along the line. The zero crossing of the Laplacian function is then

used to indicate the exact position of the corner.

The Harris detector proposed by Harris and Stephens[26, 1988] is one of most widely

used detectors for finding feature points. It is based on detecting changes in image

intensity around a point using the auto correlation matrix where the matrix is composed

of first order image derivatives. Originally, small filters were used to calculate the image

derivatives. Later on[66, 1998] Gaussian filters were found to be more suitable. The

autocorrelation matrix M can be expressed as

M =

[
I2
x IxIy

IyIx I2
y

]
(2.4)

Additional smoothing with the Gaussian function is performed to reduce sensitivity

to noise. The eigenvalues of the auto correlation matrix M are used to decide the type

of image pattern present inside the window around a given point. Two large eigenvalues
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indicate the presence of a corner while one large eigenvalue indicates an edge. The Harris

detector uses a corner response function described in terms of the auto correlation matrix

to detect corners. The corner response function is computed as

R = Det(M)− α(TraceM)2

where R determines the strength of the corner and α is constant chosen to be 0.04.

This function is usually compared against a threshold to give a desired number of corner

points.

Along similar lines as Harris, Noble[62, 1988] proposed a detector using the auto

correlation matrix where the corner function was evaluated as

R = Det(M)/Trace(M) (2.5)

where M is the autocorrelation matrix as defined before.

Amongst all the different corner detectors that have been mentioned here, the Harris

detector and the Hessian detector have been extended to detect scale and affine invariant

features. We will be discussing those detectors in detail in the next chapter. However,

first we discuss the concept of scale for features.

2.3 Scale-Space Theory

The concept of scale plays an important role in the analysis of images. It relates to the

idea of how we perceive objects depending upon the scale of observation. Every object in

the real world has a meaningful interpretation if viewed within a certain range of scales.

An object like a car for example is a meaningful entity if the distance of observation

is measured in meters. In this case it makes little sense to talk about a distance of

observation in kilometers. Similarly in images where our objective is to extract relevant

information by analyzing image structures, the structures can exist for different values

of scale and the amount of information conveyed by the image structure depends on

the scale. This inference about structures in the image has led to the development of

multi-scale image representations where the idea is to represent an image with a family of

images, such that each image conveys information about a different scale of observation.

An important concept for multi-scale data relates to the range of scales within which

an image structure can be analyzed. This range lies between two scales namely the inner

scale and the outer scale. The inner scale for a structure relates to the smallest size
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of an image patch which can provide sufficient information about the structure in the

patch. This scale is limited by the inner scale of the image which corresponds to the

resolution of the image. The outer scale, on the other hand, depends upon the largest

size of a patch that can be used to describe an image structure. This is in turn limited

by the outer scale of the image, which is the size of the image. The objective in building

a multi-scale representation is to find inner scales for image structures. Thus, the scale

parameter used in a multi-scale representation is the inner scale.

The notion of representing image data in a multi-scale format has to the led to the

development of scale-space theory. Scale-space theory can be described as a theory

developed to study multi-scale representation of images. It has been used to derive

description of structures and relate structures across different scales. In the next few

sections, we discuss some important concepts that have been used to formulate the scale-

space theory, along with properties which are important for detecting scale invariant

features.

2.3.1 Pyramid Representation

The idea of representing images in a multi-scale framework is not new and through the

course of literature, a lot of research has been done to find different ways to generate a

multi-scale representation. Some of the early works done in this area were by Burt and

Adelson[12, 1983] and by Crowley and Parker[14, 1984], where a representation based on

pyramids was proposed. The pyramid was built by performing successive sub-sampling

of finer scale images along with a smoothing operation. The smoothing operation was

incorporated to ensure that aliasing due to sub-sampling did not affect the coarser scale

images. Figure 2.2 shows such a multi-scale pyramid.

Since the introduction of pyramid theory, pyramid representations have been fre-

quently used in a wide area of applications. Gaussian pyramids and Difference of Gaus-

sian pyramids have been successfully explored in the fields of data compression, pat-

tern matching and image analysis. Difference of Gaussian pyramids which are built

by subtracting two successive levels of a Gaussian pyramid have been especially useful

for extracting image features like blobs, edges, ridges etc. Figure 2.3 shows a pyramid

representation constructed for Gaussian and Difference of Gaussian images.

The widespread use of the pyramid representation can be attributed to the fact that

less computation is required as less data has to be processed due to decrease in image

size. However, the pyramid representation also has certain disadvantages. Since each
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scale level is represented by a different image resolution, additional computations are

required to locate the position of features at different levels. Also, the quantization

along scale due to the sub-sampling operation makes it difficult to find corresponding

features across scales. Still, in algorithms where real-time performance is crucial, pyramid

structures are a viable choice.

Figure 2.2: Multi-Scale Pyramid Representation

2.3.2 Scale-Space Representation

The scale-space representation is the most widely used multi-scale representation in the

field of vision. This representation has been used in a number of applications like image

segmentation, motion estimation and especially feature extraction where the ability to

represent features at multiple scales is essential.

The concept of scale-space representation was introduced by Witkin[76, 1984] for

representing one dimensional signals at multiple scales. The representation for analyz-

ing the signal at different scales was constructed by convolving it with different sizes of
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Figure 2.3: Pyramid representation of an image (a) Gaussian Pyramid (b) Difference of

Gaussian Pyramid
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one dimensional kernel. Since the early introduction by Witkin, the scale-space repre-

sentations have been extended to represent two dimensional signals (discrete images) at

multiple scales. Various aspects of these representations have been explored and signif-

icant contributions have been made, which has resulted in a framework which can be

used to describe multi-scale nature of real world data.

The scale-space representation for an image is built by convolving the image with dif-

ferent size of kernels. Unlike the pyramid representation, no sub-sampling is performed,

thus producing a sequence of images which have the same resolution. The scale param-

eter associated with each image is directly related to the σ value of the kernel convolved

with that image. Figure 2.4 shows a scale-space representation. In order to build such

a representation, an important question arises about the choice of convolution operator.

Various studies in the literature have shown that Gaussian kernel is the most optimal

kernel to build such a representation. We now mention some of the important properties

that have led to that conclusion.

Figure 2.4: Scale-Space Representation

Koenderink[36, 1984] proposed the notion of causality for multiple scales which stated

that new image structures should not be created when the scale parameter is increased.

The structures present at higher scales should only be a coarse representation of the

ones at finer scales. He also showed that the scale-space representation should satisfy
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the diffusion equation, which the Gaussian kernel indeed satisfies.

The property of non-enhancement of local extrema was proposed in conjunction with

the causality principle. The property stated that a maxima or minima present in a scale-

space image should not be enhanced as the scale parameter is increased. This indicates

that extrema of intensity should be suppressed as one moves from a finer scale image

to a coarser scale image. This idea of smoothing out image details with increasing scale

parameter can be accomplished by using a Gaussian kernel.

Another important condition introduced in the same context was that of semi group

structure. The property stated that convolution of an image with two different kernels

should be equivalent to convolution with a single kernel, where σ of the single kernel is

the sum of σ of the two different kernels. Mathematically this can be represented as

I(x, y) ∗ g(x, y, σ) = I(x, y) ∗ g(x, y, σ1) ∗ g(x, y, σ2) (2.6)

where

σ = σ1 + σ2

This condition can be extended for n Gaussian kernels. Thus using this property, nth

level scale-space image can either be computed by performing (n-1) convolutions with

lower scale images or by a direct convolution with the base image. Various other ways

of generating this image are also possible. Other properties that have been mentioned

in this context are linearity, spatial shift invariance, isotropy, scale invariance, rotation

invariance. A detailed description of these properties can been found in many papers in

the literature by Lindeberg[41, 1994][40, 1994], Florack et al.[24, 1992], Koenderink[36,

1984] and many others.

Besides the properties mentioned before, they are other characteristics of the Gaussian

kernel that make it an ideal choice for performing convolution. One of these characteris-

tics is the separability of the Gaussian kernel. The separability allows the convolution to

be computed using a one dimensional kernel, which results in a faster and more efficient

implementation. Also, in addition to this, the ability to simulate Gaussian filtering using

small binomial filters[15, 2002] can lead to a large speed up in the computation process

with a minimal loss in precision. Hence, all these things lead to the conclusion that

Gaussian kernels are the best choice to generate scale-space representations.
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Now using Gaussian kernels, the process of generating a scale-space representation

can be mathematically expressed as

Gn(x, y) = g(x, y, σn) ∗ I(x, y) (2.7)

where Gn(x, y) denotes the nth level Gaussian image in the scale-space representation

and g(x, y, σn) is the two dimensional Gaussian kernel given as

g(x, y, σn) =
1

2πσ2
n

exp
−x2+y2

2σ2
n (2.8)

σn corresponds to the standard deviation of the kernel at the nth scale

σn = sn−1σ1 (2.9)

where s denotes the scale ratio between adjacent images and σ1 is the standard

deviation of the kernel used to generate the first scale image (base image). Figure 2.5

shows such a representation generated for an image.

The equations mentioned above where a symmetric Gaussian kernel has been used,

is used to describe a linear scale-space representation. This type of representation can

be used to analyze features if the scale changes are same in both the spatial directions.

In cases where the scale changes differently in both the directions, an affine Gaussian

scale-space is used.

The affine Gaussian scale-space is created by convolving the image with affine (non

uniform) kernels of varying sizes. An affine scale-space can be treated as a general case

of linear scale-space. The two dimensional gaussian kernels used to compute an affine

scale-space can be represented as

g(x, Σ) =
1

2π
√

detΣ
exp−

xT Σ−1x
2 (2.10)

where Σ is the covariance matrix. This representation of a Gaussian kernel is equiv-

alent to its rotationally symmetric representation if the covariance matrix is an identity

matrix multiplied by a factor. Affine scale-space was first explored by Lindeberg and

Garding[44, 1997] to perform shape adaptation so as to reduce distortions due to rota-

tionally symmetric kernels in the context of computing shape cues. This representation

has also been used by Mikolajczyk and Schmid[56, 2004] to detect features points that

are invariant to affine transformation.
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(a) Original Image

(b) σ=1.00 (c) σ=1.30 (d) σ=1.69

(e) σ=2.197 (f) σ=2.856 (g) σ=3.713

(h) σ=4.827 (i) σ=6.275 (j) σ=8.1573

Figure 2.5: Gaussian images for different levels of the scale-space representation. σ

denotes the standard deviation of Gaussian kernel used to generate each scale-space

image.



19

In the context of this research, since we are concerned with scale invariant features,

we will focus on the linear scale-space representation. However, almost all the concepts

mentioned here will also be applicable to an affine Gaussian scale-space.

2.3.3 Hybrid Multi-Scale Representation

Another type of multi-scale representation that has been developed recently is the hybrid

representation[43, 2003]. The hybrid representation as the name suggests, is a fusion of

the pyramid representation and the scale-space representation. Representations based

on pyramids have the advantage of reducing image resolution which can be beneficial

for fast processing needs. However, it is difficult to match image structures in pyramids

across different scales. Scale-space representations on the other hand provide a smooth

transition between different scales. However, for coarse scale values there is a lot of re-

dundant information present. The hybrid representation tries to combine the advantages

of these two approaches so as to develop a framework which can be used in real time

without losing accuracy.

A hybrid representation can be build in two ways: the Sub-Sampled Scale-Space Repre-

sentation and the Oversampled Pyramid Representation as mentioned by Niemenmaa[61,

2001]. The Sub-Sampled Scale-Space Representation is generated similar to a scale-

space representation, with sub-sampling of the image performed at certain stages. The

frequency of sub-sampling is decided by the scale factor and the distance between pix-

els. The Oversampled Pyramid Representation on the other hand is constructed similar

to a Pyramid Representation, but with the smoothing operation divided into several

smoothing steps. Separation of the smoothing operation results in a more continuous

scale than the original pyramid representation. Figure 2.6 shows an Oversampled Pyra-

mid Representation. This latter representation has been investigated by Lindeberg and

Bretzner[43, 2003] and was used in their work to test its efficiency for blob detection. A

similar representation using Difference of Gaussian has been used by Lowe[47, 2004] for

extracting scale invariant feature points.

2.4 Scale-Space Derivatives

One of the important applications of multi-scale image representations is in the context

of feature detection. As mentioned previously while discussing feature detectors, finding

features requires computing image derivatives. In the context of scale-space representa-
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Figure 2.6: Hybrid Multi-Scale Representation using Oversampled Pyramids
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tion this indicates that we have to build a representation which consists of derivatives of

scale-space images.

The task of computing a derivative scale-space image can be accomplished in a number

of ways. We can either compute the derivative of the image first and then convolve it

with Gaussian

L(x; σ) =
∂

∂x
I(x) ∗G(x; σ) (2.11)

or convolve the image with derivative of a Gaussian function.

L(x; σ) =
∂

∂x
G(x; σ) ∗ I(x) (2.12)

Finally, we can also directly compute the derivative for a scale-space image

L(x; σ) =
∂

∂x
(I(x) ∗G(x; σ)) (2.13)

Similar rules apply for higher order derivatives. All the above equations can be

also be computed in the Fourier domain. These operations are equivalent due to the

commutative property of the derivative and convolution operator.

2.5 Need for Normalization

In a scale-space representation, as we move from finer scales to coarser scales, the amount

of smoothing provided by the Gaussian function increases. This smoothing reduces the

high frequency information in the image, thus causing the amplitudes of spatial deriva-

tives to decrease with an increase in scale. In many applications analyzing derivatives

at various scales constitutes an essential step. This is especially true for feature detec-

tion process where selecting a scale for a feature requires comparing spatial derivatives

at different scales. Thus in order to devise a method which permits comparison across

scales, it is necessary to perform normalization with respect to scale.

Let Ln be the nth order derivative of an image at scale σs before normalization and

Dn be the derivative at the same scale after normalization. Then the scale normalized

derivative can be expressed as

Dn(x, y, σs) = σn
s ∗ Ln(x, y, σs) (2.14)
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This type of normalization is particularly useful for detecting features like blobs and

corners. Normalization of derivatives also constitutes an essential step in the process of

automatic scale selection, which is discussed in the next section.

2.6 Automatic Scale Selection

A scale-space representation of an image is a family of images where each image corre-

sponds to a particular scale. When analyzing such a representation an important question

that arises is, which is most appropriate scale to represent a feature? Storing the descrip-

tion of a feature at all scales not only requires a lot of storage but significantly increases

the computations required to find the correct correspondence for a feature. This issue

of representing the a feature at its most appropriate scale was extensively investigated

by Lindeberg[42, 1998] and a selection mechanism which automatically selects the best

scale(s) was proposed. Here we discuss that automatic scale selection mechanism.

The basic idea behind the scale selection principle is to select a scale at which the

response of a given function attains a local maxima over scales. This function is usually

composed of a combination of scale normalized derivatives. The scale for a feature at

which the maxima is attained is called the characteristic scale. Since the response of

a function can contain more than once local maxima, a point can have more than one

characteristic scale. Lindeberg proposed to use the scale normalized Laplacian function

for finding the characteristic scale for a feature. The scale normalized Laplacian function

used can be represented as

Laplacian = σ2(Cxx(x, y, σ) + Cyy(x, y, σ)) (2.15)

where Cxx and Cyy are second order derivatives in x and y directions respectively.

Later, Mikolajczyk and Schmid[55, 2001] evaluated various functions for their ability to

detect the correct characteristic scale for feature points and concluded that Laplacian is

indeed the optimal function for scale selection. The characteristic scale in their case was

found by looking for maxima in the absolute response of the Laplacian.

An important condition that the automatic scale selection principle should satisfy

is that if the image is scaled by a factor f , then the characteristic scale at which an

image structure was detected should also be multiplied by the same factor. Figure 2.7

shows an example of this. For the structure in the left image the characteristic scale was

detected at σ=2 which means that rescaling the image by a factor of 2 should result in
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the characteristic scale being detected at σ=4. This ensures that characteristic scale for

a structure changes in the appropriate fashion with the size of the structure.

(a) σ=2 (b) σ=4

Figure 2.7: σ indicates the characteristic scale for the same image structure detected in

two images. The two images differ by a scale factor of 2

2.6.1 Gamma Normalization

So far the normalization procedure than has been discussed for derivatives assumed the

γ parameter as unity. Now we discuss the more general case of normalization known as

gamma normalization. The choice of the γ factor also plays an important role is deciding

the most suitable scale for features in the process of automatic scale selection.

Again, let Ln be the nth order derivative of an image at scale σs before normalization

and Dn be the derivative at the same scale after normalization. Then the scale normalized

derivative with the γ parameter can be expressed as

Dn(x, y, σs) = σγn
s ∗ Ln(x, y, σs) (2.16)

The affect of the γ factor on the response of normalized derivatives can be considered

from the following derivation as proposed by Lindeberg[42, 1998].

Consider two images I1 and I2 where I2 is a scaled version of I1 by a factor s. The

relation between these images can thus be given by the following equation

I1(x1) = I2(sx1) (2.17)

Let the scale-space representation of these images be given by L1 and L2. Then we

have
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L1(x1; σ1) = L2(x2; σ2) (2.18)

where

L1(x1; σ1) = g(x; σ1) ∗ I1(x1) (2.19)

L2(x2; σ2) = g(x; σ2) ∗ I2(x2) (2.20)

and

σ2 = sσ1 x2 = sx1 (2.21)

The nthorder derivative for these images can then be expressed as

L1n(x1; σ1) = snL2n(x2; σ2) (2.22)

Replacing these derivatives with γ normalized derivatives from equation 2.16 yields

D1n(x1; σ1)

σγn
1

= sn D2n(x2; σ2)

σγn
2

(2.23)

thus giving

D1n(x1; σ1) = sn(1−γ)D2n(x2; σ2) (2.24)

For the factor γ=1 we obtain the condition of perfect scale invariance. For this

condition normalized derivatives will be same for both images. This condition arises

when the function used to compute the maxima over scales is composed of the same order

derivatives (example the Laplacian in equation 2.15). Perfect scale invariance implies that

the response of normalized derivatives is independent of the image resolution.

The case in which γ 6=1 arises when the function used is made up of different order

derivatives. In such a scenario the magnitude of normalized derivatives varies with image

resolution. However, even is such cases, it is possible to locate the local maxima over

scales for a given feature.

The choice of gamma operator can also influence the type of features detected. This

indicates that for any given image structure, there is a finite range of gamma values

within which the local maxima for a structure will be detected i.e. the structure will be

assigned a scale. This property was studied by Majer[49, 2001] and used to detect ridges
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without detecting edges. The table below shows the γ values that are associated with

different types of features as found by Lindeberg[42, 1998].

Type of Feature γ value

Blob 1

Corner 1

Edge 1/2

Ridge 3/4

Table 2.1: γ values used to select scales for different types of features

It should be noted that the different functions have been used to select scales for the

above features. In the next chapter, when we discuss our approach for detecting scale

invariant features, we take the γ parameter as unity.



Chapter 3

Scale Invariant Features

Having discussed the concept of scale in the previous chapter we now explore the do-

main of scale invariant features. These features are extracted using multi-scale image

representations where image points are associated with a scale parameter by searching

for maxima of some function. The scale parameter thus obtained is used to assign a

circular region to each feature point. Hence, unlike ordinary features, scale invariant

features have associated regions. These regions are later used to generate descriptors for

these feature points (discussed in chapter 4) which are eventually used to match feature

points between images. Although these features are scale invariant, the detectors used

to detect these features can also handle small affine transformations.

In the next section we review some of the scale and affine invariant detectors that

have proposed in the literature. We then talk about the Scale Interpolated Hessian-

Laplace detector which has been used in this research to extract scale invariant points,

along with various aspects related to the detection process. We highlight the differences

between this detector and the Hessian-Laplace detector which has been proposed in an

earlier research. In the end of this chapter, we do an evaluation study where we compare

the performance of different detectors using the repeatability measure. The repeatability

measure is used to evaluate the stability of points detected across images (see section

2.1). The repeatability between images directly affects the number of correspondences

that can be found between them. We evaluate the repeatability of different detectors for

different image datasets.

26
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3.1 Related Work

This section gives an overview of some of the approaches that have been used to design

scale invariant feature detectors.

Lindeberg[42, 1998] proposed a method for detecting blobs like features in a scale-

space representation. The representation is built by convolving the image with varying

sizes of Gaussian kernels. In order to detect points and compute their scale, a search

for 3D maxima of scale normalized Laplacian of Gaussian is performed. Figure 3.1

illustrates how this procedure is carried out. The response of a pixel P is compared to its

8 immediate neighbors and 9 neighbors on adjacent scales (both labelled as N) to check

for an extrema. If an extrema is found, a point is created with the current location and

scale.

Figure 3.1: Searching for 3D extrema in a scale-space representation. A point P is

selected if its response is greater than all the neighbors marked N.

A common problem with the Laplacian function is that it also detects a local ex-

trema in the neighborhood of points which belong to an edge or similar feature. Such

detections lead to points whose localization is sensitive to image noise, thus resulting in

poor repeatability for feature detectors. Methods have been proposed to overcome this

problem and we now discuss one such approach.

Lowe[47, 2004] proposed a scale invariant detector based on a multi-scale represen-

tation constructed using differences of Gaussian images. The original image is first

convolved with a series of Gaussian kernels to generate Gaussian blurred images in the
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first octave. The adjacent images are then subtracted to obtain the difference of Gaus-

sian images. In order to generate the next octave, the Gaussian image from the previous

octave which has twice the σ of the base image from the same octave is chosen. This

image is then sub-sampled by a factor of 2 and acts as a base image for the next octave.

The number of octaves generated this way is decided by the size of the image.

Interest points which correspond to blobs are detected by looking for 3D extrema of

the difference of Gaussian function. This extrema is calculated by comparing a sample

with its 8 neighbors on the same scale and 9 neighbors on adjacent scales (Figure 3.1).

The difference of Gaussian function used to detect points is a close approximation

to the scale normalized Laplacian of Gaussian function. Hence, just like the Laplacian

function the difference of Gaussian function also gives a strong response for points which

lie in the neighborhood of edges. Such points have a small value of principal curvature

along the edge and a large value in the normal direction. Thus, a ratio of principal

curvatures computed using a Hessian matrix is compared to a threshold and points

having a ratio value greater than this threshold are rejected. This procedure helps to

eliminate unstable keypoints, thus improving the performance of feature detector.

The Harris matrix has been frequently explored to detect points which are scale

invariant. Dufournaud et al.[19, 2000] introduced an approach to detect points by looking

for local maxima of the Harris response at each scale-space image. Since the Harris corner

detector is not invariant to scale changes, a method was introduced to adapt the Harris

matrix depending upon the scale image on which it was used to detect points. This scale

adapted Harris matrix can be defined as

C(x; σI , σD) = σ2
D g(σI)) ∗

[
L2

x(x; σD) LxLy(x; σD)

LyLx(x; σD) L2
y(x; σD)

]
(3.1)

where σI denotes the integration scale, σD refers to the derivative scale and Lx and

Ly indicate the first order derivatives computed in x and y directions respectively. The

derivative scale σD decides the size of gaussian kernels used to compute derivatives.

The integration scale σI is used to performed a weighted average of derivatives in a

neighborhood. The relation between these two scales can be expressed as

σD = factor σI (3.2)

where the factor is normally chosen to be around 0.5 to 0.7. A corner measure defined

as

R = Det(C)− 0.04Trace2(C) (3.3)



29

is used to detect points by looking for maxima of the measure R in a neighborhood.

This procedure was used to detect points for a predefined number of scales where points at

all scales were used to perform matching. Hence no criteria was used to select appropriate

scale(s) for a feature. Later, Mikolajczyk and Schmid[55, 2001] extended the detector by

combining it with the Laplacian function to form the Harris-Laplace detector. For Harris

points computed at different scales, a scale normalized Laplacian response is calculated

over all the scales. The local extrema of this response is then used to select the scale for

a feature.

Kadir and Brady[32, 2001] introduced the concept of Salient Regions which are de-

tected with a two stage approach using the measure of entropy. In the first stage, a

number of descriptors are computed for every pixel in the image for a range of scales.

These descriptors are vectors of gray scale values in a patch which is selected propor-

tional to the value of scale. A probability density function (PDF) estimated from the

descriptors is used to measure the entropy for different levels. The levels at which the

entropy measure attains a local maxima constitute the keypoint’s scales. A weighting

function computed using sum of absolute differences of PDF is also associated with each

maxima scale. These points with their scales form the candidate salient regions. In the

next stage, a saliency metric computed using the entropy and the weighting function is

used to rank the regions where the top few regions are retained.

The detectors that have been presented so far are invariant to scale changes and small

affine changes. A generalization of these detectors are the affine invariant detectors which

are robust to significant affine transformations. We now mention some of these affine

invariant approaches since affine detectors do incorporate scale invariance. However, it

should be noted that for images having large scale differences, scale invariant detectors

perform better than their affine counterparts.

Lindeberg and Garding[44, 1997] proposed a method to find affine features using the

second moment matrix. Given a point at a scale, an iterative method is used where

the second moment matrix using affine kernels adapts the scale and shape of the point’s

neighborhood. The method converges when the difference between second moment ma-

trices in successive iterations is within a threshold. The location of the points remains

unchanged in successive iterations.

An approach based on the same concept was proposed by Mikolajczyk and Schmid[56,

2004]. In the case of the Harris-Affine detector, an iterative method is used to estimate

the new location and scale of the point. The objective here is to use the second moment

matrix for two purposes; to look for local maxima to find the new scale and location and



30

to estimate the shape of the local patch. In order to do so, a shape adaptation matrix

is first computed from the second moment matrix from the previous iteration in order

to normalize the region around a point. The goal is to use a normalized image patch

so that uniform gaussian kernels can estimate the location and scale of a point, rather

than affine kernels. Once the eigenvalues for the second moment matrix computed at the

new location are sufficiently close, the scale is equal in both the directions indicating the

iterative process has converged. A similar approach was also adopted for the Hessian-

Affine detector where the Hessian matrix was used instead of the Harris matrix.

Tuytelaars and Van Gool[72, 1999] proposed a method to extract affine invariant

regions for corner points by using image edges. Two edges are considered for each corner

point where the edges pass through the point. For all the points along the two edges, a

search for an extremum of a function is performed. The distance between the extrema

points and the corner point is then used to describe an invariant parallelogram. In

another approach proposed by the same authors[73, 2000], image intensities are examined

to select points which correspond to extrema of intensity. Given such an extremum in

the image, the rays radiating outward from this point are analyzed by measuring the

response of a given function. The points along those rays where the function reaches an

extremum are then selected to make a closed bounded region. These points correspond

to positions where the change in intensity is significant. Finally, the closed bounded

region is approximated by an ellipse to obtain an invariant region.

Affine Salient Regions[33, 2004] are an extension of the salient regions mentioned

before where instead of using isotropic regions for constructing descriptors at various

scales, anisotropic regions are used. A more extensive review and analysis of various

affine approaches can be found in the article by Mikolajczyk et al.[58, 2005].

3.2 Scale Interpolated Hessian-Laplace Detector

The Hessian-Laplace detector proposed by Mikolajczyk and Schmid[56, 2004] is a scale

invariant detector which is used to detect points which correspond to blobs in an image.

The detector uses the Hessian matrix to locate points in space and the Laplacian function

to compute their scale. In this section we introduce the Scale Interpolated Hessian-

Laplace (SIHL) detector which is based on the Hessian-Laplace detector. We explain

in detail the procedure for detecting Hessian-Laplace points followed by the keypoint

localization step which is essential in order to obtain good keypoints. We also discuss a

method for assigning orientation to a feature point which is used to make the descriptor of



31

feature point invariant to image rotation (Chapter 4). Finally, we highlight the important

differences between the Scale Interpolated Hessian-Laplace approach and the standard

Hessian-Laplace approach.

3.2.1 Hessian Matrix

The Hessian matrix is composed of second order partial derivatives derived from Taylor

series expansion. This matrix has been frequently used to analyze local image structures.

The 2x2 Hessian matrix can be expressed as

H =

[
Ixx(x; σD) Ixy(x; σD)

Iyx(x; σD) Iyy(x; σD)

]
(3.4)

where Ixx, Iyy and Ixy are the second order derivatives computed using Gaussian

kernels of standard deviation σD.

The second order derivatives used in the Hessian matrix can be used to measure the

curvature at a point when the image is treated as an intensity surface. The eigenvectors of

the matrix give the directions for minimum and maximum curvature while the eigenvalues

correspond to the amount of curvature in those directions. Hence, using the Hessian

matrix it is possible to describe the local structure in a neighborhood around a point.

The determinant of the Hessian matrix can be used to detect image structures which

have strong signal variations in two directions. Here we make use of this property of

the Hessian matrix to detect interest points in an image. We first build a scale-space

representation by convolving the image with Gaussians of increasing size. The scale of a

scale-space image is equal to the standard deviation of Gaussian kernel used to generate

that image. The Gaussian kernels are chosen such that successive images differ by a scale

ratio of 1.3. Since we plan to detect points at different scale levels using the Hessian

matrix, the matrix has to be made invariant to scale. Hence a factor σ2
D is multiplied

with the Hessian matrix where σD represents the scale of the image. This means that the

determinant computed at each scale level is multiplied by a factor of σ4
D. For every image

in the representation, points are extracted by comparing the Hessian determinant value

of a pixel with its adjacent neighbors in a 3x3 neighborhood. If the value at the current

pixel is greater than its neighbors and also above a given threshold, then a feature point

is associated with the current location. Using a threshold helps to eliminate points which

have weak maxima.

Figure 3.2 shows the Hessian feature points detected at different levels of the scale-
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space representation. The circular regions around the points are drawn in proportion to

the scale at which points are detected. Here the radius of the circles is equal to 3 times

the scale of the points. An observation that can be made from the points detected at

different scales is that the location of these points changes depending upon the scale at

which they are detected. Figure 3.3 shows a part of an image where the points detected

at all scales have been superimposed on the original image. This drift in the location of

points is due to smoothing performed using rotationally symmetric gaussian kernels.

3.2.2 Scale Selection

Once we have the spatial location of points detected on different levels of the scale-space

representation, the next stage involves computing the proper scale for these points. The

scales where the description of the image points convey the maximum information are

termed as characteristic scales. A number of previous experiments have shown that the

Laplacian function is the most suitable function for detecting the characteristic scale for

an image structure. Hence, here we make use of the Laplacian to find the scale for a

point.

As discussed before in the previous chapter, in order to compare the response of a

function at different scales, normalization of the response with respect to a given scale

has to be performed (see section 2.5). The scale normalized Laplacian function that is

used to select the proper scale can be expressed as

Laplacian(x; σD) = σ2
D|Ixx(x; σD) + Iyy(x; σD)| (3.5)

where Ixx and Iyy are second order derivatives. One of the advantages of using the

Hessian matrix is evident here as the Laplacian function can be computed using the trace

of the Hessian matrix.

For a point detected in a scale-space image, its Laplacian is computed over all scales

and the scale for which the Laplacian attains a local maximum is assigned as the char-

acteristic scale. Local maximum here corresponds to response for a given scale being

greater than its adjacent scales and above a given threshold. In some cases the Lapla-

cian function will attain more than one local maximum, and in those cases the point is

assigned more than one characteristic scale. Figure 3.4 shows the same image structure

detected in two images along with the scale normalized trace response for the image

structure. As can be observed from the these images, the trace of the image structure

in the second image attains a local maximum at two scales so this point is assigned
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(a) σ=1 (b) σ=1.69

(c) σ=2.856 (d) σ=4.826

(e) σ=8.157 (f) σ=13.785

Figure 3.2: Points detected at different scale levels using the Hessian matrix. σ indicates

the scale level of the image.
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Figure 3.3: Illustration of shape distortion for Hessian points. The spatial location of

the points changes depending upon the scale of detection.

two characteristic scales. The ratio of the characteristic scale in the first image to the

first characteristic scale in the second image is approximately equal to the scale factor

between images.

3.2.3 Keypoint Localization

The keypoints detected using the previous approach will not be detected precisely at sig-

nal changes but in the neighborhood of those changes. Due to the scale-space smoothing

performed using gaussian kernels, the location of the points drifts with the smoothing.

This drift will cause the spatial location (2D location on an image plane) of a point to

move away from its true location. Also, scale is a continuous parameter and we have

represented scale by using a discrete set of images. This indicates that the scale image

where maximum of the Laplacian is obtained doesn’t correspond to the actual maximum

value of scale but a value which is in the vicinity of the maximum value. Hence, some

kind of localization is required to bring the points closer to their actual spatial location

and scale value.

Since here we would like to localize points both in scale and space, it is better if this

procedure is carried out simultaneously. Brown and Lowe[8, 2002] use a 3D quadratic

function to estimate the new location and scale of a point using an iterative procedure.

This procedure was used by Lowe[47, 2004] to localize points detected with difference

of Gaussian detector. In our case, it is not possible to fit a 3D quadratic function as
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Figure 3.4: (a) and (b) show two images with the same image structure detected. The

radius of the circle is 3 times the scale of the point. (c) and (d) show the response of

scale normalized Laplacian of Gaussian for the detected image structures. The structure

in (a) is detected at a scale of 3.713 while the structure in (b) is detected at 2.197 and

8.157
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two separate functions namely the determinant of Hessian matrix and scale normalized

Laplacian are used to detect points in space and scale respectively. Another possible

approach could be to obtain the new maximum scale for a point and to look for spatial

maxima on that new scale . However, this new maximum scale will lie between two scale

images and fitting a 2D quadratic to find the new location will require the intermediate

scale image which is time consuming. This indicates that performing localization in scale

and space at the same time is not an easy task.

An observation that can be made from a scale-space representation is that for large

scale values the scale difference between successive images is greater (here we are referring

to the scale difference and not the scale ratio which is constant). This causes the error

between the scale of the point and its localized scale to increase for larger scales. This

error in the scale value also affects the computation of orientation and image description

of a point as the these operations require the selection of an image patch around the

point which is proportional to its scale value. Hence, here we focus more on choosing

the correct scale for a point than localizing it in the spatial domain. Given a point at

a scale image s, we fit a parabola between the image s and its adjacent scale images.

The scale for which the parabola attains a maximum is selected as the new scale for the

point. We also compute the sub pixel location of the point using bilinear interpolation in

a 3x3 neighborhood. This interpolation is performed on the scale-space image where the

point was originally detected. Even though the points obtained using this method are

not perfectly localized in space (2D location in the image plane), these points are still

well localized in scale. We show the results for this localization step when we discuss the

repeatability criterion later in this chapter (see section 3.3.2).

3.2.4 Assigning Orientation to Points

Computing orientation for a keypoint is an important step in the invariant feature de-

tection process. This orientation is used to make the keypoint’s description invariant to

changes in image rotation. In the literature, one of the most efficient methods in this

context has been proposed by Lowe[47, 2004]. This approach is based on assigning orien-

tation to a keypoint depending upon the local gradient information in its neighborhood.

In this research, we make use of their method for estimating the dominant orientation.

We start by selecting a patch around the keypoint which is proportional to its scale

and selected from the appropriate scale-space image. The scale-space image is the one

that either corresponds to the scale of the point or is the closest to the scale. The
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information in the patch is used to compute gradient magnitude and angle at each pixel

location. Using this gradient information, an orientation histogram is generated where

each sample added to the histogram is weighed by a Gaussian function centered at the

keypoint. The histogram uses 72 bins for the 360◦ range (Lowe proposed to use a 36 bin

histogram).

The dominant orientation for a keypoint is obtained by selecting the bin with the

highest peak in the histogram. However, since the bins represent only a range of ori-

entations, a parabola is fit between the selected bin and the adjacent bins to get the

precise value of orientation. Unlike the method proposed by Lowe where some points

are assigned multiple orientations, here we use a single orientation per point. Figure 3.5

shows a patch with its orientation histogram.

3.2.5 Differences between Scale Interpolated Hessian-Laplace

and Hessian-Laplace

Although the Hessian-Laplace (HL) detector (introduced by Mikolajczyk and Schmid[56,

2004]) and the Scale Interpolated Hessian-Laplace (SIHL) detector are based on the same

principle, they differ in a number of aspects. The first important difference between the

two approaches originates from the methods used to localize the feature points. The

HL detector uses an iterative procedure to localize points. Given an initial location and

scale for a point, the maximum of Laplacian is computed again such that the maxima

lies between adjacent scale images. Thus the process requires additional scale images

which lie between scale images used to generate the scale-space representation. The new

scale image is used to find the 2D location (spatial location) of maximum of Hessian de-

terminant (this indicates the new 2D location of feature point). This process is repeated

till spatial maximum and scale maximum no longer change (lie within a tolerance level

for successive iterations). Since additional images have to be generated here to perform

localization, the process is time consuming.

The SIHL detector on the other hand lays more emphasis on localizing points in

scale than space (2D location in the image plane). Localization in space is performed by

performing bilinear interpolation in a 3x3 neighborhood around the point, which gives the

sub-pixel location of the point. Localization in scale is performed by fitting a parabola

between the scale image corresponding to the scale of the point and the adjacent scale

images. Since both these localization steps are carried out separately, the points obtained

are not perfectly localized in space but are well localized in scale.
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Figure 3.5: Example of a 72 bin orientation histogram for an image patch. The peak is

detected for bin 36. A parabola is fit between the bin corresponding to the peak value

and the adjacent bins so as to get the precise orientation estimate.
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The two approaches also differ in the way the scale-space representation is built to

detect the Hessian-Laplace points. This difference lies in the number of scales chosen

to built the scale-space representation and the scale factor between adjacent scale-space

images. For the SIHL detector, 11 images are used in the scale space representation (17

were used for the HL detector) and a factor of 1.3 was chosen between adjacent images

(1.2 was used for the HL detector).

Another difference between the two approaches arises due to different methods used

for estimating the orientation of feature points. The HL detector uses a method[54, 2002]

which is based on calculating the average of the Gaussian weighted gradient orientations

in a patch around the point. The approach used to assign orientation for points detected

with the SIHL detector is a modification of the approach proposed by Lowe[47, 2004].

Although these methods used to compute orientation do not influence the location and

scale of the points detected, they do however have an affect on the description of the

points (discussed in Chapter 4). This in turn affects the correspondences obtained using

those points.

3.3 Repeatability Criterion

Repeatability is one of the most important criteria used for evaluating the stability of

feature detectors. It measures the ability of a detector to extract the same feature points

across images irrespective of imaging conditions (this is the stability criterion as discussed

in section 2.1). Repeatability is measured by calculating the number of repeatable points

between images, according to the following definition. Given a point P in 3D space and

its projection p1 and p2 in two images, the points are termed repeatable if both p1 and

p2 are detected. The number of such repeatable feature points can be estimated between

two images if the mapping between the images is known. The repeatability of feature

points directly affects the number of correspondences that can be found between images.

Repeatability rate can be defined as the ratio of repeatable points between two images

to the total number of points detected. The total number of detected points corresponds

to the minimum number of points extracted from either image. Since the images used

for computing repeatability are taken under different imaging conditions, the part of the

3D scene represented by these images can be different. This implies that some points

detected in one image will have no corresponding points in the other image thus lead-

ing to an incorrect estimate of repeatability. Hence, while computing the repeatability

measure, only points that lie in the common region between two images are considered.
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This common region is computed by using a homography[27, 2004], which is a 2D trans-

formation that defines the relationship between two images. Since the image datasets

evaluated here (discussed later) have been taken either by rotating the camera about its

optical center or by varying camera parameters like focal length and aperture, the image

points from all the images will lie on a plane in 3D space. This indicates that mapping

between two images can be described by using a homography (refer to Appendix C for

more information on homography).

Since there are image distortions, the corresponding point in the second image will not

be exactly where the homography predicts, but will lie in a region close to this prediction.

Hence a tolerance value is introduced for measuring repeatability to compensate for

localization errors. For two images I1 and I2 having feature points n1 and n2 in the

common region, the repeatability rate is defined as

Repeatability rate =
n3

min(n1, n2)
(3.6)

where n3 is the number of repeatable feature points computed between the two images

using n1 and n2.

In the context of scale invariant detectors, the scale parameter also has to be incor-

porated into the computation of repeatability. The scale of a point is used to associate

a region with a point proportional to its scale value. The regions are selected such that

they are centered at the point and their size is proportional to the scale of the point.

Hence, for scale invariant points repeatability can be described as a two stage procedure.

In the first stage, the homography between images is used to check for relative location

of points in the second image which is similar to what has been described before. Points

which lie in a certain tolerance range of their true value (true value refers to the predicted

location calculated using the homography) qualify for the next stage. In the second stage,

a score is computed which corresponds to the overlap between regions associated with

points that were previously selected. The overlap error for two points can be expressed

as

Overlap Error = |1− s2 min(σ2
1, σ

2
2)

max(σ2
1, σ

2
2)
| (3.7)

where s is the actual scale factor between images retrieved from homography and σ1

and σ2 are the scale values of the points in the first and second image. Hence, in an ideal

condition where σ2=sσ1 we end up with an overlap error of zero, which indicates that

the two regions completely overlap. As the overlap error increases, the overlap between
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the two regions decreases. A threshold on the overlap error is used to select the number

of repeatable points. Hence, repeatability is calculated by using the repeatability rate

for only those points which fit these two criteria.

3.3.1 Repeatability Tests

In this section we analyze the performance of different detectors using this repeatabil-

ity measure. Here we compare the performance of three detectors; the Difference of

Gaussian detector1 proposed by Lowe[47, 2004] and referred to as DOG, Hessian-Laplace

detector2 proposed by Mikolajczyk and Schmid[56, 2004]) and referred to as HL and the

Scale Interpolated Hessian-Laplace proposed in this research, referred to as SIHL. The

performance of the detectors is compared for two sequences3; for the first sequence the

images have undergone different amounts of scaling and rotation while for second data

set the illumination across the images is varied. For comparing these different detectors

we use the repeatability code provided by Mikolajczyk and Schmid on their webpage4.

The same code was also used by these authors for comparing the performance of various

affine region detectors[58, 2005].

A few notes on how the repeatability is computed and the parameters that can effect

repeatability. Every feature point in an image is associated with a circular region. The

region is selected such that it is centered on the point and its radius is proportional

to the scale of the point (Figure 3.2 shows the regions associated with feature points

detected at different scales). A pair of points is considered for computing repeatability

if the point in the second image lies within a tolerance range of its predicted value (the

value is predicted using homography as mentioned before). Here a tolerance level of

4σ is used where σ corresponds to the scale of the point in the first (reference) image.

Once the points have been selected, the overlap between different regions is used to

measure repeatability. Two points are deemed repeatable if the overlap error between

their respective regions is less than or equal to 40%.

There are two parameters that can affect the repeatability score between images; first

is the number of regions detected in both images and second is the size of those regions.

1DOG points are computed using the publicly available SIFT executable from David Lowe’s webpage
http://www.cs.ubc.ca/ lowe/keypoints/

2The executable binaries have been taken from http://www.robots.ox.ac.uk/ vgg/research/affine/detectors.html
3The image data sets were taken from http://www.robots.ox.ac.uk/ vgg/research/affine/. The

ground truth for all images with respect to the reference image is known.
4http://www.robots.ox.ac.uk/ vgg/research/affine/evaluation.html
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Detecting a smaller number of points leads to regions which are distinctive and stable.

A large number of regions on the other hand can at times clutter the scene and lead to

ambiguous matches where a single point in an image is matched to multiple points in

the other image. While evaluating the performance of affine detectors Mikolajczyk and

Schmid[58, 2005] observed that for some detectors the repeatability increased with an

increase in number of regions while for others it decreased. Since all the three detectors

that are being compared here detect the same type of points, increasing or decreasing the

number of points will change the repeatability for all detectors in the same fashion. This

indicates that ordering of the detectors based on repeatability results will stay the same

even if the number of points detected is changed. Here in order to improve the accuracy

of the results, we detect the same number of regions for all detectors in each image. This

facilitates the process of comparing matches obtained using different detectors.

The region size of the detected points can also have a significant impact on repeata-

bility as increasing the size of regions increases the repeatability. In order to overcome

this, for every region in the reference image, a scale factor is determined which maps the

region to a fixed region of radius 30 pixels. This scale factor is then multiplied to the

corresponding region in the other image before computing overlap score.

3.3.2 Scaling and Rotation Dataset

The scaling and rotation image set5 consists of 10 images (see Figure 3.6) where different

amounts of scaling (up to a scale factor of 4.4) and rotations are applied to the reference

image. This is a standard dataset that has been used by other authors to compare

scale and affine invariant feature detectors and descriptors[58, 2005][57, 2005]. Before

comparing repeatability results for different detectors for this dataset, we see the how

the localization performed for the SIHL detector affects the repeatability of points. We

compute repeatability for two images in this dataset (see Figure 3.6(a) and 3.6(e)) for

different overlap errors. Only points which have an overlap error value less than the

overlap error are deemed repeatable for that overlap error. Figure 3.7 shows the results

both in percentage terms and actual number of correspondences for SIHL detector with

and without localization. In general as the overlap error increases (the overlap criteria

is relaxed) more corresponding regions are found between images, thus giving higher

repeatability. The advantage of performing localization is evident from the graphs as

there is a significant difference between the two methods for an overlap error of 10%.

5The image dataset is available at http://lear.inrialpes.fr/people/mikolajczyk/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 3.6: Scaling and Rotation Image Dataset
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This indicates that performing scale localization does result in a more accurate scale

value for a keypoint which in turn leads to more accurate regions for points. For large

overlap errors, the change in size of an image region due to scale localization is less

noticeable due to relaxed overlap criteria thus resulting in equivalent repeatability scores

for both methods. Hence, this result indicates that localization is a crucial step in the

detection process of scale invariant features.
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Figure 3.7: Repeatability results with and without localization for an image pair from

scaling and rotation image dataset (see Figure 3.6(a) and 3.6(e)) (a) Repeatability score

for different overlap errors (b) Number of correspondences using repeatability

We now give comparative results for the three detectors that have been mentioned

before. The repeatability is computed between the reference image and all the trans-

formed images for all the detectors. Figure 3.8 shows the repeatability in percentage and

the number of correspondences obtained for the different approaches. The results have

been shown for the scale factor parameter which corresponds to the scale ratio between

an image from the dataset and the reference image. The graphs shown here have been

obtained for an overlap error of 40%. In general, as the scale factor between the images

increases, fewer points are detected in the common region of the two images. Due to

this, the number of correspondences obtained steadily decreases. Also with increasing

scale factor, it is harder to detect points which correspond to the same image structure,

as at large scales some of the image structures become too small to be detected. Hence,

repeatability generally decreases with increasing scale.

Looking at the repeatability graph we observe that a better repeatability is obtained
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Figure 3.8: Comparison of different feature detectors for scaling and rotation image

dataset (see Figure 3.6) (a) Repeatability score for 40% overlap error (b) Number of

correspondences using repeatability
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Figure 3.9: Comparison of different feature detectors for an image pair from scaling and

rotation image dataset (see Figure 3.6(a) and 3.6(e)) (a) Repeatability score for different

overlap errors (b) Number of correspondences using repeatability
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for SIHL detector as compared to the other detectors. The SIHL detector also gives

more number of correspondences than the other detectors. The points detected using

the SIHL approach are detected in close proximity which basically leads to a large number

of points detected in the common region of two images which eventually results in high

repeatability. It should be noted that although the DOG detector shows less repeatability

than the SIHL approach, the points detected by the DOG detector are more distinct due

to very accurate keypoint localization. We will talk about distinctiveness of points in

Chapter 5 when we analyze the matching results.

In order to obtain a better understanding of the repeatability measure, we now observe

the effect of the changing overlap error on the repeatability of these detectors. Overlap

error as mentioned, corresponds to a threshold on the overlap error value between image

regions. For a given value of overlap error, only points that have an overlap error value less

than the overlap error are deemed repeatable. Figure 3.9 shows the repeatability score

and the number of correspondences obtained for different overlap errors for two images

(see Figure 3.6(a) and 3.6(e)). For all detectors, repeatability increases with increasing

overlap error due to more corresponding regions detected between images. As it is visible

from the graphs, the SIHL detector attains a higher repeatability for all overlap errors.

Keypoint localization performed in our approach ensures high repeatability scores are

obtained for low overlap errors. The performance of the HL detector improves for larger

overlap errors as compared to the DOG detector. This indicates that the points detected

using the HL detector are detected in close proximity where relaxing the overlap criteria

(increasing the overlap error) results in a large increase in the number of correspondences.

Hence, the points detected using this approach are less distinctive.

3.3.3 Illumination Change Dataset

The illumination change dataset6 consists of images where the lighting in the images

decreases as one moves farther away from the reference image (see Figure 3.10). Figure

3.11 shows the repeatability and the number of correspondences obtained for the three

detectors. Again, the repeatability has been computed between the reference image (first

image in this dataset has been chosen as the reference image) and all the transformed

images for all the detectors. The results have been shown using the decreasing illumina-

tion parameter which corresponds to the image number of the image that is paired with

the reference image.

6The image dataset is available at http://www.robots.ox.ac.uk/ vgg/research/affine/
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Illumination Change Image Dataset
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The repeatability curves for all detectors show less variation which indicates that

its easier to find high percentage of corresponding regions for images with illumination

change than for images with scale and rotation changes. However, the absolute number

of correspondences steadily decreases for all detectors as illumination decreases. The HL

detector obtains the best repeatability score and the highest number of correspondences

throughout. The repeatability score for the SIHL detector is slightly better than the

DOG detector. The SIHL detector gives less repeatability than HL detector due to

the spatial localization performed in the SIHL method. When images which have only

an illumination difference are matched, localization in space is more important than

localization in scale. Since, the SIHL approach focuses on localizing points in scale; the

points are not well localized in space. This results in lower repeatability values for the

SIHL detector for this dataset.

Figure 3.12 shows the repeatability and correspondences curve plotted for different

overlap errors for the first two images in this sequence. The HL detector gives high

repeatability and correspondences for all overlap errors. Scores obtained using the SIHL

approach are slightly better than the DOG detector.
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Figure 3.11: Comparison of different feature detectors for illumination change image

dataset (see Figure 3.10) (a) Repeatability score for 40% overlap error (b) Number of

correspondences using repeatability
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Figure 3.12: Comparison of different feature detectors for an image pair from illumination

change image dataset (see Figure 3.10(a) and 3.10(b)) (a) Repeatability score for different

overlap errors (b) Number of correspondences using repeatability



Chapter 4

Feature Descriptors for Matching

Having extracted features from an image, the next step in any matching or recognition

application requires associating every feature with a unique identifier or a signature

which can be used to identify the feature from a database. These identifiers or signatures

used to describe features are termed as feature descriptors. Such descriptors have been

widely used in a large number of applications like object recognition[47, 2004], texture

classification[2003][39], image indexing[65, 1997], generation of panoramas[9, 2003], wide

baseline matching[4, 2000] and many more.

Creating a descriptor requires capturing the characteristics of the local region of pixels

around a point. Depending upon the application these characteristics could be grayscale

or color values of the region, texture or shape of the local region. The task of a descriptor

is to represent these characteristics as compactly as possible, yet at the same time be

distinctive enough to associate a feature with its correct match.

A key attribute of descriptors that is vital in determining their robustness, relates

to their ability to handle different geometric and photometric transformations. Ideally,

descriptors are designed such that they are invariant to changes in image scale and image

rotation. Invariance to changes in image viewpoint is also incorporated where affine

invariance is desired. On the photometric side the descriptors should be insensitive to

changes in illumination including non-linear illumination. In addition to these properties,

the descriptor should also be robust to errors in localization of features and should not

be affected by partial occlusions. Thus, invariance to all these classes of transformations

ensures that changes in lighting conditions and camera parameters will not produce a

large change in feature descriptor.

In the literature, numerous descriptors have been proposed to describe the local image
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pattern around a point. In this chapter, we will primarily focus on descriptors that have

been introduced to characterize scale and affine invariant features. The next section

gives a brief overview of some of the techniques that have been developed for computing

descriptors followed by a detailed description of descriptors that are most relevant in

the context of this research, namely SIFT[47, 2004] and PCA-SIFT[34, 2004]. In this

chapter we also introduce a novel method to apply Haar descriptors which are computed

using the Haar wavelet transform. These descriptors offer the advantage that they are

computationally less expensive to compute and smaller in size when compared to other

descriptors. This in turn makes them an interesting choice for image matching and image

retrieval applications. In the next chapter, we propose different configurations of Haar

descriptors and evaluate them along with other descriptors.

4.1 Related Work

This section introduces some of the algorithms that have been proposed to compute de-

scriptors for scale and affine invariant features. Of all the methods proposed in literature,

one of the simplest ways to compute a descriptor is by representing the local gray scale

pattern around a point in the form of a feature vector. This feature vector can then be

matched to another feature vector by using the cross correlation measure[28, 1996]. Al-

though such descriptors can be used to generate reasonably good representations of the

local neighborhood around points, the large size of the descriptors makes it impractical

to be used for recognition applications, especially retrieval applications where smaller

descriptors are necessary.

A method frequently used for generating descriptors involves representing the char-

acteristics of the local patch as a histogram. We discuss some of these methods that have

used different histograms to compute descriptors.

Belongie et al.[6, 2002] proposed a descriptor known as shape context to find corre-

sponding regions using shape information. Their method is based on extracting edges

and constructing shape contexts for a chosen set of reference points along those edges.

In order to compute the feature descriptor, a log polar histogram of edge point locations

and orientations is generated where the locations are described relative to the reference

point. The bins for the histogram are spaced in such a way so that the histogram is more

sensitive to samples closer to the reference point than those that are far away. A similar

descriptor based on log polar histogram was also used by Qin and Gao[63, 2005] to find

correspondences between images.
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Spin Images were introduced by Johnson and Herbet[30, 1999] to perform object

recognition for cluttered 3D scenes. Their objective was to match surfaces by matching

individual surface points where each surface point was represented by a spin image.

In order to generate spin images, the local neighborhood around each surface point

was represented as a 2D histogram. The histogram was computed using two distance

parameters which were measured from other surface points. The spin images were thus

a mapping of relative positions of 3D surface points on to a 2D plane and represent

the shape of the object. This concept was further extended for texture classification by

Lazebnik et al.[39, 2003] where a novel descriptor called an intensity domain spin image

was introduced. The idea there was to encode a normalized image patch as a histogram

of pixel distances and intensity values where the pixel distances were measured from the

center of the patch. The descriptor was shown to perform texture recognition for a wide

range of geometric transformations including viewpoint changes.

Ling and Jacobs[45, 2005] introduced a novel descriptor which was invariant to general

deformations in images. The problem of deformation was addressed using Geodesic

Intensity Histogram where the basic idea was to have both the histogram parameters,

namely geodesic distance1 and intensity, invariant to image deformation. In order to

compute the geodesic distances between points in an image, the image was represented

as a surface where the third dimension referred to the intensity value of the image. Then

for each keypoint in the image, a histogram was computed using a set of points in its

vicinity where the points had been selected by a sampling method. The method was

shown to perform better than all other methods for finding correspondences in deformed

images.

Some other descriptors that have been based on histograms include the SIFT descriptor[47,

2004]. This uses the gradient information around a point to generate orientation his-

tograms which are in turn used to create the descriptor. Pairwise Geometric Histograms[3,

1995] are created for line segments by measuring the perpendicular distances and relative

angles from other line segments in the image.

Another class of algorithms that have been used to compute descriptors use im-

age derivatives of certain orders to represent a point’s neighborhood. Freedman and

Adelson[25, 1991] proposed the concept of Steerable Filters which can be used to steer

the response of a filter in any orientation. This was used to compute the local image

derivatives for a point for various orientations, thus resulting in a descriptor which was

invariant to image rotation. The derivatives were computed by performing convolution

1Geodesic distance is the distance of the shortest path between two points on a surface
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with Gaussian derivatives. Some other prominent descriptors proposed along similar

lines include differential invariants[37, 1987] where the descriptor is computed by con-

volving the image with set of Gaussian derivatives. Similarly, complex filters[64, 2002]

use a set of filters similar to derivatives of Gaussian to obtain a descriptor invariant to

geometrical transformations and affine intensity variations.

Apart from these descriptors other approaches based on Gabor filters and wavelets

have also been explored in the literature. Some of the wavelet based descriptors will be

discussed later in this chapter.

All the three descriptors analyzed in this research have been designed for scale in-

variant points. Each scale invariant feature point is associated with four parameters

namely x,y location of the point, a scale value and an orientation value. The scale and

orientation of the point are used to make the descriptor invariant to image scaling and

rotation. This is done by selecting a square image patch around a point whose size is

proportional to the scale of the point, and which has been rotated depending upon the

point’s orientation. Once the effect of scaling and rotation has been negated, the values

inside the patch are used to make the descriptor. We now discuss in detail the three

descriptors analyzed here.

4.2 SIFT Descriptor

The SIFT (Scale Invariant Feature Transform) descriptor proposed by Lowe[47, 2004][46,

1999] has been one of the most widely used descriptors. In a survey done to compare

the performance of different descriptors by Mikolajczyk and Schmid[57, 2005], SIFT was

shown to perform better than all other local descriptors.

The SIFT descriptor is based on the idea of using the local gradient patch around a

point to build a representation for the point. This representation is built by generating

multiple orientation histograms for the patch. Given a feature point in the image and

a square patch around it which has been appropriately scaled and rotated, the gradient

magnitudes and orientations in the patch are used to generate orientation histograms

over a 4x4 region. For each orientation histogram 8 bins are used. The final descriptor

is computed by concatenating the outputs of 16 orientation histograms which results

in a 128 element feature descriptor. Figure 4.1 shows a set of orientation histograms

generated for one such gradient patch.

In order to improve the robustness of the SIFT descriptor, a number of measures

are incorporated into the construction of the orientation histograms. One such measure
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Figure 4.1: Orientation Histograms for a gradient patch over a 4x4 region

involves weighting the magnitude of gradient samples by a Gaussian function centered

around the keypoint before the samples are added to the orientation histograms. This

ensures that samples which are closer to the center and are more important are assigned

more weight. It also makes the descriptor less sensitive to small positional shifts in the

local patch. Another measure which also helps to make the descriptor more resilient to

localization errors is to distribute the gradient samples to adjacent histogram bins using

trilinear interpolation. This helps to overcome the boundary effect problem where a shift

in gradient sample from one histogram to another or from one orientation to another in

the same histogram produces a sudden change in a descriptor.

Figure 4.2 shows how a gradient sample is distributed between adjacent histograms

and orientations. The red arrow in the left image indicates the gradient sample where

its direction corresponds to the sample’s orientation. The bins to which this sample

contributes are marked as red in the right image.

The last stage of SIFT requires making the descriptor invariant to changes in image

illumination. Normalizing the descriptor to unit length helps in overcoming any bright-

ness or contrast changes that may have occurred in the image. However, this doesn’t

get rid of the non-linear illumination changes that may have taken place. To overcome

such changes, a thresholding operation is performed to restrict the maximum gradient

magnitude of the descriptor followed by a normalization operation. A value of 0.2 was

proposed by the author as the most optimum threshold.
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Figure 4.2: Illustration of trilinear interpolation for a gradient sample shown on the left

4.3 PCA-SIFT Descriptor

Principal Component Analysis-SIFT (PCA-SIFT) was proposed by Ke and Sukthankar[34,

2004] to overcome the problem of the high dimensionality of the SIFT descriptor. It is

based on a concept similar to SIFT where the gradient patch around a point is used

to build the feature descriptor. However, rather than generating orientation histograms

like SIFT, the descriptor is computed by extracting horizontal and vertical gradients

from the patch. This is followed by a PCA operation which leads to the reduction in

dimensionality of the descriptor.

A square patch is selected around a keypoint with size proportional to its scale value

and the patch is then rotated relative to its orientation. The gradient values in the patch

are sampled such that for every keypoint the final patch is of size 41x41. This is the size

of patch used for computing the initial descriptor. The horizontal and vertical gradients

from this patch are concatenated to give a 2x39x39=3042 elements feature descriptor.

This descriptor then acts as the input vector to the next stage of PCA analysis. A

normalization operation is performed to ensure that the descriptor is not affected by

changes in image illumination.

The technique of PCA is a standard method used in numerous applications for dimen-

sionality reduction[31, 2002]. Here in the context of PCA-SIFT the large dimensional

feature descriptor is converted to a low dimensional vector by using a projection matrix

computed from a patch eigenspace. The patch eigenspace is created by extracting a large

number of gradient patches from a diverse set of images, where each patch yields a vector

of size 3042 elements. This patch eigenspace can be expressed in a matrix form as
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PE =




P 1
1 P 2

1 . . . P 3042
1

P 1
2 P 2

2 . . . P 3042
2

. . . . . . . . . . . . . . . . . .

P 1
N P 2

N . . . P 3042
N




(4.1)

where PE is the patch eigenspace and N is the total number of patches extracted.

The first row represents the 3042 elements of the first patch, the second row of the second

patch and so on. Once the patch eigenspace has been formed, a covariance matrix C is

computed as

C = PEA ∗ P T
EA (4.2)

PEA =




P 1
1 − Avg1 P 2

1 − Avg2 . . . P 3042
1 − Avg3042

P 1
2 − Avg1 P 2

2 − Avg2 . . . P 3042
2 − Avg3042

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P 1
N − Avg1 P 2

N − Avg2 . . . P 3042
N − Avg3042




(4.3)

Here Avg1 represents the average value of all the elements in the first column. This

covariance matrix is made to undergo an SVD decomposition where the eigenvectors

(EV ) corresponding to n largest eigenvalues are used to create a projection matrix PM

of size 3042 by n.

PM =




EV 1
1 EV 2

1 . . . EV n
1

EV 1
2 EV 2

2 . . . EV n
2

. . . . . . . . . . . . . . . . . . . . . . . . . .

EV 1
3042 EV 2

3042 . . . EV n
3042




(4.4)
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This projection matrix along with the average values computed previously are used

to perform the PCA operation. In this research, the projection matrix is similar to the

one used by the original authors where the value of n is 36. Hence, the final descriptors

generated by PCA-SIFT are of length 36.

4.4 Wavelet Descriptors

Wavelet transform has been frequently used for multi-resolution analysis of images in

order to perform compression, feature extraction and texture analysis. One of the fac-

tors that has contributed to the widespread use of wavelets is its good time(space)-

frequency(scale) localization. While reduction in bandwidth of the image requires good

localization in scale so as to maintain the fidelity of data, preserving patterns present in

the image requires good localization in space. It is the ability of wavelets to generate a

compact representation of an image, that is of particular interest when they are used to

represent local image structures.

Amongst all the different wavelet basis, Haar wavelets2 are the ones that are most

commonly used for computing descriptors. This frequent use of Haar wavelets arises

from that fact that Haar basis functions are computationally very easy to implement.

The basis functions for Haar can be numerically expressed as

ψj
i (x) = ψ(2jx− i) i = 0, ...., 2j − 1 (4.5)

or in the normalized form as

ψj
i (x) = 2j/2ψ(2jx− i) i = 0, ...., 2j − 1 (4.6)

where

ψ(x) =





1 for 0 ≤ x < 1/2

−1 for 1/2 ≤ x < 1

0 otherwise

(4.7)

Figure 4.3 shows the Haar basis ψ1
0 and ψ1

1. The above notation represents the Haar

basis functions in one dimension. Then given a one dimensional signal, its representation

in terms of Haar basis can be written as

2It should be noted that Haar wavelets do not have good time-frequency localization due to their
discontinuous nature.
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f(x) =
∞∑

i=−∞
cj′
i φj′

i (x) +
∞∑

i=−∞

∞∑
j=j′

dj
iψ

j
i (x) (4.8)

where

φj
i (x) = φ(2jx− i) i = 0, ...., 2j − 1 (4.9)

φ(x) =

{
1 for 0 ≤ x < 1

0 otherwise
(4.10)
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Figure 4.3: Haar basis functions (a) ψ1
0 (b) ψ1

1

Here j′ is the starting scale. The functions φj
i (x) are known as the scaling functions.

The coefficients cj
i associated with the scaling functions are used to represent the average

values. The coefficients dj
i of the wavelet functions represent the detail coefficients which

can be used along with the average values to reconstruct the original signal. Thus by

using Haar wavelets, we are trying to represent a signal at set of coarser resolutions

where every coarse scale representation is associated with a set of coefficients which can

be used to obtain the previous finer scale version of the signal. The decomposition of the

signal to coarser resolutions is obtained by taking an average between successive samples

of the signal. The detail coefficients, on the other hand, are obtained by computing the

difference between successive signal samples. Both these operations constitute the Haar

wavelet transform.
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A similar decomposition can also be applied to two dimensional signals. Given an

image patch of some size along with the Haar basis functions, the computation of Haar

coefficients can be performed in two ways. For the standard decomposition method, the

one dimensional wavelet transform is applied to each row in the image till we are left with

just one average coefficient. Then, in the next step, the wavelet transform operation is

performed along every column in the image. This leaves us with one average coefficient for

the whole image along with detail coefficients for every resolution. In the non-standard

method of decomposition, the transform on rows and columns is performed alternately.

First a single step of averaging and difference is performed for successive pixels for each

row in the image. Then, the same type of decomposition is carried for each column in

the image. This process is performed iteratively, till we are left with a single average

coefficient. Although the standard decomposition method is easier to implement, in

practice the non-standard method is faster and more efficient. Figure 4.4 shows the non-

standard decomposition applied on an image patch. A more detailed discussion of Haar

wavelet basis can be found in the work by Stollinitz et al.[67, 1995]

In the context of image features, the objective of using Haar basis is to represent the

image patch around a feature in terms of Haar coefficients. The idea is that some of

the detail coefficients can be neglected without losing too much information about the

patch. An important feature of the Haar basis functions in the same context is their

orthogonality property. This property helps to preserve Euclidean distances between

feature descriptors when a feature descriptor is transformed using Haar basis functions.

Thus, the Euclidean distance measure can be applied directly on Haar descriptors to find

the nearest neighbor.

We now mention some of the methods that have used Haar wavelets to compute

descriptors. Krishnamachari and Mottaleb[38, 2000] proposed a method to perform im-

age retrieval and match video segments using a descriptor computed from Haar basis

functions. Their method is based on extracting color histogram of an image and convert-

ing it into a 63 bit descriptor of Haar transform coefficients. A quantization operation

is performed so as to convert the descriptor coefficients into binary form. This binary

descriptor is then used as an index to perform image retrieval from a database. Utenpat-

tanant et al.[74, 2006] proposed a method using the same descriptor along with a pruning

technique for their retrieval application. The addition of pruning method showed faster

retrieval than the previous method.

Brown et al.[10, 2005] developed a method for matching images where a 8x8 patch

of sampled intensity values extracted for a point, was converted to a 64 bit descriptor of
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Figure 4.4: Non-standard decomposition method of wavelet transform. All the sub

images inside an image (except the average image) have been amplified by a factor of 2

for display purposes.



61

Haar transform coefficients. The first three non zero Haar coefficients were then used to

represent a feature and used as an index to find nearest neighbors using a lookup table

method. Our method of computing Haar descriptors is closely related to their method.

In the next section we discuss our approach.

4.4.1 Haar Descriptor Computation

The computation of Haar descriptors is a two stage process. In the first stage we select

a square patch around a point whose size is proportional to its scale value and rotated

depending upon its orientation. This helps to make the descriptor invariant to image

scaling and rotation. The patch which is selected at the keypoint’s scale image is then

scaled to a patch of size patchsize (this scaling has been performed by using bi-cubic

interpolation). The parameter patchsize refers to the size of the patch which is used

to compute the descriptor. We have used patches of patchsize 8, 16 in this research

(different patchsize lead to different Haar descriptor configurations). Normalization is

performed to ensure the patch has zero mean and unit standard deviation. This ensures

that the descriptor is unaffected by changes in image illumination.

In the second stage, the patch is converted to a descriptor of Haar coefficients using the

Haar wavelet transform. We have used the non-standard decomposition method which

is more efficient than the standard decomposition method. Once the Haar coefficients

have been obtained, we generate the final descriptor by selecting a few or all of the

Haar coefficients. The number of coefficients to be selected is decided by the parameter

vectorsize where the coefficients corresponding to coarsest resolution image are selected

first followed by the successive finer scale versions.

Using different patchsize and vectorsize results in different configurations of Haar

descriptors. The different configuration that have been evaluated here are

• patchsize= 16 vectorsize= 64

• patchsize= 16 vectorsize= 16

• patchsize= 8 vectorsize= 64

• patchsize= 8 vectorsize= 16

• patchsize= 8 vectorsize= 8
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For the first configuration, a patchsize of 16 results in a descriptor of 256 Haar coef-

ficients where only the first 64 coefficients have been used to create the final descriptor.

The purpose of using Haar descriptors is to investigate the possibility of using small size

descriptors for representing image features. Although these descriptors are less robust to

errors in localization of points when compared with the SIFT descriptor, the goal here

is to see if these descriptors are still robust enough to give good matches. In the next

chapter, we will give the results for the different configurations of Haar descriptors that

we have analyzed in this research.

4.5 Similarity Measures

A similarity measure is a measure of distance which is used to compute the proximity

of descriptors in a high dimensional feature space. This proximity measure can be used

to recognize descriptors which are similar and therefore correspond to the same image

structure.

Amongst the numerous similarity measures proposed in the literature, one of the most

widely used measures is the Mahalanobis distance. The Mahalanobis distance is used to

compute distance between descriptors when the descriptor elements have different ranges

and different amounts of variation. It is commonly used when the correlation between

different descriptor elements has to be taken into account. Given two descriptors d1 and

d2, the Mahalanobis distance between them is

DM =
√

(d1 − d2)T Σ−1(d1 − d2) (4.11)

where Σ is the covariance matrix

The Euclidean distance is one of the simplest similarity measures used to find prox-

imity in a high dimensional feature space. It can be defined as the square root of the

sum of squared differences between the corresponding components of two descriptors.

DE =
√

(d1 − d2)T (d1 − d2) (4.12)

The Euclidean distance can be expressed in vector form as

DE =
√∑

(d1[i]− d2[i])2 (4.13)
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As it can be seen from the first two equations, the Mahalanobis distance is equivalent

to the Euclidean distance if the covariance matrix is an identity matrix.

The similarity measures discussed previously find the best match for a descriptor

by locating its nearest neighbor in a database. However, this can at times result in

erroneous correspondences for descriptors which are associated with features arising from

background clutter. A similarity measure used in SIFT based on ratio of Euclidean

distances, has been shown to overcome this problem. The measure is calculated by

computing the ratio of distance to the closest and the second closest neighbor for a given

descriptor. It is assumed that the nearest neighbor is a correct match while the second

nearest is an incorrect match. It has been shown that it is easier to differentiate between

correct and incorrect matches using this measure based on ratio of distances rather than

using the distance of nearest neighbor alone.

The SIFT descriptor has shown to perform better when the similarity measure used is

distance ratio matching, while the PCA-SIFT descriptor gives better results for nearest

neighbor matching[57, 2005]. We will confirm these results experimentally in the next

chapter, when we compare the performance of different descriptors for both nearest

neighbor similarity measure and distance ratio measure.



Chapter 5

Image Matching and Retrieval

Image matching is one of the fundamental tasks in computer vision. A good set of

correspondences between images is essential in order to carry out certain tasks. Matching

also constitutes an important step in content based image retrieval applications where

we are interested in retrieving images similar to a query image.

In this chapter, we give experimental results for two sets of experiments; image match-

ing and image retrieval. For image matching experiments, we compare the performance

of different matching algorithms on two image datasets (the ground truth for the datasets

is known). These algorithms have been constructed using a combination of different de-

tectors and descriptors that have been described in previous chapters. We analyze the

matches obtained for different techniques and evaluate their performance for different

evaluation metrics. The objective here is to identify the best matching strategy amongst

all the different configurations.

The latter part of this chapter discusses the problem of image retrieval, which is an

application of image matching to the field of content based image retrieval. Unlike the

image matching experiments, the images used to perform image retrieval are panoramic

images. The panoramic images used have been captured at different spatial locations

and along different paths. Given a query image, we use the matching strategy developed

in this research to retrieve an image from the database which is most similar to the

query. This is done by selecting the image which gives the maximum number of matches

with the query image. The objective of performing such a retrieval application is to

find images which correspond to the intersection points or are closest to the intersection

points between different panoramic sequences (explained in detail later in this chapter).

In contrast with the image matching experiments, since the transformations between

64
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different panoramic images are not known, the matches obtained are refined using the

Random Sample Consensus (RANSAC) method before deciding on the closest image.

5.1 Evaluation Metrics

Various evaluation metrics have been proposed in the literature for analyzing matches.

The type of matches obtained can be used to assess the performance of a feature matching

strategy. Most of these metrics compute a score based on the percentage of correct and

false matches obtained. Here, we evaluate our results using two evaluation metrics.

For the first metric, we compute the number of correct matches obtained for various

matching algorithms in both absolute and relative terms. This metric for evaluation was

proposed by Mikolajczyk and Schmid1[58, 2005] to compare the performance of various

affine region detectors when combined with the SIFT descriptor.

Every point in an image is associated with a circular region and a descriptor (the

descriptor has been computed using the circular region). The region is selected such

that it is centered on the point and its radius is proportional to the scale of the point.

Two points are said to be matched if the overlap error between their respective regions

is below 50% and the Euclidean distance between their descriptors is below a threshold.

Overlap error corresponds to a threshold set on the value of overlap score computed

between two regions (mentioned in Section 3.5). The ground truth for a pair of images

is used to compute the overlap error. The matching here is based on finding the nearest

neighbor in descriptor space.

Since we are directly using the ground truth to decide a match, the matches obtained

are all correct matches. Once we have the number of correct matches, we compute the

matching score, which is defined as the ratio of correct matches to the number of detected

regions.

matching score =
number of correct matches

number of detected regions
(5.1)

Here the number of regions detected is the smallest number of regions for a pair of

images. Since, the number of points detected using all detectors is the same for an image,

the denominator of the above expression stays the same for an image pair being evaluated

using different matching configurations (see next section for matching configurations).

1We use the original source code from the author’s website
http://www.robots.ox.ac.uk/ vgg/research/affine/evaluation.html
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In any matching application, not only are we interested in knowing the number of

correct matches but also the number of false matches obtained. The simultaneous anal-

ysis of correct and false matches can be used to evaluate the accuracy of a matching

algorithm. The metric which is widely used for performing such analysis is based on

measuring recall and 1-precision[11, 1994][2, 2002]. The correct and false matches are

analyzed by this metric for different values of the matching threshold. For any given

dataset, recall can be defined as the number of correct positives detected relative to the

total number of positives present in the dataset.

recall =
number of correct positives

total number of positives in the data set
(5.2)

The recall parameter gives the positive detection rate for the dataset. The precision

on the other hand is defined as the number of correct positives detected to the total

number of positives detected (total number of positives will include both correct and

false positives)

precison =
number of correct positives

number of correct positives + number of false positives
(5.3)

The precision parameter describes the number of correct detections relative to the

total number of detections. Since in a matching task we are more interested in knowing

the number of false detections relative to the total number of detections, we make use of

the 1-precision parameter

1− precison =
number of false positives

number of correct positives + number of false positives
(5.4)

In the context of our research, a correct positive corresponds to a correct match

between the two images while a false positive refers to a false match. The total number

of positives in the datset refers to the total number of correct matches that can be found,

which is the number of correspondences obtained using repeatability. Using the above

definitions we redefine recall and 1- precision as

recall =
number of correct matches

number of correspondences
(5.5)

1− precision =
number of false matches

total number of matches
(5.6)



67

The ideal recall vs 1-precision curve is a vertical line which starts at zero recall and

goes up to a recall value of one for a zero value of 1-precision and is horizontal thereafter.

However, in any scenario due to image distortions and non repeatable points we will get

false matches before we reach a recall of one. The next best thing is to have a curve

which has a high value of recall for any value of 1- precision. Usually, as the threshold

parameter is relaxed, the number of correct matches increases which in turn increases

the recall. If the recall value doesn’t improve with a change in threshold, this indicates

that the remaining points correspond to different structures in the image and cannot

be matched. Another factor which can lead to non increasing recall is distinctiveness

of descriptors. In cases where images to be matched are composed of similar looking

structures, non distinctive descriptors are unable to distinguish them thus resulting in

false matches. Hence, the recall vs 1- precision curves indicate the tradeoff that exists

between correct and false matches for the threshold parameter. If we adjust the threshold

to have more matches, then we also increase the number of false matches and vice-versa.

5.2 Different Matching Configurations

Any matching algorithm consists of two distinct entities, namely the feature detector and

the feature descriptor. The feature detector is used to detect points in an image while

the feature descriptor is used to generate a description for these points. This description

is used to identify similar points between images. Here we use the above mentioned

metrics to evaluate the performance of different detectors when combined with different

descriptors. The different configurations evaluated in this research are given below

• Difference of Gaussian (DOG) detector + SIFT/PCA-SIFT descriptor2 3

• Hessian-Laplace (HL) detector + SIFT/PCA-SIFT descriptor4

• Scale Interpolated Hessian-Laplace (SIHL) detector (our Hessian-Laplace approach)

2For computing SIFT descriptors for DOG detector we use the publicly available SIFT executable
from David Lowe’s webpage http://www.cs.ubc.ca/ lowe/keypoints/

3For computing PCA-SIFT descriptors for DOG points we use the binaries provided by Yan Ke on
his webpage http://www.cs.cmu.edu/ yke/pcasift/

4SIFT and PCA-SIFT descriptors are computed for Hessian-Laplace
points using the code provided on K.Mikolajczyk and C.Schmid’s website
http://www.robots.ox.ac.uk/ vgg/research/affine/descriptors.html
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+ SIFT/PCA-SIFT descriptor5

In addition to these six configurations, we also evaluate the performance of SIHL

detector with Haar descriptors. The Haar descriptors are computed by transforming an

image patch into a vector of coefficients using the Haar basis functions. The configu-

rations of Haar descriptors evaluated here vary depending upon the size of the image

patch used to compute the descriptor and the final size of the descriptor. The different

configurations of Haar descriptors that have been studied here are

• patchsize= 16 vectorsize= 64

• patchsize= 16 vectorsize= 16

• patchsize= 8 vectorsize= 64

• patchsize= 8 vectorsize= 16

• patchsize= 8 vectorsize= 8

5.3 Results for Image Matching

In this section we give the experimental results for different matching configurations that

have been discussed above. We evaluate the performance of these matching strategies on

two image sets; for the first set the images have undergone different amounts of rotation

and scaling while for the second set the illumination across the images is varied. For

both these image sets we first present the results for different Haar descriptors using the

SIHL detector. The best Haar descriptor configuration is then selected and is compared

with other methods.

5We use our implementations of SIFT and PCA-SIFT
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5.3.1 Scaling and Rotation Dataset

Haar Descriptor Evaluation

Figure 5.1 shows the matching score and the number of correct matches obtained using

different Haar descriptors for the scaling and rotation image dataset (refer to Figure

3.6). The matching score and correct matches are computed for pair of images where

one image is always the reference image (image having a scale of 1) while the second

image is another image from the dataset. The results obtained for pair of images are

shown using the scale factor parameter. The scale parameter corresponds to the scale

ratio between an image and the reference image.

In general, as the scale factor between the images increases, fewer matches are classi-

fied as correct matches. One of things that can be easily observed from the two graphs is

that the scores obtained using the first four configurations are relatively close. The last

configuration which computes an 8 bit descriptor gives comparatively poor results. This

is due to the fact that the size of the descriptor is too small to reliably distinguish image

structures. Still the number of matches obtained might suffice for some applications at

the cost of a comparatively large number of false matches.

Another observation that can be made from the results is that the size of the patch

has little effect on the number of correct matches. This is easily visible from the graph of

correct matches, where the first and third configuration (patchsize 16 and 8 respectively

for a vector size of 64) and the second and fourth configuration (patchsize 16 and 8

respectively for a vector size of 16) give almost the same number of matches. Hence,

the conclusion drawn from these two graphs is that the 64 bit Haar descriptors produce

more matches because the descriptors are more distinctive.

In order to better understand these results we study the recall vs 1-precision curves

for the same experiment. Figure 5.2 shows the recall vs 1- precision graphs for the first

and fifth image in this dataset (refer to Figure 3.6(a) and 3.6(e)). The graphs have been

obtained for nearest neighbor matching measure and distance ratio matching measure. In

distance ratio matching, the distance ratio of the nearest to the second nearest neighbor

is used to decide a match. The matching thresholds used for nearest neighbor matching

and distance ratio matching have been varied to generate their respective curves. The

conclusions drawn from the previous graphs are also evident here as the 64 bit descriptors

obtain a higher recall for the same value of 1-precision than the 16 bit descriptors. The

8 bit descriptor shows a relatively poor curve which indicates that the descriptor is not

suitable for matching. Also, all the recall vs 1-precision curves are marginally better for
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Figure 5.1: Performance evaluation curves for different Haar descriptors combined with

SIHL detector for scaling and rotation image dataset (see Figure 3.6) (a) Matching Score

(b) Number of correct matches using nearest neighbor matching
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Figure 5.2: Comparison of different Haar descriptors combined with SIHL detector for

two images from the scaling and rotation image dataset (see Figure 3.6(a) and 3.6(e))

(a) Nearest neighbor matching measure (b) Distance ratio matching measure
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nearest neighbor matching than for distance ratio matching indicating nearest neighbor

matching is a slightly better similarity measure for Haar descriptors.

SIFT, PCA-SIFT Descriptor Evaluation

This section gives a comparative analysis of three detectors that have been discussed in

this research. We have chosen the 64 bit Haar descriptor of patchsize 16 as the best Haar

descriptor from the previous section. The objective is to find the best matching strategy

amongst all the different configurations. Figure 5.3 shows the graphs for matching score

and number of correct matches for all the different configurations. In order to better

understand these curves we also give the repeatability results for this image dataset from

chapter three here. The first observation that can be made from these graphs is that for

every feature detector, a better score is obtained (both in terms of matching score and

no. of correct matches) when the detector is combined with SIFT descriptor than PCA-

SIFT. This leads to the conclusion that SIFT is a better descriptor than PCA-SIFT.

This comes as no surprise as the careful design of SIFT which includes operations like

trilinear interpolation for distributing values in adjacent bins make the descriptor more

robust to localization errors than PCA-SIFT.

If we consider the three different configurations for the SIFT descriptor, the results

obtained pretty much follow the results obtained from the repeatability graph. The

SIHL detector gives the maximum number of correct matches and the highest matching

score when combined with the SIFT descriptor. For the first image, this detector gives

fewer correct matches than HL detector in spite of having more correspondences due

to repeatability. This indicates that the points detected using our detector are not as

distinct. A similar pattern can be observed when the three detectors combined with

PCA-SIFT descriptor are considered. In this case, the SIHL detector along with PCA-

SIFT gives the highest number of correct matches. Surprisingly, the 64 Haar descriptor

obtains the second highest matching score and the second largest number of matches

throughout the range of scales for the given image scene. This indicates that once a

patch has been selected around a point which is invariant to scale change and image

rotation, even a simple operation like Haar decomposition can be used to generate a

sufficiently reliable descriptor. Amongst all the different matching strategies that have

been shown, the lowest matching score is obtained for the DOG detector when combined

with PCA-SIFT descriptor.

Although these curves do indicate how good a matching technique is in finding the

number of correct matches, it tells us nothing about the number of false matches obtained.
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Figure 5.3: Results for different matching strategies for the scaling and rotation image

dataset (see Figure 3.6) (a) Repeatability score (b) Number of correspondences using

repeatability (c) Matching score (d) Number of correct matches
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Figure 5.4: Comparison of different matching strategies for two images from the scaling

and rotation image dataset (see Figure 3.6(a) and 3.6(e)) (a) Nearest neighbor matching

measure (b) Distance ratio matching measure
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In order to investigate that aspect, we look at the recall vs 1-precision curves of different

strategies for both nearest neighbor matching and distance ratio matching measure (refer

to Figure 5.4). The graphs have been plotted for the first and fifth image from the dataset

(refer to Figure 3.6(a) and 3.6(e)). A quick look at the these curves indicates that even

though the DOG detector with SIFT descriptor doesn’t give the highest number of

matches, it still gives the most stable matches with the fewest mismatches. This is due

to the distinctiveness of DOG points which results in very few ambiguous matches (point

in one image being matched to two or more points in the other). The curves obtained

for the two Hessian-Laplace detectors with the SIFT descriptor are quite similar. The

combination of Haar descriptor and SIHL detector and the combination DOG detector

and PCA-SIFT descriptor also give good curves. The lowest performance is obtained

when PCA-SIFT descriptor is combined with SIHL detector.

Another thing that can be observed from the two graphs is that the SIFT descriptor

obtains a higher recall for the same 1-precision value for the ratio matching measure while

the PCA-SIFT descriptor obtains a higher recall for the same 1-precision for the nearest

neighbor measure. This implies that while matching SIFT descriptors, it is better to use

the distance ratio matching measure and for PCA-SIFT, better results will be obtained

for nearest neighbor matching.

In order to summarize the results for this section; we obtain the maximum number of

correct matches for the SIHL detector combined with the SIFT descriptor. However, here

we know the ground truth between images and thus it is easier to remove false matches.

In practical applications where the mapping between two images in not known and the

objective is to get the best set of matches with the least number of false matches, the

most reliable matching strategy is the DOG detector combined with the SIFT descriptor.

Complexity Analysis: Table 5.1 below shows the time taken to compute different

descriptors using our implementations. From this table it can be concluded that it is

faster to compute Haar descriptors than SIFT and PCA-SIFT descriptors. It is important

to note these implementations are non-optimized versions and faster ways to compute

descriptors like SIFT and PCA-SIFT are already available.6 Also the times shown in

the table below will vary depending upon the number of points for which descriptors are

computed.

6SIFT:http://www.cs.ubc.ca/ lowe/keypoints/
PCA-SIFT:http://www.cs.cmu.edu/ yke/pcasift/
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Descriptor Type Time(sec)

SIFT 16.7472

PCA-SIFT 14.6460

Haar-patchsize16-vectorsize64 3.1560

Haar-patchsize16-vectorsize16 2.6002

Haar-patchsize8-vectorsize64 3.0796

Haar-patchsize8-vectorsize16 2.2936

Haar-patchsize8-vectorsize8 2.2716

Table 5.1: Time taken to compute different descriptors for around 2400 points averaged

over 5 runs.

5.3.2 Illumination Change Dataset

Haar Descriptor Evaluation

Having analyzed the performance of different matching techniques under the influence

of image scaling and rotation, we now evaluate their performance under photometric

transformations. We again start by evaluating different Haar descriptors where the best

Haar descriptor is chosen for the next stage of comparison. The descriptors are computed

for points detected using SIHL detector for the illumination change dataset (refer to

Figure 3.10). The first image in this dataset has been chosen as the reference image. As

we move from the first image to the last image in this dataset, the images get darker

(illumination decreases). The matching score and correct matches are computed for

pair of images where one image is always the reference image while the second image

is another image from the dataset. The results obtained for pair of images have been

shown using the decreasing illumination parameter. This parameter corresponds to the

image number of the image that is matched to the reference image.

While computing the Haar descriptors, a normalization operation is performed on

the image patch in order to get a patch with zero mean and unit standard deviation.

This helps to make the final descriptor invariant to illumination changes. Figure 5.5

shows the result for the matching score and number of correct matches for the five Haar

configurations mentioned before. As the illumination from the reference image decreases,

the number of correct matches and the matching score also decreases. The pattern of

the curves is similar to the ones obtained for the scaling and rotation dataset where the
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64 bit descriptors obtained the best performance followed by the 16 bit descriptors. The

8 bit descriptor gives lowest score due to poor distinctiveness.

Figure 5.6 shows the recall vs 1-precision curves plotted for an image pair (refer

to Figure 3.10(a) and 3.10(b)). The 8 bit descriptor shows a much better recall vs 1-

precision curve than what was obtained using the scaling and rotation dataset. The

reason is that it is much easier to match images which a slight illumination change than

to match images with a scale change. The best performance is again obtained by the 64

bit Haar descriptors followed by 16 bit descriptors. The size of the patch again has very

little affect on the performance of descriptors.
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Figure 5.5: Performance evaluation curves for different Haar descriptors combined with

SIHL detector for illumination change image dataset (see Figure 3.10) (a) Matching Score

(b) Number of correct matches using nearest neighbor matching

SIFT, PCA-SIFT Descriptor Evaluation

Here we compare the different matching strategies discussed before for images with illu-

mination change. Figure 5.7 shows the graphs for the matching score and the number

of correct matches obtained. The repeatability results have also been shown in order

to better interpret the matching results. For every feature detector, better results are

obtained with the SIFT descriptor than the PCA-SIFT descriptor. The HL detector

obtains the maximum number of correct matches and matching score throughout as sug-

gested from the repeatability graphs. In spite of higher repeatability than DOG detector,

we obtain fewer matches for our SIHL approach. The reason is that the regions found
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Figure 5.6: Comparison of different Haar descriptors combined with SIHL detector for

two images from the illumination change image dataset (see Figure 3.10(a) and 3.10(b))

(a) Nearest neighbor matching measure (b) Distance ratio matching measure

using SIHL detector are less distinctive, which leads to multiple matches for a point and

more mismatches. The 64 bit Haar descriptor gives the lowest match score amongst all

the methods.

In order to get an idea about the percentage of correct and false matches for these

different methods, we plot the recall vs 1-precision curves for the first two images in this

sequence (Figure 3.10(a) and 3.10(b)). The curves are again plotted for both nearest

neighbor matching technique and the distance ratio matching technique (refer Figure

5.8). The thresholds for both these measures have been varied to plot their respective

curves. The high values of recall obtained for all curves indicates that fewer mismatches

are obtained when matching images with lighting change than matching ones with scale

change. Once again even though DOG detector gave lower repeatability scores and

fewer matches than the HL approach, it gives the best recall vs 1-precision curves. For

distance ratio matching, the best results are obtained with SIFT descriptor while for

nearest neighbor matching PCA-SIFT performs slightly better.

Hence in conclusion, the maximum number of matches are obtained by the HL de-

tector when combined with the SIFT descriptor. Still the combination of DOG detector

and SIFT descriptor performs best when it comes to giving the maximum number of

matches with the lowest false matches.
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Figure 5.7: Results for different matching strategies for the illumination change image

dataset (see Figure 3.10) (a) Repeatability score (b) Number of correspondences using

repeatability (c) Matching score (d) Number of correct matches
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Figure 5.8: Comparison of different matching strategies for two images from the illu-

mination change image dataset (see Figure 3.10(a) and 3.10(b)) (a) Nearest neighbor

matching measure (b) Distance ratio matching measure
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5.4 Image Retrieval

Image retrieval can be described as the task of finding an image or a set of images closest

to the query image from a database7. Such images contain image structures which are

similar to that of a query image. Vision systems rely on extracting information from

the image content to perform image retrieval. One of the most widely used methods

of representing image content is by extracting features. Once the features have been

extracted for all the images in a database, the descriptors computed for features in the

query image can be matched across the entire database to identify images which have

similar image structure. Thus, an image retrieval system takes a given query and returns

a set of images in an order of similarity, from the image database that best matches that

query. Usually, additional constraints are applied in retrieval applications in order to

reject false feature matches.

Most of the commonly used image retrieval systems use features based on color,

texture or shape to perform retrieval. Various papers in the literature have compared

the advantages and disadvantages of using different features for performing retrieval[29,

1997][52, 1997]. Color based image retrieval is usually carried out by identifying images

which have histograms similar to the query image. Histograms are compared by either

computing their intersection[69, 1991] or by using a spatial matching function[68, 1996].

Other methods used to perform color based retrieval have been proposed where descrip-

tors have been computed from different image regions[13, 1997] or by clustering similar

color regions[17, 2001]. It has been shown that these methods are computationally more

efficient than traditional histogram methods.

Texture is an important characteristic that can be used to retrieve images. It is espe-

cially useful in scenarios where two images might look similar based on color information

but may be belong to completely different scenes(for eg. images depicting an ocean and

the sky). Tamura et al[70, 1978] proposed a method to compute six image texture fea-

tures which approximate human perception. Psychological and empirical tests were done

7Here we talk about image retrieval in the sense where the objective is to look for images which
have the same image structures as the query image. For example, if our query image has a red ball and
we would like to find all other images which have the same red ball. The more generic form of image
retrieval deals with identifying objects from a particular category. For example, searching for all images
which contain pictures of cars. Such a task cannot yet be performed reliably by computer vision systems
in current practice. Image retrieval is performed for the generic case by annotating images where the
system retrieves all the images which have the queried keyword. This method is used for retrieving
images on all internet search engines.
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to compare these features for different images. It was shown that three texture features

namely image contrast, coarseness and directionality were correctly able to identify sim-

ilar texture images. A method based on Gabor filters was used by Turner[71, 1986] to

compute texture features. Here bank of filters at different scales and orientations were

used to filter the image and extract texture information. Manjunath and Ma[50, 1996][51,

2000] proposed to adopt a similar approach for their texture analysis and developed a

texture thesaurus[48, 1998] for retrieving aerial images for different scenes.

Shape based features are the most commonly used features to perform image retrieval.

These methods are broadly classified into two categories namely boundary based methods

and region based methods. Boundary based methods use features like chain codes,

edges to extract information about image boundaries and match them. Region based

methods on the other hand also take into account the internal structural details inside

the boundaries. A detailed review of different shape based methods can be found in the

work by Mehtre et. al[53, 1997]. As a part of shape based methods, the scale and affine

invariant feature detectors (see Section 3.1) along with feature descriptors (see Section

4.1) can also be used to perform image retrieval. For a detailed discussion of various

image retrieval technologies and an insight into recent developments in the field, the

reader is refereed to the work by Datta et. al[16, 2005].

The image retrieval application being presented here is part of the NAVIRE project at

the University of Ottawa[1]. The goal of the NAVIRE project is to develop technologies

which can allow a person to virtually walk through a remote environment, such as a

museum, using actual image captured at that site. Here panoramic images captured at

the remote site are used to generate a representation of the remote environment. Once a

sufficient number of panoramic sequences have been captured, the goal is to allow users to

navigate through this image based environment and explore it from different viewpoints,

as if they were actually physically present in that environment.

Since, the panoramic images are captured along different paths and at various loca-

tions, an important aspect of the project from the navigation point of view is to determine

the locations where the different panoramic image sequences cross each other; i.e. to say

which images have been taken at the same physical point in space or at points which

are close in space. This would allow a user to switch paths or take a different direction

whenever he comes across an intersection point.

The image retrieval that we perform in this research tries to address the above prob-

lem. The database used for retrieval consists of panoramic images which have been cap-

tured at different spatial locations along different paths. The goal of the retrieval system
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Figure 5.9: Illustration of the image retrieval problem for panoramic images.

is to retrieve an image that it is most similar to the given query image. This also implies

that the retrieved image is geographically closest to the given query image. Hence, once

we have located two panoramic images from two different sequences which are spatially

close, we can approximately determine the location where these two sequences cross each

other. Figure 5.9 illustrates this concept for three panoramic sequences. Here we are

interested in retrieving the blue images (images closest to the two intersection points)

from a panoramic image database. In some cases (discussed for the indoor sequence in

the next section), one of the blue images corresponding to an intersection point may be

known and our goal is to retrieve the other blue image. In an another scenario (discussed

for the outdoor sequence later on), both the blue images for an intersection point have to

be identified. We will discuss these two scenarios is more detail in the coming sections.

The panoramic images used in this work are cubic panoramic images also referred to

as cube images. Such a panoramic image is shown in Figure 5.10. A cubic panoramic

image consists of six planar images one for each side of the cube. Cube images are

generated from spherical panoramic images by projecting the sphere on to the sides of a

cube (refer to Appendix B for more information).
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Figure 5.10: Cubic Panoramic Image, labels indicate the six sides of the cube image

A similar approach for image retrieval in the context of cube images was also used by

Fiala and Roth[22, 2005] where the SIFT method was used to correctly identify nearest

cube images.

5.5 Results

For performing image retrieval we analyze the performance of three descriptors with the

SIHL detector (our proposed Hessian-Laplace approach). The first descriptor tested is

the SIFT descriptor (our implementation) for its robustness and distinctiveness. Next

we test the 64 bit Haar descriptor obtained using a patchsize of 8 (termed as Haar-

patchsize8-vectorsize64 ). In the previous experiments the performance of this descriptor

was equivalent to the performance of the 64 bit descriptor with patchsize 16. We choose

the one with the smaller patchsize as it is slightly faster to compute. We also test a

Haar descriptor of length 16 obtained using patchsize 8 (termed as Haar-patchsize8-

vectorsize16 ). The objective of using this descriptor is to see if such a small descriptor

can give retrieval results which are comparable with descriptors like SIFT. We show

the results of these tests for two sequences; an indoor sequence termed the VIVA Lab

sequence and an outdoor sequence termed MacDonald sequence.
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5.5.1 VIVA Lab Sequence

Figure 5.11 shows the map of image sequences captured inside a lab to test the retrieval

application. Three sequences have been captured orthogonal to each other such that they

intersect at two points (refer to Appendix D to see some images from this sequence). The

objective here is then to find the image in the first sequence which intersects with the

second sequence and the image in the second sequence which intersects with the third

sequence. The first image for the second and third sequence is known and act as a query

image.

Figure 5.11: Sequence Map for Viva Lab Sequence

In order to find matches, we use the metric based on ratio of nearest to the second

nearest neighbor for a point in descriptor space. The ratio of the Euclidean distances is

compared to a threshold to select the correct matches. We use a threshold value of 0.7

for this experiment. Once a set of matches has been obtained for a pair of images, we use

the Random Sample Consensus (RANSAC)[23, 1981] algorithm to refine the matches.

RANSAC is an iterative algorithm which is used to eliminate outliers (points that do not

agree on a certain set of parameters and are different from other points) from a set of data

points. The outliers in our case correspond to false matches that do not agree with the

transformation parameters between images. Given a set of matches for a pair of images,

the RANSAC algorithm randomly selects a subset of points from the set of matches

and computes the mapping between the two images. This mapping is applied to the
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set of matches to compute the number of inliers (points which agree with the mapping)

and outliers (points that do not agree with the mapping). Recursive implementation of

this process is carried out and the mapping which gives the largest number of inliers is

selected. All the points that do not agree with this best mapping are rejected as final

outliers.

Once we have removed the false matches, the objective is to choose the image which

gives the maximum number of matches with the query image. Figure 5.12(a) shows the

result for matches obtained between cube image 24 (first image for sequence 2) and a set

of images from sequence 1. As can be seen from the results for all descriptors, high num-

ber of correspondences are obtained for images 17 and 18. The initial correspondences

obtained using the Haar descriptor are more in number than SIFT, especially for the 16

bit descriptor. This is due to the presence of similar structures in these images where the

16 bit Haar descriptor, which is less distinctive, is unable to distinguish between those

structures, which results in a large number of false matches. The number of matches

obtained with the 64 bit Haar descriptor are closer to that of SIFT.

Once RANSAC is performed, we end up with a more stable set of matches. A

closer look at the graph shows that we get more matches for image 18 with the 16 bit

Haar descriptor and SIFT descriptor, while the 64 bit Haar descriptor gives slightly

more matches (3 to be precise) for image 17. This indicates that both these images are

spatially closer to image 24 than other images and we can take the intersection point

either to be at 17 or 18. We choose the intersection point to be at 18 in this case.

A similar set of curves are plotted to find the second intersection point (refer to

Figure 5.12(b)) between sequence 2 and sequence 3. Here, image 43 of sequence 3 acts as

the query image. After performing RANSAC on initial set of correspondences, image 40

obtains the highest number of matches for SIFT and 16 bit Haar descriptor while image

41 gives slightly more matches (2 to be precise) for 64 bit Haar descriptor. This again

indicates that both images 40 and 41 are the closest to the given query image and can

be taken as intersection points. We take the intersection point to be at image 40.

Table 5.2 shows the time taken by different descriptors to retrieve the closest image

for Image 24 from the above sequence. The database used to perform retrieval is built

by selecting 25 images from the three sequences. Haar descriptor of vectorsize 16 due

to its small size takes the least amount of time followed by Haar descriptor of vectorsize

64 and SIFT. It is important to note that the time used to perform retrieval will vary

depending upon the images in the database and the number of points detected for each

image.
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Figure 5.12: Image Retrieval results for cube images using different matching strategies

(a) Cube image 24 from sequence 2 acts as the query image (b) Cube image 43 from

sequence 3 acts as the query image
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Descriptor Type Time(sec)

SIFT 15.1996

Haar-patchsize8-vectorsize64 8.081

Haar-patchsize8-vectorsize16 2.499

Table 5.2: Time taken to perform image retrieval for different descriptors for Image 24.

The time has been computed by averaging 5 runs.

In order to prove that the two images which give the maximum matches indeed rep-

resent images which are spatially close, we visually analyze the faces of the matched

cube images. Figure 5.13 shows the arrangement of the two cube images that have been

matched. The arrangement shown here is only an illustration and not an exact repre-

sentation of the overlap between two cube images. The arrows indicate the viewpoint

direction when the cubes were captured. The illustration here gives an idea of corre-

sponding faces of the cube images when two cube images are matched. For example for

the overlap shown, the front face for the red cube should have almost the same visual

information as the left face of the black cube. Similar relations exist for other sides of the

cube. Figure 5.14 shows the corresponding faces of cube image 24 that were matched to

cube images 17 and 18. A similar arrangement is shown in Figure 5.15 for cube images

43, 40, 41. As it can be observed from these images, the cube images that give the

maximum matches are indeed the closest images for a given query image.

Figure 5.13: Spatial arrangement of matched cubes
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(a) Front Face 24 (b) Left Face 24 (c) Right Face 24 (d) Back Face 24

(e) Left Face 17 (f) Back Face 17 (g) Front Face 17 (h) Right Face 17

(i) Left Face 18 (j) Back Face 18 (k) Front Face 18 (l) Right Face 18

Figure 5.14: Corresponding faces for matched cube images (a) to (d) show the four faces

of cube image 24. (e) to (h) show the four faces of cube image 17. (i) to (l) show the

four faces of cube image 18
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(a) Front Face 43 (b) Left Face 43 (c) Right Face 43 (d) Back Face 43

(e) Right Face 40 (f) Front Face 40 (g) Back Face 40 (h) Left Face 40

(i) Right Face 41 (j) Front Face 41 (k) Back Face 41 (l) Left Face 41

Figure 5.15: Corresponding faces for matched cube images (a) to (d) show the four faces

of cube image 43. (e) to (h) show the four faces of cube image 40. (i) to (l) show the

four faces of cube image 41
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5.5.2 MacDonald Sequence

The indoor sequence captured before was captured under ideal conditions. This means

that the illumination was almost constant8 across the sequence and care was taken to

ensure that they were no moving objects which resulted in a large number of repeatable

points between images. It is not possible to enforce these rules for an outdoor sequence.

For outdoor sequences the images captured will always have some moving objects in the

scene. There will also be a lot of displacement of the moving objects (cars moving in

and out of the scene, people walking by). The images can also encounter illumination

changes depending upon the weather conditions. All these factors can affect the number

of matches obtained between images. However, it is hoped that the features detected

for the objects which are stationary in all images should provide enough information to

decide which images are the closest.

Another thing that can be noticed for outdoor images is that top image of the cu-

bic panorama always represents the sky. The features generated for the top image are

accidental features which are produced due to camera acquisition parameters or clouds

rather than some physical structure9. This indicates the matches obtained using the

top face are not reliable matches. Similarly the bottom image also has little relevant

information. Hence, here we exclude the features which are detected on these two faces

and use the remaining four faces for matching.

Figure 5.16 shows the map of the outdoor sequences captured10. Two small sequences

of 5 images each are captured orthogonal to each other such that they intersect at a point

(refer to Appendix D to see some images from this sequence). The distance between the

centers of the cube images is considerably larger than the distance in the indoor sequence

(cubes for outdoor sequence were captured at a distance of 3m). The objective here is to

see if the intersection point shown in the sequence map can be experimentally determined

by matching different cube images. Given a large number of sequences (each sequence

is represented by a large number of panoramic images) that cross each other, a set

of candidate images believed to be closer to an intersection point can be selected and

8The illumination may change marginally depending upon the position of camera with respect to the
light sources which are fluorescent lights

9For the indoor sequence discussed before, the lab in which the images were captured had a significant
amount of structures in the top image. Hence the top image was not neglected for the previous sequence.
However, if the indoor sequence is captured in a place where the ceiling is flat without any relevant image
structures, the top image can be discarded.

10The image sequence was captured in a parking lot at a time of the day when there were few moving
objects
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Figure 5.16: Sequence Map for MacDonald Sequence

matched to determine the actual position of the intersection point. The GPS information

for the captured images can be used to select a set of candidate images.

In order to find the intersection point for the two sequences, we treat every image

of sequence 1 as the query image and retrieve the closest image for the given query

from sequence 2. The image pair consisting of a query and retrieved image that gives the

maximum number of matches amongst all possible pairs is chosen as the pair closest to the

intersection point of the two sequences. This method of finding the closest cube images is

equivalent to matching all images from the first sequence to all the images in the second

sequence and selecting the image pair with the maximum matches. Here we compute

matches for all three configurations that have been discussed before. A distance ratio of

0.7 is used to select the correct match. Similar to the previous experiment, RANSAC is

applied to remove false matches. Here we investigate whether in all these experiments

the correct intersection point is identified.

Figure 5.17 shows the matches obtained between different images of the two sequences

for different configurations. Here we have only shown matches that have been obtained

after applying RANSAC. For all the configurations, image 5 and 7 give the maximum

number of matches followed by images 5 and 6. The matches obtained for images 4 and

7 are slightly lower than those obtained for 5 and 7. This indicates that the intersection

point should lie slightly closer to image 5 and somewhere between images 6 and 7. Hence,

as seen from the graphs, all three configurations have correctly identified the intersection



92

point.

5 6 7 8 9 10 11
0

20

40

60

80

100

120

image number

m
at

ch
es

 a
ft

er
 R

A
N

S
A

C

 

 
Image 1
Image 2
Image 3
Image 4
Image 5

(a)

5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

image number
m

at
ch

es
 a

ft
er

 R
A

N
S

A
C

 

 
Image 1
Image 2
Image 3
Image 4
Image 5

(b)

5 6 7 8 9 10 11
0

20

40

60

80

100

120

image number

m
at

ch
es

 a
ft

er
 R

A
N

S
A

C

 

 
Image 1
Image 2
Image 3
Image 4
Image 5

(c)

Figure 5.17: Matches obtained between images from sequence 1 and sequence 2 for

different matching strategies using SIHL detector. Image number indicates the images

from sequence 2 (a) SIFT descriptor (b) 16 bit Haar descriptor (c) 64 bit Haar descriptor

From the tests carried out with the outdoor sequence, the following conclusions can

be drawn. Outdoor sequences in general are a bit harder to match as the distance

between the images is greater, which implies greater scale change. This indicates that

as the distance between two cube images is increased, fewer matches will be obtained.

However, since here the final objective is not to match all images but to identify the

closest ones, two images which may give very few matches due to large scale difference

can easily be rejected as images which are far apart. This is visible from the graphs
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in Figure 5.17 as image 4 and 6 (which have a distance of less than 3 meters) will give

more matches indicating they are closer than say image 1 and 6 (which have a distance

of more than 9 meters).

The above conditions will be true only if the smallest distance between two cubes

images in a sequence is not very large. For example instead of capturing the above

sequence at a spacing of 3 meters, if the sequence was captured at say 100 meters, then

even the closest cube images may give very few or no matches. In such cases, we will not

be able to find the closest image for a given query image and the retrieval application

will fail due to the inability to match images across very large scales.

From this discussion it can be concluded that the retrieval application will perform

well if the images are taken in close proximity. This will be true for indoor environments

as we are interested in representing small changes and details when we generate a virtual

representation for an environment like a museum. Performance for outdoor environments

will vary depending on the scale change for adjacent images. If the objective is to virtually

walk around a city which will require capturing images that are reasonably close, image

retrieval can be performed successfully. If the goal is to virtually drive around a city

which will require capturing images at large distances, the retrieval will fail.

5.6 Issues with Matching Panoramic Images

Although a lot of research has been done in developing matching algorithms for images,

matching is rarely addressed in context of panoramic images. Matching panoramic images

introduces another problem which is not prevalent for ordinary images that have a limited

field of view. This problem relates to the presence of structures in an image which look

identical, thus resulting in image descriptions which are hard to distinguish. A common

example of this would be the windows of a building or leafs of a tree or a structure like

a fence.

Similar problems were faced while performing image retrieval for the above mentioned

sequences. For example, in the indoor sequence captured in the lab, the presence of

computers everywhere results in numerous image structures which look pretty much the

same. One possible remedy for this problem was proposed by Mortensen et al.[60, 2005].

They introduced the idea of adding a global vector to the SIFT descriptor so as to

differentiate between similar structures. Although, their method showed good results for

images with significant rotation, the method proposed was not invariant to changes in

image scale. Also, the addition of a global vector to the 128 dimensional SIFT descriptor
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resulted in a large 188 dimensional feature descriptor which is time consuming to match

for recognition and retrieval applications.



Chapter 6

Conclusion

The objective of this research was to design a feature matching strategy which can find

correspondences between images that have undergone geometric and photometric trans-

formations. The feature matching technique was developed by combining two different

entities; a feature detector and a feature descriptor. A feature detector called Scale Inter-

polated Hessian-Laplace was proposed in this research and its performance was compared

with other well known detectors. Feature descriptors based on Haar wavelet transform

were introduced and compared with other descriptors in order to determine the most

robust descriptor. Finally, different matching strategies obtained using the combination

of different feature detectors and descriptors were evaluated in order to find the most

optimal matching technique.

The second part of this research addressed the issue of image retrieval for panoramic

images where the goal was to identify images which are similar to each other and spatially

close. The following sections discuss the conclusions that can be drawn from the various

tests that have been carried out in this research along with what needs to be done in

future work.

6.1 Feature Detectors

In this research we compared the performance of three feature detectors; the difference of

Gaussian (DOG) detector, the Hessian-Laplace (HL) detector proposed by Mikolajczyk

and Schmid and our version of the Hessian-Laplace detector called the Scale Interpolated

Hessian-Laplace (SIHL). The last two detectors are based on the same principle but

differ in methods used to localize points and compute orientation for points. The SIHL

95
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detector obtained the highest repeatability score both in terms of percentage and absolute

correspondences for the scale and rotation image dataset. The HL detector gave the

highest repeatability throughout for the illumination change image dataset. Even though

the Hessian-Laplace approaches give higher repeatability scores, the points extracted by

DOG are more distinct owing to its superior localization. When points are more distinct

they give fewer ambiguous matches (point in one image being matched to two or more

points in the other). Based on just repeatability results it is difficult to decide which

detector is superior to all the others. We answer this question when we discuss matching

strategies.

6.2 Feature Descriptors

We have discussed three descriptors in this research namely SIFT descriptor, PCA-SIFT

descriptor and descriptors derived using Haar wavelet transform. The SIFT descriptor

performs best amongst all these descriptors. The SIFT descriptor is also more robust to

localization error in points than the other descriptors. The descriptors based on Haar

transform offer the advantage that they are computationally the simplest of the three.

Experimental results were given to show that these descriptors are faster to compute than

SIFT and PCA-SIFT. We have tested Haar descriptors of bit sizes 8, 16, 64 which have

been calculated from different patchsizes. Haar descriptors of length 8 owing to their size

are less distinctive and less robust. Similar problems will occur for descriptors of length

16 if the images to be matched have a lot of similar looking image structures. If the

images do not have similar looking structures, 16 bit descriptors can perform reasonably

well. Haar descriptors of length 64 can give results which are comparable with SIFT and

PCA-SIFT.

Another important issue relates to the choice of similarity metric while comparing

different descriptors. It was found that SIFT performed better when the similarity mea-

sure was distance ratio matching, while PCA-SIFT gave better performance for nearest

neighbor matching. For Haar descriptors, the performance for the two measures was

comparable with a slightly better performance obtained for nearest neighbor measure.

The choice of descriptor also depends on the application. In applications where fast

matching is required, a 128 dimensional SIFT descriptor may be too long. In such cases

PCA-SIFT and Haar descriptors are a better choice. However, in scenarios where we are

interested in obtaining very precise matches and time is not an issue, SIFT is the most

suitable descriptor.
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6.3 Matching Strategies

Different matching configurations were explored in this research by combining different

detectors and descriptors. The objective was to identify the best matching technique

amongst all these configurations. The SIHL detector gave the largest number of matches

when combined with the SIFT descriptor for scaling and rotation image dataset. The HL

detector gave the maximum number of matches when combined with the SIFT descriptor

for the illumination change image dataset. In both cases, even though the DOG detector

with SIFT descriptor did not give the maximum number of matches, it gave the best recall

vs 1-precision curve which indicates it had the least number of false matches for a given

number of matches. This low number of false matches is due to highly distinctive points

detected with the DOG detector. Hence, we can say that the best matching strategy is

the DOG detector combined with SIFT descriptor. The matching configurations obtained

using PCA-SIFT descriptor obtained good results even though they were not as good

as SIFT descriptor. The 64 bit Haar descriptor when combined with the SIHL detector

also showed good performance both in terms of total number of matches obtained and

recall vs 1-precision curves especially for the image and rotation dataset.

6.4 Image Retrieval

We also did experiments using different matching strategies by combining our SIHL

detector with SIFT and Haar descriptors (of size 16 and 64) to perform image retrieval.

We have used a database of cubic panoramic images where we are interested in identifying

images which are similar and spatially close to a given query image. In order to do this,

we select the image which gives the maximum number of matches with the query image.

These two images which belong to two different panoramic sequences, can then be used to

determine the intersection point for the two sequences. All three configurations used in

this research were able to correctly identify the intersection point for both the indoor and

outdoor sequences. This indicates that even though Haar descriptors are less distinctive

than SIFT descriptor, they can still give enough reliable matches to identify closest

images.



98

6.5 Future Work

In this section, we give a brief overview of some the areas we would like to investigate as

part of future research.

The localization performed in this research on Hessian-Laplace points helps to localize

points efficiently in scale but not space (2D location in the image plane). We would

like to explore new ways to localize these points effectively in both scale and space

simultaneously. This should lead to more robust and distinct points.

The image retrieval tests performed in this research were carried out when they were

few moving objects in the scene and none for the indoor sequence. It would be interesting

to see if the retrieval can still be performed for a large number of moving objects and

for larger scale changes between nearest images. The sequences captured to perform

the retrieval experiments were normal to each other in order to keep the perspective

transformation between the cubes to a minimum. In future we would like to carry out

similar tests for sequences which have been taken in arbitrary directions and intersect at

arbitrary orientations. Finally, in the context of panoramic images, similar structures in

images pose a significant problem when the images have to be matched. Currently, very

little work has been done to address this problem. In future we would like to explore

different methods to disambiguate image structures without causing a significant increase

in the size of the descriptors.



Appendix A

Additional Image Matching Results

This section gives image matching results for some other image pairs1. The results have

been given in terms of recall vs 1-precision graphs.

1The image datasets were taken from http://lear.inrialpes.fr/people/mikolajczyk/
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Figure A.1: Recall vs 1-Precision graphs for different matching strategies for the image

pair shown (a) Nearest neighbor matching measure (b) Distance ratio matching measure
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(c) (d)

Figure A.2: Recall vs 1-Precision graphs for different matching strategies for the image

pair shown (a) Nearest neighbor matching measure (b) Distance ratio matching measure.

For the legend, please refer to Figure A.1
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Figure A.3: Recall vs 1-Precision graphs for different matching strategies for the image

pair shown (a) Nearest neighbor matching measure (b) Distance ratio matching measure.

For the legend, please refer to Figure A.1



Appendix B

Cubic Panoramic Images

A panoramic image is an image which has a wider field of view than ordinary images.

These images can be used to generate a 360◦ representation of a scene. Mostly panoramic

images are thought of as images that have been mapped on a cylinder or a sphere. A

panoramic image format that is less frequently used is the cubic panoramic image. A

cubic panoramic image consists of six images where each image represents a side of

the cube. Since each of these six faces are planar images, cubic panoramas have less

perspective distortion as compared to other panoramic images. We now give an overview

of the method used to generate these cubic panoramas.

Figure B.1: Ladybug camera

The ladybug camera has been used here to capture the panoramic images. Figure

B.1 show the ladybug camera1. The camera consists of six 1024x768 CCD sensors; five

in a horizontal ring and one at the top. The sensors are arranged such that there is

1More information on the Ladybug camera can be found on
http://www.ptgrey.com/products/ladybug2/index.asp
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an overlap of around 80 pixels between adjacent sensors. The ladybug camera captures

information which is approximately equal to 75% of a complete sphere. Figure B.2 shows

an example of images captured using the ladybug camera inside a room.

Figure B.2: Image captured using the Ladybug camera. All the images shown have been

demosaicked

Once these images have been captured, the next step involves combining these six

images to generate a panoramic image. A spherical mesh projected on these six images

is used to generate a spherical panoramic image by mapping the images on to the mesh.

Additional blending is performed to combine regions which overlap between adjacent

images. In order to generate a cubic panoramic image from the spherical image, six

perspective views are generated from the center of the spherical image. These six views

have 90◦ field of view. Figure B.3 shows the cubic panoramic image obtained along with

its 3D rendition. Since the ladybug camera has no sensor pointing downward, the bottom

face of the cube image shows a black void which corresponds to a region for which no

information is available.

Cube images offer the advantage that they can be rendered faster using standard

graphics hardware than other formats of panoramic images[7, 2005]. We have used

the softwares written by Mark Fiala and Alan Brunton to capture ladybug images and

generate cubic panoramas. More information on how cube images are generated and

their applications can be found in works by Fiala and Roth[22, 2005], Fiala[21, 2005][20,

2005] and Bradley et al.[7, 2005]
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(a)

(b)

Figure B.3: Cubic panoramic image (a) 2-D representation of a cube image with the

faces laid out (b) 3-D representation of a cube image



Appendix C

Homography

In the field of two dimensional computer vision, a projective transformation is used to

define the relation between planes. The transformation arises when a plane is viewed by

a perspective camera. A homography is a plane projective transformation that describes

the mapping between two images. The mapping helps to define the relationship between

points in one image and points in an another. Consider a point p in one image and a

point p′ in an another image such that these points are the projection of the same 3D

point P in space. The relation between these two points can be expressed as

p′ = Hp (C.1)




p′x
p′y
p′z


 =




h11 h12 h13

h21 h22 h23

h31 h32 h33







px

py

pz


 (C.2)

where H is the homography matrix. The points p and p′ have been defined in homoge-

nous coordinates where the z-coordinate for both these points is unity. The homography

matrix is a non-singular matrix which indicates that the above relation can also be ex-

pressed in terms of inverse of H matrix. This matrix is defined up to a scale factor (given

by the parameter h33) and has 8 degrees of freedom.

The homography described above is valid only under the following conditions:

• If the two images have been taken without moving the center of projection of

the camera. This could involve varying the camera parameters like aperture, focal

length between the two images or rotating the camera about its center of projection.

(Figure C.1 show the illustration of the rotation case)
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• Both images are viewing the same planar surface from different viewpoints (Figure

C.2)

Figure C.1: The projective transformation between images taken from the same center

of projection

If the above conditions are not satisfied, parallax is introduced between images. In

such cases, the relation between two images is defined using the epipolar geometry[27,

2004]. We now discuss different methods used for computing homography. Comput-

ing the homography between images forms an essential step in camera calibration and

rectification and other applications like image mosaicing and image registration.

C.1 Computing Homography for Calibrated Cam-

eras

In this section, we describe the procedure used to compute the homography matrix for

calibrated camera setups. Before discussing this, we briefly describe the process of image

formation and give the relation between a 3D point in space and its projection on an

image plane.
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Figure C.2: The projective transformation between two images due to a plane in 3D

space

Figure C.3 shows a camera setup (known as the pinhole camera model) consisting of

an image plane and a camera reference frame. The distance between the image plane and

the camera center C (also called center of projection) is given by the focal length (the

distance Cc in the figure). The point P is defined with respect to the camera reference

frame. The projection of point P on to the image plane is given as

p = K[I|0]P (C.3)

K =




f 0 cx

0 f cy

0 0 1


 (C.4)

where p is the projection of point P and K is the camera calibration matrix defined

in terms of focal length f and center of the image plane cx and cy.

Using this basic equation, we can prove that a homography relationship holds between

two images in the case of image rotation and image scaling. For homography to be valid

for these two cases, it is essential that the camera center is stationary.
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Figure C.3: The pinhole camera model

C.1.1 Homography for Image Scaling

In case of image scaling, the distance of the image plane from the camera reference frame

changes. This corresponds to a change in the focal length of the camera. Consider a 3D

point P and its projection p and p′ on the two images before and after scaling (zooming

in or out). Then the mapping of point P on the image planes can be expressed as

p = K[I|0]P (C.5)

p′ = K ′[I|0]P (C.6)

where K and K’ are the camera matrices. Using the above two equations, the point

p′ can be written in terms of p as

p′ = K ′K−1p (C.7)

which in turn gives

H = K ′K−1 (C.8)

Hence using the two calibration matrices, we can compute the homography between

a pair of scaled images.
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C.1.2 Homography for Image Rotation

The case of image rotation refers to a scenario where the camera is rotated about its center

of projection without any change in the internal camera parameters. This indicates that

the camera calibration matrix does not change across images. Again, consider a point P

being projected as p and p′ on a pair of images where the images differ by a rotation R.

The projections of point P on the image planes can be expressed as

p = K[I|0]P (C.9)

p′ = K[R|0]P (C.10)

We can express the relation between the two image points as

p′ = KRK−1p (C.11)

which gives the homography matrix H as

H = KRK−1 (C.12)

Hence, using the camera calibration matrix and the rotation matrix, the homography

between the two images can be retrieved.

C.2 Computing Homography for Uncalibrated Cam-

eras

For an uncalibrated camera setup, the camera calibration matrix and the geometric

transformation between the images is not known. In such cases, the correspondences be-

tween images are used to compute the homography. The homography matrix has eight

unknowns (as the homography is defined up to a scale factor), and thus eight equations

are required to determine the matrix parameters. Since every pair of image correspon-

dence gives a pair of equations, four correspondences between two images are sufficient

to compute the homography matrix. It should be noted that the correspondences should

be selected in a way so that no three points in either of the images are collinear.

In most practical scenarios, computing a homography requires solving an over-determined

system of equations (more than four correspondences are available). Obtaining an accu-

rate homography is further made difficult by the fact that all correspondences may not
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be correct. One of the best known methods used to estimate homography in such cases is

the RANSAC (Random Sample Consensus) method[23, 1981]. RANSAC is an iterative

algorithm which is used to eliminate outliers (points that do not agree on a certain set of

parameters and are different from other points) from a set of data points. In this case,

the outliers refer to the false correspondences that do not agree with the homography

between images.

Given a set of correspondences for a pair of images, the RANSAC algorithm ran-

domly selects four points from the set of correspondences and computes the homography

between the two images. The homography obtained is applied to the set of correspon-

dences to compute the number of inliers (points which agree with the mapping) and

outliers (points that do not agree with the mapping). Recursive implementation of this

process is carried out and the homography which gives the largest number of inliers is

selected. All the points that do not agree with this best homography are rejected as final

outliers.

Once a set of final inliers is obtained, the homography is re-estimated using the inliers

by minimizing a cost function. The newly computed homography is used to generate

further correspondences between the pair of images. The last two steps are iterated till

a stable set of correspondences is obtained. The homography computed for the final set

of stable correspondences is selected as the homography between images.

For a detailed analysis of different methods used to compute homography and a more

in depth explanation of the concepts mentioned here, the reader is referred to Hartley

and Zisserman[27, 2004].



Appendix D

Cubic Panoramic Images for Image

Retrieval

This appendix shows some of the cubic panoramic images from the indoor and outdoor

sequences used to perform image retrieval.
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(a) Image 1

(b) Image 23

Figure D.1: Indoor Cubic Panoramic Sequence : VIVA Lab Sequence
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(a) Image 24

(b) Image 42

Figure D.2: Indoor Cubic Panoramic Sequence : VIVA Lab Sequence
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(a) Image 1

(b) Image 5

Figure D.3: Outdoor Cubic Panoramic Sequence : MacDonald Sequence
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(a) Image 6

(b) Image 10

Figure D.4: Outdoor Cubic Panoramic Sequence : MacDonald Sequence
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