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Abstract

This paper addresses the problem of camera pose recov-
ery from spherical images. The 3D information is extracted
from a set of panoramas sparsely distributed over a scene
of interest. We present an algorithm to recover the posi-
tion of omni-directional cameras in a scene using pair-wise
essential matrices. First, all rotations with respect to the
world frame are found using an incremental bundle adjust-
ment procedure, thus achieving what we called cube align-
ment. The structure of the scene is then computed using
a full bundle adjustment. During this step, the previously
computed panorama orientations, used to feed the global
optimization process, are further refined. Results are shown
for indoor and outdoor panorama sets.

1. Introduction

The problem of camera pose recovery consists essen-
tially in using visual information extracted from a sequence
of images to estimate the motion parameters of each of the
cameras involved in the capture process. A solution to this
problem can be exploited in many ways. One could for ex-
ample localize objects of the scene from given features or
insert a virtual object into the environment at a given po-
sition. One could also take advantage of the motion pa-
rameters, in a virtual navigation application, to adequately
position the images with respect to the environment, to en-
sure consistent and fluid navigation and to ease the process
of image interpolation.

The research project presented in [14] is the framework
in which this work is inscribed. Its ultimate goal is to design
a virtual navigation system in a real remote environment
from which panoramic views are rendered to the user via an
image-based procedure. This project uses spherical image
sequences to represent the environment. This paper there-
fore presents a two-stage algorithm to retrieve the camera
motion from a set of spherical panoramas.

The first stage is the estimation of the relative rotations
with respect to the world frame. An incremental bundle ad-
justment approach in conjunction with pair-wise essential
matrices is used to recover each rotation in a global solu-
tion. Once each rotation is known, one can then obtain a
configuration in which all camera frames are aligned with
respect to each other.

The pose recovery is therefore undertaken using the re-
sult of cube alignment as part of the initial structure. The
rotations or orientations recovered before hand are refined
here as well as features of the scene and panorama loca-
tion through a bundle adjustment. This procedure benefits
from the accuracy of the initial estimate of the structure
orientation-wise which results in higher chances of conver-
gence.

It must be noted that the approach described here can
also be applied to limited field-of-view (FOV) cameras.
However, undertaking the rotation estimation prior to the
pose recovery is particularly adapted to spherical panora-
mas as, in this case, it is always possible to undo the ro-
tations and obtain fully aligned panoramas. With limited
FOV cameras, such strategy would most of the time re-
quire breaking the set into smaller groups sharing common
field-of-view. In addition, the solution to the panorama
alignment problem is by itself of interest in applications
where one wishes to work with aligned reference frames. In
other cases, where the orientations are already known (e.g
through the use of an inertial device), the pose recovery can
be applied directly. Conversely, if the position of all cam-
eras is reliably known (using GPS for example), orientation
recovery can be performed in order to align all panoramas
with respect to each others.

1.1. Related Work

Zhang [21] provides a starting point for any structure
from motion procedure based on the essential matrix. His
method identifies some constraints used during reconstruc-
tion and puts the accent on the refinement of the essen-
tial parameters extracted from the essential matrix. Svo-
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boda et al. discuss a method also based on the essential
matrix to extract motion information from two spherical
cameras [19]. The focus is however on how efficient mo-
tion extraction from spherical cameras allows the distinc-
tion between a pure translation and a pure rotation. In [17]
and [18], global solutions to the pose recovery problem are
given respectively for one generalized camera and for a pair
of generalized cameras. [18] states that the solution is min-
imal and requires 3 known rays for the case of one camera
and 6 rays for a pair.

Carceroni et al. present a method that relies on some
properties of SO(3) [3]. It is a feature-based procedure that
uses a GPS to recover camera orientation from known posi-
tions of multiple cameras. Constraints on the essential ma-
trices between the images are established resulting in over-
all rotations estimation. Their work is a special case of the
problem discussed in this article in which only the rotation
components remain to be estimated. The work presented
here applies to spherical panoramas in general unknown po-
sitions.

Makadia et al. present in [16] a method to recover the
rotation from two spherical images. This method also uses
properties of the Special Orthogonal Group SO(3) in addi-
tion to “the persistence of image content”. It has the advan-
tage of not being based on feature points. One of the im-
ages is rotated during the search until it matches the other
in a harmonic coefficients space. The matching criterion is
correlation-based. Nonetheless, the rotation estimation be-
ing the only point of interest of this method no translation
information is extracted.

Finally, in [15] is presented a method to compute camera
pose from a sequence of spherical images. Many similari-
ties with the method described in the present article can be
found from the sensor used for capture to the use of essen-
tial matrix for initial pairwise geometry. However, the main
difference resides in the use of a rough camera path esti-
mate as additional input of the system to compute camera
positions via a map-correlation technique.

1.2. System

The sensor used during our experiment is the PointGrey
LadyBug camera. This camera uses 6 sensors, 5 radial and 1
pointing upwards, to capture a 360o degrees view of a scene.
The captured images can then be assembled together and
from there re-projected onto any volume. The choice was
made to use cubic panoramas, as presented in [6], that have
the advantages of “fast rendering with standard graphics
hardware and ease of compression and decompression”[1].
Indeed, a cubic panorama or cube, is essentially a set of
6 projective cameras, one per face, centered on the same
point, that can be considered as a whole or independently.
An example of a cubic panorama is displayed in Fig. 1
where the cube is laid out in a cross pattern with its faces

Figure 1. Example of a cubic panorama of the outdoor set laid out
in a cross pattern.

in the order from top to bottom and left to right : top, left,
front, right, back, down.

In the following sections, some elements on the essential
matrix will be presented followed by the presentation of the
proposed structure from motion solution in two parts. The
first part discusses rotations estimation or cube alignment
and the second, the structure computation itself. Some re-
sults are presented on two scenes, an outdoor and an indoor
ones.

2. Essential Matrix E : the case of cubic
panoramas.

The essential matrix introduced by Longuet-Higgins as
mentioned in [21] is a powerful tool when studying the re-
lationship between two camera frames. As a matter of fact,
[11, 4] among others note that the essential matrix encodes
the translation - up to a scale - and the rotation that exist
between the frames of interest.

2.1. Computation of E and extraction of the trans-
lation t and rotation R

In a classical stereo configuration, matches pairs (p, p̄) in
normalized camera coordinates are to be provided and they
verify the epipolar constraint:

p̄T Ep = 0 (1)

Using the normalized direct linear transform (DLT) algo-
rithm mentioned in [9, 10, 20, 11, 5], one can recover the
essential matrix E.

In the case of cubic panoramas, the principle is the same
as for limited FOV images. The main difference resides in
the direct use of normalized coordinates. As a matter of fact,
since they are the product of a virtual camera, cubic panora-
mas are implicitly calibrated; that is user specified cube size



Figure 2. Correspondence 2D surface coordinates - 3D cube co-
ordinates

and cube resolution when these ones were generated from
the re-projection of the Ladybug composite images. The
normalized coordinates are therefore directly given by the
3D coordinates of a pixel on the cube surface (see Fig.2).
In addition, the use of a RANSAC scheme when estimating
E will ensure to eliminate, at this step, most of the outliers.

Given a pair of cubes C and C̄, [11] establishes an ex-
pression of the associated essential matrix E as a function
of the motion parameters t and R, between C and C̄, de-
fined previously:

E = [t]×R (2)

Where [t]× is the anti-symmetric matrix associated with
the vector t. Once the essential matrix E computed from
matches over the cubes, one can extract t and R using a pair
of correspondences (p, p̄)[5, 4, 11] through the SVD decom-
position of E (as E = USV T ).

3. Computing Rotations : cube alignment
Given a set of N panoramas, captured in a scene, their

cubic representations can all be aligned by applying appro-
priate rotations. That is, we are seeking a configuration in
which all cubes are separated by a pure translation. Figure 3
illustrates the problem of cube alignment. In [7], the prob-
lem was partly solved by assuming that the translational
component could be neglected; here, a general solution is
proposed (note that the number N of cubes is assumed to
be greater than 2 to eliminate the trivial case solved in sec-
tion 2.1).

The cube alignment procedure is based on a bundle ad-
justment approach that is similar to the one described in [2].
Essentially, cubic panoramas are added one after the other
to the bundle, forcing a global adjustment of the rotations
corresponding to the cubes currently in the bundle. This
type of procedure is discussed in detail in [11, 5] and pro-
vides a global solution to large estimation problems.

3.1. Notations

The set of all cubes that are of interest in the iterative
bundle adjustment algorithm is noted C. The set of all cubes
being processed in the current iteration is noted B. For a

Figure 3. Cube Alignment

given cube C, the set of cubes that share some matches with
the latter is noted M(C). Moreover, F(C, C̄) stands for
the set of common features for a pair of cubes (C, C̄). A
rotation R associated to a cube C̄ will be noted R(C̄), the
translation t between cubes C and C̄ is noted t(C, C̄).

3.2. Bundle Adjustment of the Orientations

First, we need to define the objective function to be eval-
uated at each iteration of the bundle. For a pair of cubes
C and C̄, considering a feature f appearing in both cubes
respectively as p(C, f) and p(C̄, f), the epipolar constraint
states the following : the rays sustaining both previously
mentioned matches and the translation unit vector t(C, C̄)
are all coplanar as seen in Figure 4. We therefore have the
residual error of feature f associated to pair (C, C̄) given
by:

r(C, C̄, f) = (R(C)p(C, f)×R(C̄)p(C̄, f))•R(C)t(C, C̄)
(3)

Overall, the objective function is thus defined by :

e(Θ) =
∑

C∈C

∑

C̄∈M(C,C̄)

∑

f∈F(C,C̄)

r(C, C̄, f)2 (4)

3.3. Algorithm

The bundle adjustment procedure can then take place.
For all available pairs of cubes (C, C̄) that share matches,
it is necessary to first compute the associated essential ma-
trix E(C, C̄) then extract the translation unit vector t(C, C̄)
and the rotation R(C, C̄) between cube C and C̄ using the
method mentioned in section 2.1.
While B does not contain all cubes of C {

1. Add a cube C in C that is not in B and that has the
highest number of matches with the cubes in B (or C if
it is the first iteration)



Figure 4. Epipolar constraint: the three shown vectors have to be
coplanar.

2. Identify the cube C̄ of B that best matches C and ini-
tialize the rotation R(C) associated with the current
cube as follows :

R(C) =
{

R(C̄)R(C, C̄) , if B contains at least a cube
I3 , otherwise

Where R(C, C̄) is the rotation extracted from the es-
sential matrix linking C and C̄ and I3 the 3 by 3 iden-
tity matrix.

3. Minimize the error function given in (4) except the fact
that the first sum is over the adjuster B instead of the
whole set of cubes C :

e(Θ) =
∑

C∈B

∑

C̄∈M(C,C̄)

∑

C∈F(C,C̄)

r(C, C̄, f)2

We used non linear solution available in Matlab under
lsqnonlin with zero as a goal and the jacobian of the
residual defined in the next paragraph.

4. Process the next cube

}
The initialization in Step 2 can be thought of as bringing

back the cube C to the world frame configuration, then ro-
tating it into the best matching cube position. This causes
both involved cubes to be aligned but does not guarantee
alignment with all the other cubes of B.

In step 3 the variables of the minimization that takes
place at each iteration are in fact the rotations represented
by their Rodrigues vectors. The Rodrigues vector is men-
tioned in more details in [13] as well as elements of the
minimization over the SO(3) group. Using the latter in con-
junction the index notation described - particularly the per-
mutation tensor εijk - in [12], one can quantify the variation
of the variables all under Θ. A slightly modified version of
equation (3) gives us:

r = (Rp× R̄p̄) •Rt (5)

We derive r with respect to the elements of R:

∂r

∂δωα
= −εijkR̄jnDmnr [εαiρRρmRkr + εαkβRimRβr]

(6)
The derivative with respect to the elements of R̄:

∂r

∂δω̄α
= −εijkεαjρR̄ρnRimRkrDmnr (7)

In both cases, the tensor D is given by:

Dmnr = pmp̄ntr (8)

Note that the index notation in (6) and (7) implies summa-
tions over all indices except α. The two rules we followed
in our “loose” adaptation of the index notation are first, the
use of subscript to describe a vector’s component, and sec-
ond the implicit summation property of the classic index
notation. Overall, in the procedure presented above, an op-
timization process is undertaken for each cube incremen-
tally added to the set. By proceeding this way, convergence
is obtained after a few iterations. Ultimately this method
allows us to estimate the optimal overall rotations for each
panorama of the sequence. The world reference frame is
attached in this case to the first cube selected in the bundle
adjustment. Applying properly the rotations to each one of
the cubes results in cube alignment.

3.4. Outlier rejection

Although a large amount of outliers in the match set
have been eliminated during the essential matrices E es-
timation step, some may have survived and therefore affect
the cube alignment step. In order to eliminate these out-
liers, we could apply the x84 rejection rule [8]. This statis-
tical approach proceeds by computing the Median Absolute
Deviation of all residuals. All matches with residuals over
5.2MAD are eliminated from the set and a new solution is
then recomputed.

4. 3D Pose Recovery
In the previous section, the cube alignment allowed ac-

curate camera orientation recovery. This subsequently helps
in the computation of the initial structure necessary for the
the pose estimation. As a matter of fact, using a classic bun-
dle adjustment approach, an initial scene structure is refined
to obtain optimal camera motion parameters as well as 3D
feature points.

4.1. Full Bundle Adjustment

Let us first consider Xi the ith 3D point estimated, tj
and Rj the motion parameters of cube Cj with respect to
the world reference frame and finally pij the original match



corresponding to the projection of Xi in Cj . We will note
M the number of estimated 3D points, N the total number
of panoramas and Ni the set of panoramas in which Xi is
visible.

Ideally if Xi is re-projected in each of the cubes Cj of
Ni, one should obtain projected points p̄ij equal to the orig-
inal pij and this for all points in all cubes : the ray gen-
erated by the back projection of pij into space and the ray
going from Cj to Xi should be aligned and of same direc-
tion. Similarly as what is done in section 3.2, a geometrical
test on a unit dot product of the unit vectors directing those
rays is sufficient. This gives rise the minimization criterion
materialized by the following test on unit dot product i.e
residual re-projection error of Xi in cube Cj :

rij = 1− pij

‖pij‖ •
RT

j (Xi − tj)
‖RT

j (Xi − tj)‖
(9)

with
i ∈ {1, · · · ,M} and j ∈ Ni

The overall error to minimize is therefore :

e =
M∑

i=1

∑

j∈Ni

r2
ij (10)

The use of such a minimization procedure implies a prior
initialization of the variables to be estimated, in this case,
the coordinates of all 3D points from matches and the posi-
tions of the panoramas.

4.2. Algorithm

4.2.1 Initialization

In any bundle adjustment process, starting with good initial
values is of prime importance in order to reduce the prob-
ability of being stuck in a local minima. In the preceding
section, initial rotation values for the incrementally added
cameras were obtained. Here, a global initial configuration
for the graph of cameras must be identified.

First, to initialize the positions of the panoramas, two as-
sumptions are made without any loss of generality. The first
cube of the sequence C1 could have its position initialized
to t1 = (0, 0, 0), implying that the latter panorama is the
reference. The second assumption fixes the scale of the re-
construction. As a matter of fact, the second cube C2, has
its position forced to t2 = t12 the translation extracted from
E12.

Note that it is not necessary to compute all possible Ejk.
In our case we computed all Ejk for j ∈ {1, · · · , N − 1}
and k ∈ {j, · · · , N}.

Using the assumptions above and the appropriate essen-
tial matrices, therefore appropriate unit direction vectors,
one can recover by triangulation an estimate of the posi-
tions of the cubes. For example, if the positions of 2 cubes

Cj and Ck are known, then the unit translation vectors tjl

and tkl can be intersected to obtain the position of cube Cl.
To initialize the 3D points Xi, one can also proceed by

multiple triangulations over all valid pairs of cubes and then
average the results obtained. Once the positions of the cubes
and the points are estimated, the minimization procedure is
applicable. The results are the positions tj , j ∈ {1, · · · , N}
of all cubes and the 3D points Xi, i ∈ {1, · · · , M} corre-
sponding to the M N -tuples of matches across all cubes.
The fact that the initial rotations Ri were obtained by the
previous cube alignment procedure garantees the good qual-
ity of the initial estimate.

4.2.2 Iteration update

For simplicity’s sake let us drop the index i and j in equa-
tion (9) since they only identify the 3D point and cubic
panorama of interest. A simpler version of (9) is written
as :

r = 1− p

‖p‖ •
RT (X − t)
‖RT (X − t)‖ (11)

This re-projection error r is a function of X , R (represented
by its associated Rodrigues vector ω) and t. Grouping all
these variables under the symbol θ = (ω, t, X), the jaco-
bian of this error function is given by estimating ∂r

∂θ . Let us
consider :

p̃ =
p

‖p‖ , Q = RT , A = QX, B = Qt

λ =
1

‖RT (X − t)‖ =
1

‖A−B‖
Equation (11) becomes :

r = 1− p̃ • λ(A−B) (12)

For the derivation part, we use, once more, the index nota-
tion. First, Equation (11) and (12) result in :

r = 1− p̃m(λ(Am −Bm)) (13)

Note that p̃m = pm

‖p‖ . The partial derivative of r with respect
to parameter vector θ is thus given by :

∂r

∂θ
= −p̃m(

∂λ

∂θ
(Am −Bm) + λ(

∂Am

∂θ
− ∂Bm

∂θ
)) (14)

The variable θ contains three types of variables each belong-
ing the entities ω (representing R), t and X . There are as
many extended versions of Equation (14) as there are types
of variables. It results the following expression for θ = ωα,
any component of the rotation vector :

∂r

∂ωα
= p̃((

1
λ3

(Ai −Bi)(−εαiβ(Aβ −Bβ)))(Am −Bm)

− λ(εαmγ(Aγ −Bγ))) (15)



For the translation vector components :

∂r

∂tα
= p̃((

1
λ3

(Ai −Bi)(Qikδkα))(Am −Bm)

− λ(Qmnδnα)) (16)

Finally for the 3D point components :

∂r

∂Xα
= p̃((

1
λ3

(Ai −Bi)(−Qikδkα))(Am −Bm)

+λ(Qmnδnα)) (17)

δ is the Dirac operator and ε is the permutation tensor.
Equations (15), (16) and (17) can then be used in the opti-
mization algorithm to characterize its variation at each iter-
ation.

5. Results
5.1. Example with an indoor scene

Fig. 5 shows the 4 original panoramas in their cubic
representation. Once the rotational components of each
panorama have been estimated, one can then regenerate
the cubes by undoing the rotations and thus obtained a
set of aligned images. Note that the rotation estimation
step resulted in a cumulative re-projection error less than
to 1 × 10−4 radians (in the order of 10−1 to 1 pixel for a
cube of side 512 pixels) after an average of 8 iterations per
cube added to the bundle. The regenerated aligned cubes
are shown in Fig. 6 in which it can be observed that the
panoramas are now pointing to the same scene direction. Fi-
nally, Fig. 10 shows a virtual perspective view of the recon-
structed cube positions given by the described procedure.
It illustrates how, for the experiment, the omni-directional
camera was randomly oriented during the four scene cap-
tures.

5.2. Example with an outdoor scene

One cube of the set of outdoor panoramas is shown in
Figure 1. The rotation estimation stage resulted in an error
less than 5× 10−2 radians (in the order of 1 to 10 pixels for
a cube of side 512 pixels) after an average of 10 iterations
per cube added to the bundle. The panoramas before and
after alignment can be seen in Figures 7 and 8 respectively.

Using the pose recovery results, one can also proceed
to 3D reconstruction of scene elements. Figure 9 displays
the top and perspective views of the reconstructed scene
in which some scene points were selected in the images
to allow a polygonal reconstruction of meaningful scene
elements. The main door of the closest building and the
windows above it are easily identifiable in the reconstruc-
tion; the same goes for the stair steps in front of the main
door. These elements are all visible in the view of Figure

Figure 5. Indoor scene: the original cubes (1 to 4) laid out (top and
bottom faces removed).

Figure 6. Indoor scene: the aligned cubes (1 to 4) laid out (top and
bottom faces removed)

1. Figure 11 illustrates the pose estimation results by show-
ing a 3D reconstruction of the configuration up to a scale
in a coarse representation of the environment. To quantita-
tively evaluate the accuracy of the reconstructed scene, we
selected 20 pairs of segments that are of equal length in the
real scene. For each of these pairs, we computed the ratio
of the segments length in the reconstruction and obtained
an average value of 1.0387 (with a standard deviation of
0.0374).



Figure 7. Outdoor scene: the original cubes laid out (top and bot-
tom faces removed).

6. Conclusion

This article presented an algorithm to estimate the mo-
tion parameters in the case of a sequence of cubic panora-
mas based on initial orientation estimation called cube
alignment. The essential matrix, extensively used in the
completion of such a process, proves to be simple to evalu-
ate in the case of cubes. From that entity, initial motion pa-
rameters are found for the main algorithm. First, rotations
with respect to a reference cube are evaluated through an
incremental bundle adjustment procedure. Then, the pose
recovery is achieved by estimating the translations, the 3D
points from the matches and refining the previously ob-
tained rotations using another optimization phase. To refine
the results, it is also possible to iterate a few times over this
process. However, from the residual errors obtained, we
found the results after one pass to be sufficiently accurate
for our application.

Two sets of panoramas were processed and good results
were obtained for the reconstructed scenes in both cases.
Future improvements to this algorithms will be achieved by
improving the matching process as well as integrating the

Figure 8. Outdoor scene: the aligned cubes laid out (top and bot-
tom faces removed)

Figure 9. Outdoor scene with a few objects and the 6 aligned
panoramas (cubes) at their computed locations.

sparse matrix property described in [11] to speed up the op-
timization time.
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