
Efficient Action Recognition with MoFREAK

Chris Whiten, Robert Laganière
VIVA Lab

University of Ottawa
Ottawa, Canada

cwhit025@uottawa.ca, laganier@uottawa.ca

Guillaume-Alexandre Bilodeau
LITIV Lab

École Polytechnique de Montréal
Montréal, Canada

gabilodeau@polymtl.ca

Abstract—Recent work shows that local binary feature
descriptors are effective for increasing the efficiency of object
recognition, while retaining comparable performance to other
state of the art descriptors. An extension of these approaches
to action recognition in videos would facilitate huge gains in
efficiency, due to the computational advantage of computing a
bag-of-words representation with the Hamming distance rather
than the Euclidean distance. We present a new local spatio-
temporal descriptor for action recognition that encodes both
the appearance and motion in a scene with a short binary
string. The first bytes of the descriptor encode the appearance
and some implicit motion, through an extension of the recently
proposed FREAK descriptor. The remaining bytes strengthen
the motion model by building a binary string through local
motion patterns. We demonstrate that by exploiting the binary
makeup of this descriptor, it is possible to greatly reduce the
running time of action recognition while retaining competitive
performance with the state of the art.

Keywords-action recognition; spatiotemporal feature descrip-
tion; local binary descriptor

I. INTRODUCTION

Recognizing actions in video sequences has garnered a
great deal of interest in recent years. With recent advances
in natural user interface design, algorithms for gesture
recognition are in very high demand. Furthermore, robust
and efficient classification of surveillance video footage is
desirable for efficient traversal of large volumes of data.
Although these are among the top applications for action
recognition, recent works have strayed from the path of
applicability, favouring algorithms with high recognition
accuracy but colossal and sometimes unrealistic running
times.

Our main contribution is in the presentation of a novel
binary spatio-temporal feature descriptor that achieves sig-
nificant running time improvements over state of the art
methods, while remaining highly accurate. We extend recent
work [1] in feature description for object recognition, where
spatial neighbourhoods are described by compact binary
strings. We introduce an implicit temporal component into
the descriptor, while removing components that are of less
value for recognizing actions. Furthermore, we adapt a
recent approach [2] to action recognition for increased effi-
ciency, where the geometric structure of motion is encoded

by dense sampling of self-similarities. Our extension of
this work improves efficiency by avoiding dense sampling
through keypoint detection, while removing the dependency
of requiring future frames to construct the descriptor. By
removing such a requirement, the descriptors can be com-
puted in an online fashion. Throughout the construction of
this descriptor, emphasis is placed on ensuring the entire
descriptor remains binary, gifting us with highly optimized
processing and feature matching. This yields significant
computational gains in approaches such as standard bag-of-
words models, where thousands of matches must often be
made at each frame.

II. RELATED WORK

The avenues of research for action recognition gener-
ally fall into three categories: higher level representations,
trajectory analysis, and local features with a bag-of-words
representation.

Many techniques build complex representations in attempt
to encode semantically meaningful descriptions. These rep-
resentations are designed through a combination of low-
level approaches, constructing a hierarchy of action repre-
sentations. Higher level models are attractive due to their
high recognition performance and intuitive construction.
However, these systems suffer from an excessive amount of
required computation time, making them unsuitable for most
applications. Fathi and Mori [3] use tracking to localize an
action, classifying short subsequences of the target to build
weak classifiers from low-level actions. Adaboost [4] is then
used to combine these into strong, higher-level classifiers.
Jhuang et al. [5] introduce a biologically inspired system
which builds a hierarchy of spatiotemporal feature detectors
with increasing complexity. Basic features are detected,
with methods such as optical flow [6], and a hierarchy
of increasingly complex features are built on the basic
features. Sadanand and Corso [7] construct a large bank of
action detectors, which are manually selected to construct
an “action space”. Each query video is then embedded in
this space based on its response to each detector, producing
a single feature per video.

Tracking interest points and analyzing the motion tra-
jectory has recently been shown to be another effective

approach for action recognition [8], [9], [10]. Efros et al. [9]
track a target actor and compute motion descriptors based on
its optical flow [6] after actor stabilization. The optical flow
is projected onto several channels, corresponding to different
motion components, and blurred to create four channels for
the motion descriptor. Messing et al. [8] use the KLT feature
tracker [6] on 3-dimensional Harris corners [11] to build
descriptors based on the velocity history of keypoints. Wang
et al. [10] use dense sampling to compute dense trajectories
from the optical flow field. While they demonstrate state of
the art results, the approach is infeasible for larger datasets
due to the complexity of computing the Euclidean distance
to match descriptors in a dense sampling paradigm.

The contribution in this paper falls under the domain
of recognition with local spatio-temporal features. Using
local spatio-temporal features with a bag-of-words model
has remained an effective method for producing efficient and
accurate action recognition algorithms. These approaches are
appealing due to their increased efficiency over more com-
plex algorithms, their competitive accuracy, and their ease of
implementation. Laptev and Lindeberg [11] introduced this
approach by extending the Harris corner detector into the
temporal dimension. Detected corners in the spatial domain
are rejected if there is insufficient change across time.
Laptev et al. [12] improve upon that approach by detecting
keypoints at multiple scales. Each detected point is described
by histograms of oriented gradients (HOG) and optical flow.
Chen et al. [13] continue this methodology by computing
the SIFT features [14] and optical flow [6] at each frame,
amalgamating the two descriptors into a single descriptor
named MoSIFT which independently encodes both the mo-
tion and appearance of a scene. Detected SIFT locations with
insufficient optical flow are rejected as keypoints, leaving
only spatio-temporal keypoints on strong motions. Kliper-
Gross et al. [2] capture the local geometry of motion with
self-similarity [15] across the temporal domain. Each frame
is densely sampled, where each pixel centers a self-similarity
computation with a geometric pattern in one frame from
the past and one frame from the future, generating a 64
trinary digit descriptor encoding the motion of the pixel’s
local neighbourhood. Our work is inspired by approaches
that encode appearance and motion independently, while
combining them into one simple feature; in particular, we
followed the MoSIFT framework [16], one of the most
successful methods for event detection at NIST TRECVID
workshops. We also draw inspiration from the alternative
motion representation followed in [2], where motion is
captured through self-similarities.

III. MOFREAK

Several space-time descriptors, such as [12] and [13],
leverage gradient-based methods to encode the appearance
of an action, while using optical flow to capture its motion.
While these works have demonstrated encouraging recogni-

Figure 1. Keypoints are detected on the difference image between each
frame and a frame few time steps away in the past, permitting implicit
motion encoding and robustness to static environments.

tion accuracy, they falter in practice due to the complexity
of computing these descriptors. A binary setup represents
a desirable alternative for efficient keypoint detection, de-
scription, and matching.

Alahi et al. recently presented FREAK [1], a local binary
descriptor with the potential to replace gradient-based ap-
pearance encodings. FREAK is constructed with short binary
strings, based on intensity comparisons within a sampling
pattern inspired by the human retina. FREAK descriptors
are efficient to compute and compare, while presenting
competitive accuracy compared to SIFT [14] in the object
recognition domain. These results inspire us to explore its
potential in the action recognition domain.

We present MoFREAK, a compact binary spatio-temporal
feature descriptor which is inspired by recent advances in
descriptor representation for both object and action recogni-
tion.

A. Appearance modelling

Several approaches for action recognition have success-
fully encoded action appearance by directly porting success-
ful feature descriptors from object recognition into the action
recognition domain [17], [11], [18]. We adopt a similar
methodology in constructing MoFREAK, employing the
recently proposed FREAK descriptor [1] as an appearance
component. FREAK is advantageous by virtue of its binary
nature, making it efficient to compute and match descriptors,
while retaining high recognition accuracy.

At each time step t throughout a query video sequence,
we compute the absolute difference image At(x, y) between

Figure 2. Left: Self-similarity computations are computed in 8 neighbouring locations around a detected keypoint. Right: A 3 × 3 patch is evaluated
against a set of image patches in the past frame to compute 1-byte of the descriptor’s motion component.

0 10 20 30 40 50 60 70

Number of Appearance Bytes

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

A
cc

ur
ac

y

Appearance Size vs Accuracy

Figure 3. We compare the effect of the appearance component size on
recognition accuracy. Significant increases are noted between 0 bytes and
1 byte of appearance data, and between 1 and 2 bytes of appearance data.
The effect levels out when the appearance component is greater than 2
bytes, leaving us with a larger descriptor with no significant performance
increase.

Ft(x, y), the current frame, and Ft−D(x, y), the frame D
time steps in the past.

At(x, y) = |Ft(x, y)− Ft−D(x, y)| (1)

The selection of parameter D, denoting the temporal dis-
tance between two image frames, can greatly influence the
results of this descriptor. For video sequences with a high
frame rate, a small D will result in the comparison of two
nearly identical images, resulting in a poor discriminator
for motion. Conversely, videos with a low frame rate and
a large D will have images which are temporally very far
apart being compared. This scenario causes the descriptor to

be overly sensitive and unable to capture subtle movements.
Throughout the experiments in this paper, a D of 5 was used
on videos with frame rates ranging from 25 to 30 frames per
second.

On At(x, y), we detect the location and scale of numerous
keypoints with the BRISK detector [19] which is a fast scale-
invariant keypoint detector. This process is demonstrated
in Figure 1. From these detections, we extract FREAK
descriptors within the frame Ft(x, y) at the detected lo-
cations and scales. Using the difference image allows the
detector to find keypoints that are interesting in both the
spatial and the temporal domains, owing to the difference
image’s ability to implicitly encode both appearance and
motion. Using the difference image has the added side-effect
of performing rudimentary background subtraction, which
assists in avoiding spurious features and avoids overfitting
to static environments.

As described in [1], the context of the bytes in the FREAK
descriptor increases from coarse to fine as the byte index
increases. The first 16 bytes mainly involve the perifoveal
receptive fields, roughly corresponding to a human’s periph-
eral vision. The remaining bytes help distinguish between
finer details, which are of less interest in action recognition
since we do not want to match specific appearances, such
as a specific actor in a scene. We have experimented with
different descriptor sizes, the results of which can be viewed
in Figure 3. For all possible sizes x ∈ [0, 64], MoFREAK
descriptors have been extracted from the videos in the KTH
dataset using x bytes from the FREAK descriptor. Since
FREAK only returns 64 bytes, larger descriptors cannot be
tested. MoFREAK descriptors from each tested x are used

to evaluate recognition performance (using the approach
described in Section IV). We find that maintaining only the
first 2 bytes of the FREAK descriptor, while discarding the
remaining 62 bytes, leaves us with an appearance model that
is compact, efficient to match, and discriminative enough to
robustly recognize actions. It is important to note that, while
only 2 bytes of appearance data were used in the experiments
in the paper, it is likely that there exist application domains
where the appearance of a video sequence requires the
descriptor to be more detailed to discriminatively capture
and describe spatiotemporal regions. In such a scenario, it
would be advantageous to use more than the suggested 2
bytes of appearance data.

B. Motion modelling

While the first bytes of the descriptor implicitly encode
motion through the absolute difference image, it is insuf-
ficient for most action recognition applications due to its
inability to capture the directionality of the motion at each
keypoint. A common approach for encoding this information
is optical flow, as can be seen in many popular action
recognition algorithms, such as [13], [5], [3], [9]. While
optical flow provides accurate motion representation, it is
generally costly to compute and produces a dense set of
floating point vectors, which is expensive to match and
impede on progress towards real-time recognition.

Recently, Motion Interchange Patterns have been pro-
posed for modelling motion by a series of self-similarity
patch computations [2]. Each frame is densely sampled
such that each pixel yields a 64 trinary digit descriptor,
where each trinary digit corresponds to the result of SSD
computations in the local space-time neighbourhood. We
adopt a binary variation on this technique with an extended
neighbourhood pattern to build an 8 byte motion descriptor.

To construct the motion component for a MoFREAK
descriptor, the detected keypoint is resized to a 19 × 19
patch, on which we compute a series of self-similarity
computations across the spatio-temporal domain. A self-
similarity approach is taken to remain appearance invariant
[15], which enables the model to learn the geometric struc-
ture of the motion, rather than encoding the details of the
specific actor or environment. From this 19× 19 patch, we
perform identical computations on 3 × 3 patches centered
at eight spatial locations. The computations at each of the
eight spatial locations return a single byte of descriptor
data, leaving us with a full 8-byte motion descriptor at
the end of the process. These computations are centered at
pixel locations (5, 5), (5, 9), (5, 13), (9, 5), (9, 13), (13, 5),
(13, 9), and (13, 13), forming the pattern shown on the left-
hand side of Figure 2. 19×19 patches are used because such
a size allows for minimal overlapping information when
rooting the smaller 3×3 patches at each of the eight spatial
locations, while still being evenly spaced.

We denote the patch pt(x, y) as the 3 × 3 patch in
the current frame Ft centered at spatial location (x, y).
We wish to evaluate how the intensity values in pt(x, y)
have changed, relative to its spatial neighbourhood in past
frames. Moving five frames into the past, we define eight
separate 3 × 3 patches at the frame Ft−5 which encode
possible locations in Ft−5 of the structure in pt(x, y). These
eight new patches, pi(x, y) ∀ i ∈ [1, 8], are defined at the
following spatial locations relative to the location of pt:
(−4, 0), (−3, 3), (0, 4), (3, 3), (4, 0), (3,−3), (0,−4), and
(−3,−3). Each pi will be included in an SSD computation
against pt, leaving us with 8 calculations. This process is
visualized in the right-hand side of Figure 2. We convert
the resulting SSD value into a binary decision by comparing
its value against threshold θ, giving rise to a natural 8-bit
descriptor for this set of computations. In our experiments,
a θ value of 288 was used, setting the motion threshold for
bit activation to be an average intensity difference of 32 for
each of the 9 pixel pairs when comparing two 3×3 patches.
We define b(i), the value of bit i, by the following equation:

b(i) =

{
1 : SSD(pi, pt) < θ
0 : SSD(pi, pt) ≥ θ

(2)

The construction of this 8-byte descriptor is a simple set
of independent SSD computations, making it efficient to
compute and highly parallelizable. Encoding the intensity
changes over several image patches within a keypoint’s
neighbourhood is advantageous compared to analyzing the
movement of a single location, since complex motions over
a larger area can be evaluated with our compact encoding.
The choice of SSD comparisons in 8 directions between
frames is motivated with compactness in mind. By using the
pattern shown on the right-hand side of Figure 2, motion is
captured with a single bit from each region surrounding the
source pixel, which permits encoding the entire motion of
the descriptor in a single byte.

IV. RECOGNITION

For the recognition task, we use a standard bag-of-words
representation. Studies have shown [20] that k-means clus-
tering for codeword selection tends to overfit to the densest
region of the feature space, resulting in a clustering that is
often just as poor, if not worse than random cluster selection.
Our experiments were consistent with that hypothesis in
the action recognition domain, leading us to use class-
balanced random clusters for visual codebook selection.
With n classes and k clusters, k

n descriptors are randomly
selected from each class to be codewords. Since we are
working with binary strings, the efficient Hamming distance
is used to measure descriptor similarity.

For classifying the final bag-of-words features, a support
vector machine (SVM) is used with the histogram intersec-
tion kernel. For bag-of-words features a and b, the histogram

box clap wave jog run walk
box 97 0 2 0 0 1
clap 5 95 0 0 0 0
wave 7 3 90 0 0 0
jog 0 0 0 79 9 12
run 0 0 0 11 83 6

walk 1 0 0 3 0 96

Table I
KTH CONFUSION MATRIX

Approach Accuracy
Schüldt et al. [21] 71 %
Dollár et al. [18] 81 %
Laptev et al. [12] 91 %
MoSIFT [13] 87 %
Kovashka & Grauman [23] 95 %
Kliper-Gross et al. [2] 93 %
MoFREAK 90 %

Table II
RECOGNITION RESULTS ON THE KTH DATASET [21] FOR SIMILAR

SPATIO-TEMPORAL FEATURE-BASED APPROACHES. MOFREAK
RETAINS COMPETITIVE ACCURACY WITH SIMILAR STATE OF THE ART
METHODS, DESPITE THE SIGNIFICANT INCREASE IN COMPUTATIONAL

EFFICIENCY.

intersection kernel is defined as

K∩(a, b) =

n∑
i=1

min(ai, bi) (3)

Although the χ2 kernel is very popular in the action recogni-
tion literature, we found the difference in accuracy between
the two kernels to be negligible, while the histogram inter-
section is more computationally efficient.

We selected the bag-of-words + SVM approach purely
based on its simplicity and popularity. By using a generic
action recognition setup, it is simple to evaluate the MoF-
REAK descriptor against future descriptors to benchmark
performance and accuracy.

V. EXPERIMENTAL RESULTS

We evaluate performance on two standard benchmark
datasets for action recognition. KTH [21] is a simple,
single actor dataset that has been benchmarked by several
approaches. In contrast, HMDB51 [22] is a recent dataset
that is among the most difficult datasets due to its vary-
ing complexities. Furthermore, we compare the running
times required by alternative approaches to process KTH,
showcasing the significant computational advantage of MoF-
REAK.

All of our experiments were conducted on standard con-
sumer hardware with unoptimized code. The experiments
were run on Windows 7 with an Intel Core i7 870 2.93
GHz CPU. No GPUs or other hardware optimizations were
used, and the C++ code is not highly optimized.

A. Experiments

KTH dataset: The KTH dataset [21] consists of 599
video sequences, each of which contains a single actor per-
forming one of six actions (hand waving, clapping, boxing,
walking, jogging, and running). 25 separate actors are used,
each performing all six actions under different conditions
(scaling, outdoors, indoors, and changed clothing). Each
sequence is low resolution (160 × 120), and the average
sequence length is 20 seconds.

MoFREAK features are detected and computed on every
frame in each sequence, beginning at the sixth frame to
allow computation of the absolute difference image. Then,
the entire sequence is represented by a bag-of-words model
with 600 randomly selected clusters, 100 clusters for each
action class. We evaluate the performance of MoFREAK on
this dataset through leave-one-out cross validation. For each
of the 25 actors, we remove one for testing and train on
the remaining 24, computing the recognition performance
on that actor. We then average the results across all possible
actors to achieve our final reported accuracy.

The confusion matrix for classification on KTH is dis-
played in Table I. The most significant areas of confusion
are between walking, jogging, and running. Specifically,
our system appears to occasionally confuse jogging with
these two similar actions. To evaluate the effect of the
MoFREAK descriptor, we evaluate against similar methods
which employ spatio-temporal features with a bag-of-words
model in Table II. We find that MoFREAK has compa-
rable performance to the state of the art for comparable
methods. For instance, we perform better than MoSIFT
in accuracy and we are also significantly more efficient,
which we expand upon in Section V-B. The results for
MoSIFT have been generated from the binary provided by
the authors for generating MoSIFT points from a video
sequence. The remainder of the pipeline is identical to that
used in MoFREAK’s experiments.

HMDB51 dataset: The HMDB51 dataset [22] is a sig-
nificantly more difficult dataset than KTH [21]. HMDB51
consists of 51 actions, each of which have at least 101
video representations, with a total of 6, 849 video clips to
recognize. Due to the numerous sources that the videos are
sampled from, such as movies and YouTube, the quality
varies greatly from video to video. This dataset is currently
among the most difficult datasets for benchmarking action
recognition, with most algorithms achieving recognition
accuracy in the neighbourhood of 20 %.

To evaluate our descriptor on this dataset, the 70 - 30
training/testing split presented in [22] is followed. This
evaluation methodology selects 70 videos for training and 30
videos for testing from all 51 actions. The videos were hand-
selected to contain videos of varying quality, environments,
and camera motion. When computing features, we use a
codebook of 5100 randomly selected features, 100 from each

Approach Accuracy
Laptev et al. [12] 20.4 %
Jhuang et al. [5] 22.8 %
Sadanand & Corso [7] 26.9 %
Kliper-Gross et al. [2] 29.1 %
MoFREAK 18.4 %

Table III
RECOGNITION COMPARISON TO PREVIOUS RESULTS ON THE DIFFICULT

HMDB51 DATASET [22].

action, for the bag of words representation.
A summary of reported results are presented in Table III.

These results are all reported on the more difficult, original
HMDB51 dataset, rather than the stabilized alternative. The
current state of the art is achieved with Motion Interchange
Patterns [2], which includes a motion stabilization com-
ponent within the algorithm. We note that, while we do
not have greater accuracy than the remaining approaches,
we remain close while achieving significant performance
speedups, as discussed in Section V-B.

B. Computational Cost

One of the main focal points of this approach is ensur-
ing a low computational cost, granting feasibility on large
datasets. Action Bank [7] reports high accuracy on several
datasets, but its applicability is limited, due to the overhead
involved in building the action detectors and the amount
of time required to process each video. Although the time
required to build the detectors is not reported, processing
a single UCF50 video requires, on average, 204 minutes.
Processing a comparable video with our unoptimized imple-
mentation of MoFREAK requires approximately 1 minute,
a 200× speed increase over Action Bank.

To showcase the performance gains of MoFREAK, we
compare the running time of MoFREAK against similar
spatio-temporal descriptor approaches with reported running
times, outlined in Table IV. This evaluation is done on
the KTH dataset, since there an insufficient number of
approaches report running times on other datasets to make
a valid comparison. We have also run an implementation of
MoSIFT [13] for our comparisons. Fathi and Mori [3] report
a computationally efficient method in which classification
takes between 0.2 and 4 seconds per frame on KTH [21].
Using the midpoint of 2.1 for computation on the 11, 576
seconds of KTH footage at 25 frames per second, this adds
up to over 10, 000 minutes. Assuming a best-case scenario
of 0.2 seconds for each frame, the method still takes 965
minutes to process. Jhuang et al. [5] report that a typical
run takes over 2 minutes per video sequence, processing
only 50 frames per sequence, summing to over 1198 minutes
for KTH. In contrast, we processed the entirety of KTH in
185 minutes, which is a shorter time period than the actual
length of the KTH dataset. While these reported running

Approach Running Time (mins) Accuracy
Fathi and Mori [3] 10,129 90%
Jhuang et al. [5] 1,198 90 %
MoSIFT [13] 449 87 %
MoFREAK 185 90 %

Table IV
COMPARING THE RUNNING TIMES OF PROCESSING KTH [21].

MOFREAK AND MOSIFT [13] WERE COMPUTED WITH OUR C++
IMPLEMENTATION, WHILE THE REMAINING APPROACHES ARE

REPORTED RESULTS.

times would not remain exact on modern day hardware,
they are still indicative of the complexity of the solutions.
Furthermore, while tight computational optimizations and
GPU implementations may lead to near real-time code
in restricted domains, MoFREAK would also be a good
candidate for such optimizations, leading to even further
computational gains.

VI. CONCLUSION

We have presented a compact, 10-byte binary spatio-
temporal keypoint descriptor, MoFREAK, which simulta-
neously encodes the local appearance and the geometric
structure of the motion of a local space-time neighborhood.
The descriptor takes advantage of recent advances in binary
feature descriptors to avoid costly gradient computations that
are typically present in space-time descriptors. The C++
source code for this descriptor is available online. 1

We have shown that this approach has significant com-
putational advantages, being faster than the state of the art
by several orders of magnitude, while retaining competitive
recognition accuracy. On the KTH dataset [21], we achieved
90 % recognition accuracy, while being several times faster
than previous methods.

Throughout this paper, our focus has been on the de-
scriptor rather than the overall recognition system, leading
us to use a very simple bag-of-words representation with a
simple SVM classifier. A more extensive classification setup
may lead to recognition accuracy greater than what we have
reported, and is an area of future work.

REFERENCES

[1] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast
Retina Keypoint,” in CVPR, 2012.

[2] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf,
“Motion interchange patterns for action recognition in
unconstrained videos,” in ECCV, 2012. [Online]. Available:
http://www.openu.ac.il/home/hassner/projects/MIP

[3] A. Fathi and G. Mori, “Action recognition by learning mid-
level motion features,” in CVPR, 2008.

1Source code available: http://www.eecs.uottawa.ca/∼laganier/projects/
mofreak

[4] R. E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” in Machine Learning,
1999.

[5] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically
inspired system for action recognition,” in ICCV, 2007.

[6] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” 1981.

[7] S. Sadanand and J. J. Corso, “Action bank: A high-level
representation of activity in video,” in CVPR, 2012.

[8] R. Messing, C. Pal, and H. Kautz, “Activity recognition using
the velocity histories of tracked keypoints,” in ICCV, 2009.

[9] A. A. Efros, A. C. Berg, E. C. Berg, G. Mori, and J. Malik,
“Recognizing action at a distance,” in ICCV, 2003.

[10] H. Wang, A. Kläser, C. Schmid, and L. Cheng-Lin,
“Action Recognition by Dense Trajectories,” in CVPR, 2011.
[Online]. Available: http://hal.inria.fr/inria-00583818

[11] I. Laptev and T. Lindeberg, “Space-time interest points,” in
ICCV, 2003.

[12] I. Laptev, M. Marszaek, C. Schmid, B. Rozenfeld, I. Rennes,
I. I. Grenoble, and L. Ljk, “B.: Learning realistic human
actions from movies,” in CVPR, 2008.

[13] M. Chen and A. Hauptmann, “Mosift: Recognizing human
actions in surveillance videos,” Carnegie Mellon University,
Tech. Rep. CMU-CS-09-161, 2009.

[14] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 2004.

[15] E. Shechtman and M. Irani, “Matching local self-similarities
across images and videos,” in CVPR, 2007.

[16] M. Chen, H. Li, and E. Hauptmann, “Informedia@ trecvid
2009: Analyzing video motions,” in TRECVID.

[17] X. Sun, M. Y. Chen, and A. Hauptmann, “Action Recognition
via Local Descriptors and Holistic Features,” in CVPR, 2009.

[18] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior
recognition via sparse spatio-temporal features,” in VS-PETS,
2005.

[19] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary
robust invariant scalable keypoints,” in ICCV, 2011.

[20] F. Jurie and B. Triggs, “Creating efficient codebooks for
visual recognition,” in ICCV, 2005. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2005.66

[21] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human
actions: A local svm approach,” in ICPR, 2004.

[22] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre,
“HMDB: a large video database for human motion recogni-
tion,” in ICCV, 2011.

[23] A. Kovashka and K. Grauman, “Learning a hierarchy of
discriminative space-time neighborhood features for human
action recognition,” in CVPR, 2010.

