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Orientation and Pose estimation of Panoramic Imagery

Abstract

In a database of geo-referenced images, determining the exact position
of each panorama is an important step in order to ensure the consistency
of the visual information. This paper addresses the problem of camera
pose recovery from spherical (360o) panoramas. The 3D information is
extracted from a database of panoramic images sparsely distributed over a
scene of interest. We present a two-stage algorithm to recover the position
of the omni-directional cameras using pair-wise essential matrices. First,
all rotations with respect to the world frame are found using an incremen-
tal bundle adjustment procedure, thus achieving what we called panorama
alignment. Full camera positions are then computed using bundle adjust-
ment. During this step, the previously computed panorama orientations,
used to feed the global optimization process, can be further refined. Re-
sults are shown for indoor and outdoor panorama sets.
Keywords: omni-directional panorama pose estimation bundle adjust-
mentstructure from motion

1 Introduction

When a collection of images showing a given environment has been captured,
one important step consists in the camera pose recovery. This problem consists
essentially in using visual information extracted from the set of images in order
to estimate the motion parameters of each of the cameras involved in the capture
process. A solution to this problem can be exploited in many ways. One could
for example take advantage of the motion parameters, in a virtual navigation
application, to adequately position the images with respect to the environment
(or a map representation of it). The fact that the panoramas are properly
aligned also ensures that the information displayed when hopping from one
panorama to another is visually consistent. Virtual objects can be inserted into
the pictured scene and the motion parameters can be used for interpolating
intermediate viewpoint generation.

The problem of pose recovery from large set of images has been the object
of several studies in the literature, particularly in the context of city navigation.
Images or video sequences are taken from a moving vehicle that follows some
path inside the environment. Incremental or piece-wise reconstruction is then
achieved using bundle adjustment in order to position all these images with
respect to the environment. With the introduction of more sophisticated digital
cameras, panoramic images are now often used to build such image-based models
of large environments. Positional information is often obtained using GPS, but
while this is appropriate for virtual navigation systems (e.g. Google Street
View), this solution can be inadequate in applications requiring more accurate
positioning.

In this paper, we present an approach for orientation and pose recovery
in the context of a database of spherical panoramas sparsely captured in an

2



environment. We show that it is possible to perform the reconstruction using a
two-stage procedure where rotations are first estimated followed by a full pose
recovery process. It must be noted that the approach described here could
also applies to limited field-of-view (FOV ) cameras. However, undertaking the
rotation estimation prior to the pose recovery is particularly adapted to spherical
panoramas as, in this case, it is always possible to undo the rotations and obtain
fully aligned panoramas. With limited FOV cameras, such strategy would most
of the time breaks the set into smaller groups sharing common field-of-views.

In addition, splitting the pose recovery problem makes it applicable to vari-
ous contexts where only part of the positional information is available. In some
cases, the position of each panorama is known with an acceptable accuracy
from a GPS device. Only rotation recovery is thus required in order to align
the panoramas. This alignment is essential in virtual navigation in order to
avoid jittering when hopping from one panorama to another. In other cases,
the orientations are already known (e.g through the use of an inertial device),
pose recovery can be applied directly. When no initial estimates of the cam-
era positions are available, splitting the pose recovery process into two steps
makes the estimation more reliable. The two-stage procedure benefits from the
accuracy of the initial estimate of the structure orientation-wise which results
in higher chances of convergence toward the global optimal solution.

2 Related works

Zhang [1] provides a starting point for any structure from motion procedure
based on the essential matrix. His method identifies some constraints used
during reconstruction and puts the accent on the refinement of the essential pa-
rameters extracted from the essential matrix. Svoboda et al. discuss a method
also based on the essential matrix to extract motion information from two spher-
ical cameras [2]. The focus is however on how efficient motion extraction from
spherical cameras allows the distinction between a pure translation and a pure
rotation. In [3] and [4], global solutions to the pose recovery problem are given
respectively for one generalized camera and for a pair of generalized cameras.
[4] states that the solution is minimal and requires 3 known rays for the case of
one camera and 6 rays for a pair.

Carceroni et al. present a method that relies on some properties of SO(3) [5].
It is a feature-based procedure that uses a GPS to recover camera orientation
from known positions of multiple cameras. Constraints on the essential matrices
between the images are established resulting in overall rotations estimation.
Their work is a special case of the problem discussed in this article in which
only the rotation components remain to be estimated. The work presented here
applies to spherical panoramas in general unknown positions.

Makadia et al. present in [6] a method to recover the rotation from two spher-
ical images. This method also uses properties of the Special Orthogonal Group
SO(3) in addition to “the persistence of image content”. It has the advantage
of not being based on feature points. One of the images is rotated during the
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search until it matches the other in a harmonic coefficients space. The matching
criterion used to estimate the rotations is correlation-based. Optimization over
the SO(3) group is also discussed in [7].

Finally, in [8] is presented a method to compute camera pose from a sequence
of spherical images. Many similarities with the method described in the present
article can be found from the sensor used for capture to the use of essential
matrix for initial pairwise geometry. However, the main difference resides in
the use of a rough camera path estimate as additional input of the system to
compute camera positions via a map-correlation technique.

3 Two-stage orientation and pose recovery

Determining the exact position of the panoramas in a database of geo-referenced
images allows ensuring the consistency of the visual information. When avail-
able, the GPS information attached to each image constitutes a first estimate
that, in most application, needs to be validated and refined. When the GPS
coordinates cannot be obtained, such as in indoor scenes, algorithmic pose es-
timation becomes the only way to position the panoramas in the environment.

In order to solve the pose estimation problem applied to spherical images,
we have designed an algorithm that is divided into two stages:

1. The first stage is the estimation of the rotation of each panorama with
respect to a global world frame. A bundle adjustment approach in con-
junction with pair-wise essential matrices is used to recover each rotation
in a global solution. Once these rotations are known, one can then obtain
a configuration in which all camera frames are aligned with respect to each
other. This configuration achieves what will be designated as panorama
alignment. This procedure is described in Section 4.

2. The second and final stage of the pose recovery is to start from the aligned
set of panoramas to estimate their relative positions with respect to one
another. Since negligible rotation now exists between each camera frame,
the problem becomes a pure translation estimation. The final solution,
up to a scale, is obtained using an error minimization approach. Section
5 describes this second procedure.

The accurate positioning information thus obtained can then be used to
control the navigation inside the image database. Intersection point can be
determined; redundant information (panorama taken from practically the same
point of view) can be eliminated. Also, the fact that the images are properly
aligned make sure that these ones are displayed in a visually consistent way when
hopping from one panorama to another. It relates each image with respect to the
other, therefore visual information (e.g. textual annotation) can be propagated
from images to others.

Before we give the details of our pose recovery approach, we briefly review
in the following subsection the basic projective geometry concept related to
panoramic imaging.
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Figure 1: Cube in perspective view and laid out in cross pattern

3.1 Panoramas projective geometry

Spherical panoramas are produced by a central projection camera that collects
all light rays coming from all directions. In our case, they are composed from
the images captured by the Point Grey Ladybug camera. It is essentially a
camera composed of 6 sensors (1024×768 pixels each), 5 laterals and 1 pointing
upwards that capture a view of the world at 360 degrees around the azimuth
completed by a top view.

Since the camera’s sensors have overlapping fields of view, they can be ac-
curately calibrated. It is therefore possible to fuse the six images to form an
almost complete spherical panorama. The resulting plenoptic function can be
re-projected on any type of surface : sphere, cylinder, cube, etc. We use here
a cubic representation made of six identical faces, each of them acting as a
standard perspective projection camera with 90o field of view. The calibration
matrix K associated with each sensor for each face of the cube is then given by:

K =



−L

2 0 L
2

0 L
2

L
2

0 0 1


 (1)

where L is the size of a cube in pixels, as set by the user at the generation stage.

5



This representation has been shown to be very convenient to handle and can
be stored and rendered very efficiently on standard graphic hardware [9][10]. It
must however be stressed out that this choice of representation is arbitrary and
the results presented applies to any other representation.

When several spherical panoramas are analyzed, they are linked by the usual
projective relations. By definition the essential matrix is :

E = [t]×R (2)

Up to a scale, E characterizes completely the geometry between two panora-
mas, just as in the case of conventional stereo images. It follows the following
constraints for two matching points p and p′:

p′T Ep = 0 (3)

Calibration information being known, p and p′ are expressed as 3D coordinates
of the image points on the 3D projection surface (a cube in our case). Estimat-
ing E then becomes a matter of solving the classical problem of the epipolar
geometry estimation using for example the 8-point algorithm [11].

4 Panorama alignment

This section describes the panorama alignment procedure which constitutes
the first step in our pose estimation process. Panorama alignment consists
essentially in removing the rotational component that separates the different
panorama-centric 3D frames. Since N panoramas have to be aligned all at
once, we have chosen to base our solution on a bundle adjustment algorithm.
The choice of such an approach is most of all guided by the fact that it is a
global solution that is seek, i.e. where each variable (rotation in this case) has
its influence on the final result. Bundle adjustment has proven its effectiveness
in many applications where camera poses were computed in order to provide
a 3D representation of a scene [12, 13, 14, 15]. Obviously, a a naive approach
where the motions extracted from the pairwise essential matrices are chained
together would have lead to an unacceptable accumulation of errors.

The core of the concept relies on the error or cost function that is to be
minimized so that the parameters are estimated properly. In the usual case
of camera pose recovery for example, the cost function is the sum of all re-
projection errors for all observed points of the scene. In the case of panoramas
alignment, the cost function expresses the re-projection error by evaluating the
epipolar constraint for all available pairs of panoramas.

4.1 Epipolar constraint in spherical panoramas

Let f be an interest point in a scene (a 3D point) visible in cubic panorama
c and c̄ with respective cube coordinates p(c, f) and p(c̄, f). If R(c) and R(c̄)
are the respective “aligning” rotations of each of these cubes with respect with
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Figure 2: The epipolar constraint.

the world coordinate frame system, and t(c, c̄) is the unit vector in c pointing
in the direction of the projection center of c̄, then epipolar constraint suggests
that the vectors R(c)p(c, f), R(c̄)p(c̄, f) and R(c)t(c, c̄) be coplanar (see Fig.2).
This is expressed by the following triple scalar product and residual :

r(c, c̄, f) = (R(c)p(c, f)×R(c̄)p(c̄, f)) •R(c)t(c, c̄) (4)

Ideally, the coplanarity implies that :

r(c, c̄, f) = 0 (5)

This gives rise a natural choice for the objective function that is to be minimized.
Since the coplanarity constraint has to be verified for all matches between all
possible pairs of panoramas, the total error is given by:

e(Θ) =
∑

c∈C

∑

c̄∈M(c,c̄)

∑

c∈F(c,c̄)

r(c, c̄, f)2 (6)

The set of all panoramas that are of interest in the bundle adjustment algorithm
is noted C. For a given panorama c, the set of panoramas that share some
matches with the latter is noted M(c). This error function is similar to the
one used by [12], but here adapted to the case of panoramas. The minimization
of this cost function results in estimates of the different rotations R1, · · · , RN

represented by their Rodrigues vector all stated under the single parameter
Θ = (ω1x , ω1y , ω1z , · · · , ωNx , ωNy , ωNz ).
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4.2 Solving for all rotations

This section describes the implementation of the algorithm summarized by
Equation (6). The steps mentioned here follow the framework described in [12]
to solve the problem of bundle adjustment for N images. Let us, beforehand,
note B the set of panoramas for which rotations are being optimized.

The algorithm requires that for all available pairs of panoramas (c, c̄) that
share matches, it is necessary to first compute the associated essential matrix
E(c, c̄) and then extract the translation unit vector t(c, c̄) and the rotation ρ(c, c̄)
between panoramas c and c̄.

While B does not contain all panoramas of C {
• Add a panorama c in C that is not in B and that has the highest
total number of matches with the panoramas in B (or C if it is
the first iteration)

• Identify the panorama c̄ of B that best matches c and initialize
the rotation R(c) associated with the current panorama as follows
:

R(c) =
{

R(c̄)ρ(c̄, c) , if B contains at least one panorama
I3 , otherwise

• Minimize the error function given in (6) except the fact that
the first sum is over the adjuster B instead of the whole set
of panoramas C :

e(Θ) =
∑

c∈B

∑

c̄∈M(c,c̄)

∑

c∈F(c,c̄)

r(c, c̄, f)2 = 0

• Process the next panorama

} ρ(c, c̄) is the rotation extracted from the essential matrix linking c and c̄ and
I3 the 3 by 3 identity matrix. The initialization described above can be thought
of as bringing back the panorama c to the world frame configuration first then
rotating it into the best matching cube position. This causes both involved
panoramas to be aligned but does not guarantee alignment with all the other
panoramas of B.

For the error minimization, we use a non linear solution available in Matlab
under lsqnonlin with zero as a goal and the Jacobian of the residual defined in
the next section.

4.3 Jacobian evaluation for minimization

To be able to specify the variation of the objective function that is minimized
in the previous section, it is necessary to evaluate the variation of the residuals
that are squared and summed up in the error function. We recall that Θ stood
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for all possible parameters involved in the process describing all rotations that
are being optimized. Considering that the goal here is to compute ∂r

∂Θ , equation
(5) gives us the residual involving 2 panoramas c and c̄ and a given feature f :

r(c, c̄, f) = (R(c)p(c, f)×R(c̄)p(c̄, f)) •R(c)t(c, c̄)

Dropping the indices for sake of simplicity, the residual attached to a par-
ticular feature f becomes:

r = (Rp× R̄p̄) •Rt (7)

This triple scalar product (7) can be rewritten using the permutation tensor
εijk:

r = εijkRimpmR̄jnp̄nRkrtr

= εijkRimR̄jnRkrpmp̄ntr (8)

Let us consider the tensor D that depends only on the components of the vectors
p, p̄ and t :

Dmnr = pmp̄ntr (9)

(9) in (8) gives rise to the following tensorial expression of the residual:

r = εijkRimR̄jnRkrDmnr (10)

[7] gives us an expression of the derivative of a given rotation R with respect to
the associated Rodrigues vector ω:

∂Rµν

∂δωα
= −εαµρRρν (11)

This expression is the one used in [7] in the author’s approach of the minimiza-
tion problem over the space of rotations using a gradient method with rotations
matrices represented by their exponential form. Equations (10) and (11) thus
allow us to write :

∂r

∂δωα
= εijkR̄jnDmnr

[
∂Rim

∂δωα
Rkr + Rim

∂Rkr

∂δωα

]
(12)

= −εijkR̄jnDmnr [εαiρRρmRkr + εαkβRimRβr] (13)

(13) gives us the expression of partial derivatives of r with respect to the com-
ponents of the Rodrigues vector associated with the rotation R. For the com-
ponents ω̄α related to rotation R̄, we have a similar expression :

∂r

∂δω̄α
= −εijkεαjρR̄ρnRimRkrDmnr (14)

Theoretically, residuals and Jacobians are evaluated in a closed form. Practi-
cally, the different sums involved are implemented as loops meaning the latter
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entities are computed incrementally. Note also that the speed of the algorithm
can be increased by using the sparse matrix approach mentioned in [16].

Note that although a large amount of outliers in the match set can be elim-
inated during the essential matrices E estimation step, some may survive and
therefore affect the panorama alignment step. In order to eliminate these out-
liers, one could apply the x84 rejection rule [17]. This statistical approach
proceeds by computing the M edian Absolute Deviation of all residuals. All
matches with residuals over 5.2MAD would be eliminated from the set and a
new solution would then be recomputed.

5 Pose estimation and structure recovery: eval-
uating translations

The panorama alignment step created a new set of N cubic panoramas with
their respective frames aligned. Therefore to complete the pose recovery, one
has to estimate the position of each of the new camera frames with respect to
a world frame.

This stage relies mainly on the principle used in “classic” planar image pose
recovery [1, 14] where the 3D points corresponding to matches are recovered at
the same time as the motion parameters of the camera, both up to a scale and
through a single global optimization procedure.

In usual SfM algorithms, the criterion that is minimized is the re-projection
error enforcing the fact that for all computed 3D points, their projection in each
camera should ideally correspond to the image points of the original matches
that were used. The situation dealt with in this paper is one for which the rota-
tions are already found and the calibration (i.e the intrinsic camera parameters)
are already known. The criterion is therefore simplified since only translations
or relative positions are involved. Figure 3 illustrates the choice of the mini-
mization criterion. Very similar to what is done with regular 2D images, this
criterion should insure that the projecting rays of all 3D points corresponding
to matches in all panoramas should be aligned with their corresponding image
points. In other terms, if we insure that, with respect to each reference frame,
the ray through the center of the cube of concern and the 3D point (i.e ray1

in Figure 3) and the ray through the corresponding match in the same refer-
ence frame (i.e ray2) are collinear and of same direction, then we guarantee a
minimal re-projection error. This can be expressed by a simple dot product on
normalized direction vectors, v1 and v2; their colinearity being verified by:

v1 • v2 = 1 or 1− v1 • v2 = 0 (15)

To apply (15) to the studied case, let us consider Xi the ith 3D point estimated,
tj the relative position of panorama Cj with respect to the world reference frame
and finally pij the original match corresponding to the projection of Xi in Cj .
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Figure 3: Minimization criterion illustration.

The residual for this particular point is given by :

rij = 1− p̃ij • (Xi − tj)
Nij

(16)

with :
p̃ij =

pij

‖pij‖ and Nij = ‖Xi − tj‖ (17)

Using the tensor notation, Equation (16) can be rewritten as:

rij = 1− p̃α
ij

(Xα
i − tαj )
Nij

(18)

Overall, if i ∈ [1, · · · , nX ] and j ∈ [1, · · · , nC ], with nX and nC respectively the
number of 3D points reconstructed and the number of panoramas involved, the
error e that is minimized is given by :

e =
nX∑

i=1

nC∑

j=1

r2
ij (19)

Minimizing this global error results in the best approximate 3D reconstruction
of the scene of interest.

5.1 Initialization

Since a global optimization solution was chosen, a first estimate of the 3D
structure is necessary and will serve as a seed for the algorithm. This means
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that one must obtain approximate positions of the cubic panoramas and of the
generated 3D points from the available input data (matches across all panora-
mas). Triangulation will be used here for computing the first approximate of
all the unknowns. It is a simple and fast way to obtain a rough estimate of the
structure.

First a reference panorama Cr has to be chosen and will obviously have a
position tr equal to 0.

Next, the scale of the reconstruction needs to be fixed by setting the length
between the reference panorama and a given panorama Ck. This is done by
computing the essential matrix Erk from the available matches. The choice can
be random if all pairs of panoramas have the same number of matches or can
be based on the best matching panorama. Once Erk is found, the unit direction
vector trk is extracted. The position of panorama Ck, that is not a priori known
since only the direction is known, is then fixed to be tk = trk. The distance
between both panoramas is set to 1 and represents the unit of measure for all
subsequent estimations even for 3D points.

With the previous two initializations in place, it is then possible to obtain all
other panorama positions estimates from the available matches. The procedure
involves triplets of panoramas for example (Ck, Cl, Cm). As shown in Figure 4,
epipoles ekm and elm are to be recovered implying the computation of essential
matrices Ekm and Elm. This leads us to the following equation:

αekm − βelm + γ(ekm × elm) = tkl (20)

α and β are solved for and allow us to recover the position tkm of Cm wit respect
to Ck as follows:

tkm =
αekm + (tkl + βelm)

2
(21)

And overall, the position of panorama Cm with respect to the reference panorama
Cr is given by:

tm = tk + tkm (22)

Choosing the reference panorama and the scale of the reconstruction allows us
to recover all estimates of panorama positions by using the suitable triplets. If
many positions are found for one panorama as a result of many triplets involving
the same panorama, then the average is used as the first estimate.

The estimated position of each 3D point with respect to the reference frame
is also obtained using the same approach.

5.2 Jacobian estimation : residual derivation

The variables of the optimization algorithm minimizing the error given in (19)
are the 3D points of the scene as well the positions of each one of the panoramas.
The initialization procedure explained above described a simple way to get a
rough approximation of all variables grouped under Θ = {X1, · · · , XnX , t1, · · · , tnC}.
To express the progression of the minimization through the variation of the er-
ror function, the Jacobian associated to all residuals has to be computed. As
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Figure 4: Triangulation for 3D points and for cubic panoramas.

a consequence, it is necessary to establish the derivative of any residual rij as
given in (18) with respect to each one of the elements of Θ, the variable vector.
We therefore have the following expressions for the residual derivatives:





If Θm ∈ {X1, · · · , XnX}, ∂rij

∂Θβ
m

= δmi(−p̃ij
δαβ

Nij
+ 1−rij

N2
ij

(Xβ
i − tβj ))

If Θm ∈ {t1, · · · , tnC
}, ∂rij

∂Θβ
m

= δmj(p̃ij
δαβ

Nij
− 1−rij

N2
ij

(Xβ
i − tβj ))

(23)
A total of nXnC residuals rij are computed at each iteration and as a result

the Jacobian is a nXnC by 3(nX + nC) sparse matrix. As an implementation
note, the optimization algorithm was performed in Matlab using the function
lsqnonlin with activated Jacobian estimation.

6 Results

This first part of this section presents the results obtained for two different sets
of panoramas. The first set depicts an indoor laboratory scene and the second
one, an outdoor scene. The second part of this section shows results obtained in
situations where the GPS data recorded during the capture of the panoramas
give erroneous information about the pose of panoramas. Using the proposed
algorithm, we recover the spatial configuration of the panorama sets up to a
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Figure 5: Indoor cubic panorama set before alignment (top and bottom faces
truncated)

scale. This is done for a linear sequence and a cross shaped set.

6.1 Indoor Scene

Our first experiment was conducted on four randomly captured panoramas in
our laboratory. Figure 5 and Figure 6 illustrate the alignment step. The “trun-
cated” versions of the cubic panoramas that are shown in these images (top and
bottom faces were removed) are vertically concatenated to ease the observation
of the effect of alignment. Note how the same scene elements appear in each
aligned image for a the same viewing direction (for instance the windows in the
background, or the computer monitors in the center of the aligned cameras). It
can also be observed that the difference in tilt of the different cameras have also
been eliminated.
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Figure 6: Indoor cubic panorama set after alignment (top and bottom faces
truncated)
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Figure 8: Scooter used in the capture of the outdoor set

6.2 Outdoor Scene

The set used in this particular experiment was captured using a scooter designed
to capture a large database of panoramic images in an outdoor environment.
Figure 8 shows the PointGrey Ladybug camera mounted on a scooter with an
on-board computer for capture and storage purposes. This outdoor set contains
6 panoramas. Figure 9 and figure 10 show the panoramas respectively before
and after alignment.

Following the alignment step, the complete pose recovery was performed
and the results are displayed as a perspective and top view (Figure 11) of the
scene with some elements of the closest building. In this example, we observed
that the higher values of residuals correspond to matches that include feature
points that were inaccurately localized across the panoramas. This is in part
due to the considerable change in viewpoints of the cameras. Figure 12 shows
the complete pose recovery from a chosen point of view, with panoramas in
their estimated configuration. The evolution of the overall reconstruction error
during the second stage is shown in the semi-log graph of Figure 7. Values less
than 10−3 are reached after about 20 iterations.

6.3 Linear Sequence

The set of panoramas used in this experiment belongs to a linear sequence and
can be seen in Figure 13. For the chosen panoramas - eight to be more precise
- the GPS data remained constant (the device did not refreshed during the
capture of these images) throughout the capture process preventing any pose
estimation from the latter data. Pose estimation was applied to the 8 panoramas
of the sequence and the 3D reconstruction up to a scale can be seen in Figure
14 (left: top view of the set, right: perspective view). The scooter was driven in
a straight line direction during the capture and as expected, a linear sequence
of panoramas resulted from the pose estimation process.
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Figure 9: Outdoor cubic panorama set before alignment (top and bottom faces
truncated)
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Figure 10: Outdoor cubic panorama set after alignment (top and bottom faces
truncated)
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Figure 11: Outdoor scene with a few objects and the 6 aligned panoramas
(cubes) at their computed locations

Figure 12: Pose recovery for the outdoor set of panoramas
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Figure 13: Panoramas of the linear set

Figure 14: Reconstruction from the linear set: top view (left) and perspective
view (right)
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Figure 15: Cross shaped panorama set. Left, from top to bottom: panoramas
50 to 53. Right, from top to bottom: cubes 77 to 80

6.4 Cross shaped set

For this experiment, the panoramas were captured following two almost perpen-
dicular paths. 8 were used here: panoramas with numbers 50 to 53 captured in
one direction and panoramas with numbers 77 to 80 in the other direction. The
sequence in shown in Figure 15. In this case again, the GPS locations collected
by our GPS devices are partly erroneous. The same coordinate was assigned to
panoramas 50 to 53 and the panoramas 77 to 80 do not form a linear path as
expected as illustrated in Figure 16(a). Applying the proposed pose estimation
on these panoramas allows to recover their relative locations up to a scale as
seen on Figure 16. The expected cross shaped with almost perpendicular paths
is then successfully obtained.

7 Conclusion

A two stage algorithm to achieve pose recovery for a given set of panoramas
was presented here.

The first step consisted in what was designated as panorama alignment i.e
rotations recovery. Alignment is a multi-panorama process that resulted in
panoramas having parallel reference frames. This configuration was exploited
in the second stage of the algorithm.

The second stage used the aligned panoramas to compute the estimated po-
sitions of the panoramas up to a scale. Basically a minimization of re-projection
error criterion was used to refine an initial structure computed through multiple
triangulation. Combining this information with the rotations recovered in the
first stage allowed us to complete the pose recovery procedure.

Results were given for an indoor set and an outdoor set for both stages of
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(a) From GPS coordinates

(b) From pose estimation, up to a scale

Figure 16: Pose estimation for the cross shaped set
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the algorithm. Additional results on two other sets showed how the use of such
an algorithm could help panorama localization in cases where the GPS unit
is unavailable or produces erroneous coordinates due to different reasons: slow
refresh rate, stable satellite connection throughout capture, etc. To refine the
results, it is also possible to iterate a few times over this process. However, from
the residual errors obtained, we found the results after one pass to be sufficiently
accurate for our application.
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