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Abstract

Gradient features play important roles for the problem of pedestrian detec-

tion, especially the Histogram of Oriented Gradients (HOG) feature. To improve

detection accuracy in terms of feature extraction, HOG has been combined with

multiple kinds of low-level features. However, it is still possible to exploit fur-

ther discriminative information from the classical HOG feature. Inspired by the

symmetrical characteristic of pedestrian appearance, we present a novel feature

of Gradient Self-Similarity (GSS) in this work. GSS is computed from HOG,

and is applied to capturing the patterns of pairwise similarities of local gradi-

ent patches. Furthermore, a supervised feature selection approach is employed

to remove the non-informative pairs. As a result, the Selective GSS feature

(SGSS) is built on a concise subset of pair comparisons. The experimental

results demonstrate that significant improvement is achieved by incorporating

HOG with GSS/SGSS. In addition, considering that HOG is a prerequisite for

GSS/SGSS, it is intuitional to develop a two-level cascade of classifiers for ob-

taining improved detection performance. Specifically, the first level is a linear

SVM with the multiscale HOG features to efficiently remove easy negatives.

At the second stage, the already computed HOG features are reused to produce

the corresponding GSS/SGSS features, and then the combined features are used

to discriminate true positives from candidate image regions. Although simple,
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this model is competitive with the state-of-the-art methods on the well-known

datasets.

Keywords: Pedestrian detection, contour description, self-similarity, feature

selection, cascade

1. Introduction

Vision based pedestrian detection is a challenging task of great practical in-

terest in the field of computer vision because of variant appearance and shapes of

human. A popular paradigm for pedestrian detection is to convert the problem

to binary classification. Discriminative methods extract features inside local re-5

gions and construct classifiers for detection. A sliding window strategy is often

used. However, this problem involves searching a large number of local image

regions for a few objects. Cascade classifiers have been applied to cope with

this problem of imbalance [1]. In contrast to conventional classifiers designed

for a low overall classification error rate, cascade classifiers are required to ob-10

tain a very high detection rate and moderate false positive rate within each

layer. Another breakthrough was the introduction of gradient based features

to pedestrian detection. Inspired by SIFT [2], Dalal and Triggs proposed the

Histogram of Oriented Gradient (HOG) features and reported its impressive

performance [3]. Currently, HOG is considered to be an unexcelled single fea-15

ture. There are many works that fused HOG feature with other features to

improve its performance [4] [5] [6] [7].

The success of the HOG-based methods indicates that contour is an impor-

tant clue for pedestrian detection. The existing methods are usually based on

partitioning a detection window into a set of subregions, extracting contour fea-20

tures in each subregions, and combining the obtained local features. Although

impressive progress has been made in local contour representation, the sym-

metrical characteristic of pedestrian’s appearance was been ignored. As shown

in Figure 1, the fragment contours in local regions located in the symmetrical

positions on pedestrian’s body are similar, on the other hand those located in25
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Figure 1: Illustration of pairwise similarity of HOG blocks. For an image example (left), we

show the total energy in each orientation of the HOG cells (middle), and the pairwise similarity

matrix of the HOG blocks (right). In the matrix, cells with higher similarity are darker. As

shown in the zoomed subfigure, the two blocks located in the foreground are similar because

of the symmetric characteristic of pedestrian’s appearance. On the other hand, the block in

the foreground is dissimilar to the one in the background.

the foreground are dissimilar to the one in the background. In addition, we

found the fact that both the front and profile of pedestrians look symmetrical

in most instances. A few examples are shown in Figure 2. There are apparent

symmetry in shape even in different views between the subregions of shoulders,

trunk, arms and legs. Therefore, it is possible to measure the similarities among30

the subregions within the detection window and include the similarities into the

representation vector for enhancing contour description.

Improving feature extraction is one of valuable research directions for pedes-

trian detection as suggested in [8]. Inspired by the fact that pedestrian’s appear-

ance is usually symmetrical, we present a new feature based on local gradient35

similarity in this work. This feature, termed Gradient Self-Similarity (GSS),

captures pairwise statistics of spatially localized gradient orientation distribu-

tion. Since HOG is one of the most commonly used and effective features for

capturing local gradient patterns, we adopt this feature to represent each blocks
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Figure 2: Examples of pedestrians with symmetrical appearances in different views.

in a sliding window. The similarities among the blocks are measured by the Eu-40

clidean distance in the feature space. We define the GSS feature as a vector

composed of the upper triangular elements of the similarity matrix of the HOG

features associated with the blocks. However the high dimensionality of GSS

may make the computational cost of feature extraction expensive. Consider-

ing that some pairs play more important roles than others, we use the Feature45

Generation Machine (FGM) [9] to perform feature selection. FGM employs a

sparse SVM to determine a subset of the feature for classification while retain-

ing the discriminative information. As a result, only a few informative pairs

are selected to construct the selective GSS feature (SGSS). GSS/SGSS is a kind

of HOG based mid-level features, and achieves additional gains from HOG in50

terms of exploring the association between fragment features. For the purpose

of improving detection efficiency and effectiveness, our proposed framework for

pedestrian detection is a short cascade, which has two levels: the first level is
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a linear SVM classifier combining with multiscale HOG to efficiently rejects as

many of the negative samples while keeping almost all positive samples to the55

next stage. For the candidate image regions, the HOG features are already com-

puted and reused to produce the corresponding SGSS features. At the second

level, we combine the HOG feature and the SGSS feature to discriminate true

positives. We also explore the application of the combined feature associated

with different classifiers including linear SVM, histogram intersection kernel60

based SVM (HIKSVM) and AdaBoost. The AdaBoost based cascade achieves

the best performance, and is comparable to the state-of-the-art methods on

multiple well-known datasets.

The main contributions of this work are two-folder: first, according to our

observation on the symmetrical characteristics of pedestrian’s appearance, we65

develop the SGSS feature as a mid-level feature capturing the patterns of sim-

ilarities among local gradient distributions to significantly improve pedestrian

detection rate. Second, considering that our SGSS feature is computed from

HOG, we design a two-level cascade for pedestrian detection, in which the HOG

feature computed on the first level is reused to construct the GSS feature at70

the second stage. Our method is therefore based on the computation of a single

low-level feature (the HOG). This is an interesting simplification considering

that feature extraction is often a computationally costly step in classification

approaches. Moreover, we show that the proposed approach provides competi-

tive results. The remainder of this paper is organized as follows. In Section 2,75

we discuss relevant works on feature extraction and discriminative methods for

the pedestrian detection problem. In Section 3, we provide details on the pro-

posed GSS feature and the corresponding feature selection approach. In Section

4, we introduce our cascade of classifiers. In Section 5, we provide the imple-

mentation details of the proposed model. In Section 6, we present experimental80

results based on the proposed approach, and the comparison results with exist-

ing methods are also reported. Finally, the conclusion of this paper is presented

in Section 7.
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2. Related Work

In the past decade, great progress in the research of pedestrian detection85

has been made through the investigation of different approaches for feature ex-

traction, classification, and articulation handling. The surveys [10] [8] provide

comprehensive introductions on the existing pedestrian detection approaches.

For feature extraction, Haar wavelet feature was used in the early work of

pedestrian detection [11]. In contrast, HOG [3] is a popular feature used in90

the modern pedestrian detectors. This feature collects gradient information in

local cells into histograms using normalizing overlapping blocks. Local normal-

ization makes this representation robust to small pose variations and changes in

illumination. Although there is no single feature outperforming HOG, multiple

kinds of features have been reported to complement HOG, such as the motion95

descriptor based on Histogram of Optic Flow (HOF) [4], the texture descriptors

based on Local Binary Patterns (LBP) [7] and center symmetric local trinary

patterns (variants of LBP) [12], and the Color Self-Similarity (CSS) feature

[6]. To combine multiple kinds of low level pixel-wise features, Enzweiler and

Gavrila [13] proposed a multilevel mixture-of-experts model built on HOG and100

LBP features computed from intensity, depth and dense flow data. Dollár et al.

[14] proposed an uniform framework for integrating grayscale, LUV color, and

gradient magnitude quantized by orientation. A near real-time version of this

method was provided in [15]. Based on HOG, a number of high-level features

were developed, such as the global pose invariant descriptor [16]. Shape is also105

a commonly used cue for object detection [17] [18] [19] [20] [21]. In [18], the

shape descriptors (shapelets) were learned from gradients in local patches, and

combined by boosting to build an overall detector. Another way to represent

mid-level edge features is based on contour. Lim et al. [21] clustered patches of

hand drawn contours to generate sketch tokens to capture local edge structure.110

Combining with other multiple image channels, the representation of per-pixel

token labelings is utilized as a feature for a boosted detector. Another dictio-

nary based feature is to use sparse coding to construct the histogram of per-pixel
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sparse codes for local representation in [20]. The dictionaries are unsupervised

learned by K-SVD. Also using an unsupervised technique to learn features from115

data, a convolutional network model is used to learn multi-stage shape features

in [19]. In this work, we are inspired by the symmetrical characteristic of pedes-

trian’s appearance, and propose the GSS feature to capture the patterns of the

similarities of fragment contours in local regions. HOG is used as a source of

low-level features from which our GSS feature is computed. Different from CSS,120

we here explore the pairwise statistics of spatially localized gradient distribu-

tions instead of color. Furthermore, a supervised feature selection method is

used to remove the non-informative components in GSS, and produce the SGSS

feature. To the best of our knowledge, SGSS has not yet been used as a feature

for pedestrian detection.125

The most commonly used discriminative approaches to the pedestrian de-

tection problem are various boosting classifiers [14] [22] [23] and SVM classifiers

[3] [24] [25] which are usually in the form of cascade. For instance, in the work

of Viola and Jones [26], the integral image concept is used for fast feature com-

putation, the AdaBoost algorithm is used for automatic feature selection, and130

a cascade structure is used for efficient detection. In [27], boosted decision trees

were applied to a two-level cascade architecture. Felzenszwalb et al. [24] pro-

posed a deformable part model (DPM) in which unknown part positions was

modeled in a latent SVM. In another work [28], based on DPM, an ordering of

the model’s parts was used to define a hierarchy of the models to gain speed135

which is analogous to a classical cascade. In addition, the histogram intersection

kernel has been shown to be more effective than the Euclidean distance for many

classification problems when using histogram features. However, for non-linear

SVM classifiers, the runtime complexity is high. Maji et al. [25] proposed an

approximated intersection kernel SVM which provides great speedup such that140

the nonlinear SVM can be used in sliding window detection. Recently, deep

models have begun to be applied to pedestrian detection [29] [30] [31]. Different

from the classical cascaded classifiers trained sequentially without optimization,

Zeng et al. [31] proposed a multi-stage contextual deep model which jointly
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trains the classifiers at each stage through back-propagation.145

Algorithmically, we use in this work a two-level cascade in which the first

level is a linear SVM, and the second level is a linear SVM, HIKSVM or Ad-

aBoost. This design is justified by the fact that the first level is efficient and can

quickly remove most false positives, and the already computed HOG features

can be reused to generate our SGSS features for further discrimination on the150

second level. We study here the effectiveness of these classifiers when used in

conjunction with the proposed SGSS feature.

3. Gradient Self-Similarity

The concept of HOG is to represent objects by dense grids of gradient his-

tograms that characterize an object’s contour and its spatial information to155

some extent. The detection window is usually divided into cells represented by

gradient histograms, and each 2 × 2 neighboring cells constitute a block. The

L2 normalization is performed on each block, which makes the HOG feature

robust to illumination changes. Since HOG has exhibited excellent performance

in representing local gradient distributions, we employ HOG to encode the lo-160

cal subregions (blocks) in a detection window, and measure the similarities of

these subregions by computing the distances in the feature space. To present

the patterns of similarities between spatially located blocks, we begin with the

introduction of the GSS feature in Section 3.1. In Section 3.2, we present an

effective approach of feature selection to remove the redundant components,165

which provide no more information than the selected subset of components in

GSS.

3.1. GSS Feature

Let H = (H1, H2, . . . ,Hm) be the HOG feature in a detection window, where

Hi, i = 1, 2, . . . ,m, denote the features of the blocks. Since each block consists

of four cells, let Hi = (Hi1, Hi2, Hi3, Hi4) be the concatenated histograms of

the i-th block. We measure the similarities of fragment contours through the
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Figure 3: An example of the horizontal flip operation for HOG blocks.

distances of HOG blocks in the feature space. Since pedestrians are vertically

symmetrical, we consider that the blocks located on the symmetrical positions

of pedestrian’s body, such as the left and right shoulders, should be similar, but

the distances between them may be very large because of the complementarity

of their gradient orientations. To solve this problem, one feasible way is to

horizontally flip the HOG blocks as shown in Figure 3. Let H ′i denote the

flipped vector of Hi. We define the distance matrix as follows:

Di,j = min(d(Hi, Hj), d(H ′i, Hj)) (1)

where d denotes the distance metric. Eq. (1) indicates that the similarity be-

tween HOG blocks is determined by the minimum distance between the flipped

and non-flipped cases. There are many possibilities to define d. We tested a

number of widely used distance functions including the L2-norm, χ2-distance,

dot product, and cosine of the angle between dominant gradient orientations in

the experiments. We use the L2-norm as it yields the best performances. The

corresponding similarity matrix is computed by applying the following trans-

form which guarantees that the similarity values are within the range (0, 1],

Si,j =
1

1 +
(
Di,j−Dmin

Dmax−Di,j

)2 (2)
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where Dmin and Dmax denote the minimum value and the maximum value

respectively (for the cases of the distance defined by dot product and cosine,

the formula of similarity computation in Eq. (2) is slightly adjusted by inverting

the fraction of the denominator because the similarities between the blocks are

proportional to the corresponding distances). Since S is a symmetric matrix,

the GSS feature is defined as follows:

FGSS = (g1, g2, . . . , gn),

gk ∈ Supper = {Si,j |i < j}, k = 1, 2, . . . , n,
(3)

where Supper is the set of upper triangular elements of the similarity matrix, and

this feature vector has n = m×(m−1)
2 dimensions. We exhibit the capability of170

GSS in capturing pairwise similarity patterns of human appearance by means of

an example in Figure 4. We compute the average similarity matrix for positive

training samples. This matrix is shown in Figure 4(a). Each row indicates the

similarities between a HOG block and all the others. We also show several rep-

resentative rows laid out at the corresponding spatial locations of these blocks.175

It is noted that there exist pedestrian structures in the sub-images in Figure

4(b).

Finally, the GSS feature undergoes two normalization steps. The first step

is to perform power normalization through the following operation applied on

each component independently:

f(z) = |z|α, (4)

with α > 0. We empirically observed that this transform indeed improves the

discrimination capability of the GSS feature. The interpretation of this obser-

vation is that the transform in Eq. (4) is a kind of nonlinear mappings which180

re-assigns the values of the elements in the GSS feature such that the trans-

formed feature has a higher discriminating power. We found experimentally

that setting α = 2 consistently leads to near-optimal results. The power nor-

malized GSS feature is subsequently L2-normalized by v := v
‖v‖2 in the second

step.185
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(a)

(b)

Figure 4: Gradient self-similarity as a mid-level feature captures pedestrian structures. (a)

The average similarity matrix of positive samples. (b) The representatives of the meaningful

rows of the similarity matrix visualized by spatial layout.

11



3.2. Selective GSS Feature

For cases where there are many features and comparatively few samples,

feature selection techniques are often used. They bring the benefit of shorten-

ing training times and enhancing generalization by reducing overfitting. High

dimensional vectors may indeed result in great challenges for computation and190

training, and in the case of our GSS feature, it is clear that the similarities

of some block pairs may be non-informative. We therefore opt for FGM as a

tool to perform feature selection such that the trained classifier will be made

of simplified decision rules for faster prediction. In contrast to the Principal

Component Analysis (PCA) [32] that transforms the data into a set of linearly195

uncorrelated variables in an unsupervised way, FGM is a supervised method

which reduces the dimensionality of GSS, while preserving discriminative infor-

mation. Although the Partial Least Square (PLS) analysis [33] is a supervised

dimensionality reduction technique and has been shown to be effective for the

pedestrian detection problem [34], full features still need to be computed be-200

fore PLS projection which maintains the complexity of the feature extraction

process.

Given a set of labeled samples {xi, yi}, i = 1, 2, . . . , n, where xi is the GSS

feature vector and yi is the label, FGM aims at finding a sparse solution with

respect to the input features to a linear SVM can be learnt by minimizing the

following structural risk functional:

min
t∈T

min
ω,ξ,ρ

1

2
‖ω‖2 +

λ

2

n∑
i=1

ξ2i − ρ


s.t. yiω

′(xi � t) ≥ ρ− ξi,

(5)

where ω is the weight vector, the feature selection vector t = (t1, t2, . . . , tm) ∈ T ,

T = {t|tj ∈ {0, 1}, j = 1, 2, . . . ,m} which controls the sparsity of the SVM deci-

sion hyperplane: ω′(x� t), and λ is the regularization parameter that balances205

the model complexity and the fitness of the decision hyperplane. Eq. (5) is a

mixed integer programming problem. After convex relaxation, Tan et al. [9]

proposed an efficient cutting plane algorithm to find a sparse feature solution.
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Figure 5: The selected pairs associated with the anchor blocks shown in Figure 4(b) after

using FGM based feature selection. The squares denote the blocks in the detection window,

and the lines denote the selected pairs.
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Once feature selection performed on the training data by applying FGM, the

feature subset composed of the selected elements in the GSS feature is concise,

while maintaining the discriminating power almost as high as the original GSS

feature as it will be shown in Section 6. Thus we define the selective gradient

self-similarity feature (SGSS) as the selection of FGM:

FSGSS = (gi1 , gi2 , . . . , giK ),

s.t. tik = 1, ik ∈ {1, 2, . . . , n}, k = 1, 2, . . . ,K.
(6)

An example of selected pairs of FGM is shown in Figure 5. It is noted that

most selected pairs involve the blocks, which are located near the contours of210

the pedestrian structures for the anchor blocks shown in Figure 4(b). This

fact indicates that the contours contain discriminating information, which is

consistent with human perception. In contrast to the HOG feature representing

the contour information piece by piece, the SGSS feature is capable to explore

the association patterns of pieces of contour, which can be seen as a mid-level215

features on top of HOG blocks. For this reason, the SGSS feature is considered

to be, to a certain extent, complementary to the HOG feature.

4. Cascade

Another major component for pedestrian detection systems is the classifier.

We therefore explore the applicability of the developed feature combined with220

the commonly used classifiers including linear SVM, HIKSVM and AdaBoost.

As explained before, the proposed GSS feature is computed from the HOG

feature. In order to obtain excellent detection performance while keeping a low

computational cost, we introduce a framework composed of two-level cascade

of classifiers. On the first level, a linear SVM is trained in the HOG feature225

space. The goal of this level to reject as many negatives as possible, while

still passing almost all of the positives to the next level. The first level is

computationally efficient. The second level makes the final decisions for the

candidates including positives and difficult negatives accepted by the first level.

Since the HOG features of the candidates have already been computed on the230
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first level, it is straightforward to compute the corresponding GSS features to

build more discriminative descriptors combining HOG and GSS. Although GSS

feature is high-dimensional and the computation cost is expensive, the number

of the candidates is usually small. In addition, since we performed feature

selection using FGM, the obtained SGSS feature is composed of a small number235

of informative components. These ones are combined with the HOG feature to

train the classifier of the second level to make the final decision. We here apply

three different classifiers to the second level of our short cascade.

4.1. Linear SVM

For simplicity, we propose to use a linear SVM model as a baseline classifier240

at the second level of the cascade. A linear SVM classifier learns the hyperplane

that optimally separates pedestrians from background, and usually provides

good performance in comparison to other linear classifiers. The combined rep-

resentation vectors of the HOG feature and the corresponding SGSS feature are

then fed to the linear SVM for efficient classification.245

4.2. Approximated Intersection Kernel SVM

Kernelized SVMs are typically used for machine learning based discriminant.

Replacing the linear SVM with a nonlinear kernel usually improves performance

at the cost of much higher run times because the application of kernerlized

SVMs to classification requires computing the kernel distance between the input250

vector and each of the support vectors. As a result, kernelized SVMs are rarely

used for detection task because of their high computational load. To make

this computation more efficient, we employ an approximated intersection kernel

SVM [25] on the second level of the cascade which has the benefit of being

independent to the number of support vectors.255
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For a trained HIKSVM, the decision function is given as follows:

h(x) =

R∑
r=1

αryrk(x, xr) + b

=

R∑
r=1

αryr

 m∑
i=1

min(x(i), xr(i))

+ b,

(7)

where k(·, ·) is the kernel function, and xr, r = 1, 2, . . . , R, are support vectors.

Exchanging the summations in Eq. (7), we obtain

h(x) =

m∑
i=1

 R∑
r=1

αryr min(x(i), xr(i))

+ b

=

m∑
i=1

 ∑
1≤r≤p

ᾱirȳ
i
rx̄
i
r + x(i)

∑
p<r≤m

ᾱirȳ
i
r

+ b

=

m∑
i=1

hi(x(i)) + b,

(8)

where x̄ir denotes the increasingly sorted values of xr in the i-th dimension,

and ᾱir and ȳir are the corresponding weight and label. After computing hi(x̄r),

hi(x(i)) can be estimated by first finding p and then linearly interpolating be-

tween hi(x̄p) and hi(x̄p+1). In practice, the input data is quantized in each

dimension, and the piecewise constant approximation is used to compute hi. As260

a result, only a lookup table is required for prediction. In our case, the SGSS

feature can be quantized before training the intersection kernel model. The

discrete SGSS feature is then made more robust to changes in gradients. The

quantization distortion of the SGSS feature does not cause loss in classification

accuracy because of the piecewise constant approximation of hi.265

4.3. AdaBoost

AdaBoost offers another fast approach to learning over high dimensional

data. In contrast to SVMs, boosting methods minimize the classification error

on the training data by combining weak classifiers iteratively. Choosing the

appropriate weak classifier is important to produce a strong classifier. We use270
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the regression stumps as our weak classifiers, which are very simple and compu-

tationally inexpensive because they classify input samples according to a single

dimension of the combined feature vector of HOG and SGSS. We use the Gentle

AdaBoost algorithm [35] to train the model on the second level of our cascade,

which is very similar to other AdaBoost algorithms. During the training phase,275

the same weight is initially assigned to each sample. A weak classifier is then

trained on the weighted training set. The misclassified samples are assigned to

higher weights, which enable the training process to more focus on a subset of

misclassified data. However, classic AdaBoost algorithm is sensitive to noisy

data and outliers. Gentle AdaBoost fits a regression function by minimizing280

a weighted least-squares loss, and modifies the weighting method to put less

weight on outlier samples, which leads to better generalization performance.

When the number of individual regression stumps is met, the output of the

trained weak classifiers is combined into a weighted sum, which is defined as the

final output of the boosted classifier. The runtime of this model is linear in the285

number of regression stumps.

5. Implementation

Since our objective is to explore the applicability of the SGSS feature, we

here use a simple two-level cascade for the task of pedestrian detection. The

first level is the commonly used HOG and linear SVM combo. For the candi-290

dates passing the first level, the already computed HOG features are used to

compute the corresponding SGSS features. The HOG feature and the SGSS

feature are then concatenated and fed to the classifiers (linear SVM, HIKSVM,

or AdaBoost) on the second level. We will first present the details on the pa-

rameter setting and the training procedure for this model, and subsequently295

introduce the postprocessing technique in the following subsections.

5.1. Parameter Setting

Our classification model scans a 64 × 128 detection window with a stride

of 8 × 8 across the image, running a pretrained classifier on the descriptors
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extracted from each resulting image window. For multiscale detection, we use300

a scale stride of 1.05. The widely used version of the HOG feature consists of

7 × 15 blocks of histogram features with 36 dimensions per block. Thus there

are 5460 block pairs and the corresponding GSS feature is a 5460 dimensional

vector of similarities. For feature selection on the GSS feature, the regularization

parameter λ in Eq. (5) controls the tradeoff between the model complexity and305

the fitness. The greater the value of λ is, the higher the dimension of the

SGSS feature is. In the experiment, the value of λ is empirically set to 10, and

about 30% elements of the GSS feature are selected. In the cascade model, the

threshold of the first level is set to −2.5 that pass about 97% positives while

rejecting about 98% negatives on the INRIA pedestrian dataset. For the second310

level, we use the SVM tool LIBSVM [36] to train a linear SVM and a HIKSVM

setting both the values of the parameter C balancing the training error and the

rigid margin to 0.1. In addition, we also trained a boosted classifier with 500

regression stumps.

5.2. Training Procedure315

We train the classifiers on both the two levels of the cascade on the INRIA

dataset. Generally, for machine learning algorithms, more training data means

better performance. However, for the scanning window classifiers, there are

too many negative samples to fit into memory at a single time, and another

relevant issue is that training becomes time consuming in the case. As a result,320

the bootstrapping process is crucial to obtain best performance while keeping

the memory requirements manageable. We train the classifiers involved in the

cascade with initial subsets of negative samples. For the linear SVM on the

first level, 2 negative samples are selected at random for each negative training

image. For the classifiers on the second level of the cascade, 2 negative samples325

having responses from the first level greater than a preset threshold are selected

randomly. Next, the negative samples that are incorrectly classified by the

initial classifiers are extracted. The training procedure is repeated by including

a subset of these difficult negatives into the training set. In our case, we limit
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the number of hard negative samples added to the training set to 2 for each330

image. This process is repeated until the change in the miss rates between two

iterations is smaller than a prespecified threshold.

5.3. Postprocessing

In the test phase, the proposed cascade is performed on each test image

in all positions and scale with the window stride and the scale factor specified335

above. Each object is usually detected in multiple overlapping bounding boxes.

To eliminate repeated detections, non-maximal suppression is used to merge the

multiscale nearby predictions having the final classifier responses greater than

a certain threshold. Specifically, we sort the surviving windows by response,

then iteratively take the highest one and remove the less confident windows340

that sufficiently overlap it. In the experiment, the overlap threshold is set to

0.65.

The PASCAL evaluation criterion is usually used to assess detection perfor-

mance. A detection is considered to be a true positive if the detected bounding

box overlaps more than 50% with the ground truth bounding box, where the345

overlap is measure as the ratio of the intersection area to the union area. For

the test images, the ground truth bounding boxes are tight in both height and

width of pedestrian. However, the positive training samples are normalized only

according to the height such that the change in the foreground area is signifi-

cant, especially for the case of profile. As a result, it may occur that a detected350

bounding box well fits a pedestrian in height but fails to match the ground truth

because of the width. To solve this problem, we roughly divide the positives

into two groups according to the width of pedestrian. For each group, an ap-

propriate cropping solution is made. Once detection is obtained, we compare

the detection with the prototypes of the two groups in the HOG SGSS feature355

space, and adopt the cropping solution of the closed group.
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6. Experiments and Discussion

In this section, we evaluate our GSS/SGSS feature and the proposed cascades

on well-known datasets. All detection rates are compared using False-Positive-

Per-Image (FPPI) curves. First, to confirm the improvement on detection accu-360

racy by introducing the GSS feature, we employ a linear SVM, and compare the

detection performance with HOG and the combinations of HOG and GSS based

on various distance metrics. Second, to show the effectiveness of feature selec-

tion, we study the involved parameters, and compare the performance of using

SGSS and GSS. We also evaluate the cascades associating SGSS with different365

classifiers. Finally, we compare the AdaBoost based cascade using multiscale

HOG and the corresponding SGSS with state-of-the-art approaches.

6.1. Dataset

The test dataset includes the INRIA [3], ETH [37], TUD-Brussels [5], and

Caltech [38] pedestrian datasets. Although the scale of the INRIA dataset is370

relative small, it is popular for evaluating the methods of pedestrian detection

due to variable appearance, wide variety of articulated poses, complex back-

grounds and illumination changes. The training set includes 2416 images of

mirrored pedestrian samples and 1218 pedestrian-free images, and the test set

includes 288 images with 589 annotated pedestrians and 453 pedestrian-free im-375

ages. Only the positive testing images are used for evaluation. The ETH and

TUD-Brussels datasets are captured in urban areas using a camera mounted to

a stroller or vehicle. In the TUD-Brussels dataset, there are 508 image pairs

with overall 1326 annotated pedestrians. In addition, the ETH dataset consists

of three test sets including 999, 450 and 354 consecutive frames with 5193, 2359380

and 1828 annotated pedestrians respectively. The Caltech dataset is the most

challenging and the largest by far. It contains 11 subsets of videos, the first 6 for

training and the last 5 for test. There are total 350k pedestrian bounding boxes

around 2300 unique pedestrians annotated. The evaluation on this dataset is

performed using every 30-th frame.385
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Figure 6: Comparison of the different types of GSS features on the INRIA dataset.

6.2. Distance Metric

The definition of the distance metric in Eq. (1) is the key to construct dis-

criminative GSS features. The first experiment is to explore several possibilities

for defining the function d. Having obtained the HOG feature of a sliding win-

dow, we here test the common distance functions including the L2-norm, dot390

product, χ2-distance, and cosine function (for each pair of HOG blocks, the

value of d is defined as the mean of the cosine values of the angles between

the dominant gradient orientations of the corresponding cells). We evaluate

the different combinations of the HOG feature and these types of GSS features

by training linear SVMs and testing them on the INRIA dataset. The results395

shown in Figure 6 demonstrate that the addition of our GSS feature gives a

significant boost to detection accuracy, which indicates that these GSS features

are complementary to HOG indeed. Some representative results shown in Fig-

ure 7 more specifically demonstrate the enhanced discriminability in the cases

of occlusion and deformation. Compared with the other three types of distance400

21



functions, the L2-norm is the best. HOG GSS (L2-norm) is consistently bet-

ter than HOG, and improves by 0.2 the detection rate at 10−1 FPPI. In the

subsequent experiments, we will use the L2-norm based GSS feature.

6.3. Feature Selection

To reduce the computation cost of the GSS feature while keeping discrimi-405

native information, we apply FGM to determine a concise subset of GSS com-

ponents as the SGSS feature. Since FGM is supervised, it is guaranteed that

the obtained feature will be discriminative. The parameter λ controls the di-

mension of SGSS. We here test different values of λ: 0.1, 1, 10 and 100. In each

case, we combine the HOG feature and the obtained SGSS feature to retrain410

a linear SVM, and the performance is shown in Figure 8. With the value of

λ increasing, the dimension of SGSS becomes higher, and the corresponding

performance is closer to that of GSS. Even in the case of λ = 0.1, the SGSS

feature of 426 dimensions improves the detection rate by 0.15 at 10−1 FPPI on

the INRIA dataset. The change in performance is not significant when λ = 10415

and 100. In the following experiments, we set the value of λ to 10 because the

dimensionality of the SGSS feature is less than half that of the GSS feature

(5460) with only a minor loss in detection rate.

6.4. Cascade Evaluation

In this experiment, we evaluate the detection performance of the cascades420

introduced in Section 4 on the INRIA dataset. To fully explore the discrimina-

tion capability of the SGSS feature, we use the multiscale HOG feature, which

includes 3 different window size: 64× 128, 32× 64 and 16× 32. Specifically, for

a 64 × 128 sliding window, we resize the image region to 32 × 64 and 16 × 32,

and compute the corresponding HOG features. To compute the corresponding425

GSS feature, we take the similarities of the blocks in different scales into con-

sideration. As a result, there are total 129 HOG blocks, and the corresponding

GSS feature has 8256 dimensions. After feature selection, the SGSS feature

only has 2162 dimensions. A common linear SVM trained with the multiscale
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(a)

(b)

Figure 7: Some representative results of (a) HOG and (b) HOG GSS (L2-norm).
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Figure 8: Comparison of the GSS feature and the SGSS features on the INRIA dataset.

HOG feature is adopted on the first level of the three level-2 classifiers to be430

evaluated. On this second level, the feature composed of the multiscale HOG

feature and the SGSS feature are then fed to a linear SVM, HIKSVM or Ad-

aBoost classifiers. The results shown in Figure 9 demonstrate that the two-level

cascade significantly outperform the linear SVM associated with a single scale

HOG. This is mainly due to the multiscale representation and our complemen-435

tary SGSS feature. In addition, both HIKSVM and AdaBoost used on the

second levels of the cascade are better than linear SVM, and the performance

of AdaBoost is the best.

6.5. Comparison

We finally evaluate our SGSS feature based classifier on the INRIA, ETH,440

TUD-Brussels and Caltech pedestrian datasets, and compare the proposed ap-

proach with the existing methods. We here employ the AdaBoost-based cascade

using the multiscale HOG and the corresponding SGSS as the one used in the
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Figure 9: Comparison of linear SVM, HIKSVM and AdaBoost as the 2nd level of the cascade

on the INRIA dataset.

above experiment. The results are shown in Figures 10-13; note that for all the

experiments, our classifer has been trained on the INRIA dataset. Our detector445

significantly outperforms the baseline detector (HOG) by about 0.32, 0.15, 0.23

and 0.17 in a detection rate of 10−1 FPPI on the four datasets respectively. Al-

though the proposed model is simple, our detector is close to DPM (LatSvm-V2)

as the best detector purely based on the HOG feature on the INRIA dataset,

and exhibits better performance on the other three datasets. The other state-450

of-the-art methods consider more feature channels such as color and gradient

magnitude. Despite this fact, our approach provides very competitive results,

especially on the ETH, TUD-Brussels and Caltech datasets. The relative or-

dering of the proposed method is roughly preserved across different datasets,

which indicates that our SGSS feature is robust to imaging condition changes.455
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Figure 10: Comparison of different methods on the INRIA dataset.

Figure 11: Comparison of different methods on the ETH dataset.
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Figure 12: Comparison of different methods on the TUD-Brussels dataset.

Figure 13: Comparison of different methods on the Caltech (reasonable) dataset.
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7. Conclusion

In this paper, we presented a mid-level feature: termed GSS, which cap-

tures the patterns of pairwise similarities of local gradient distributions. To

obtain a concise subset of elements in the GSS feature without losing discrim-

inative information, we employed a sparse SVM to generate the SGSS feature.460

Considering that our SGSS feature is derived from HOG, a two-level cascade

for pedestrian detection was designed to use a linear SVM with HOG to filter

candidate image regions. The second layer of this cascade reused the com-

puted HOG to construct the corresponding SGSS and make the final decisions.

Instead of computing other low-level features, we use SGSS to mine further dis-465

criminative information from the already computed HOG. The results of the

experiments demonstrate that the GSS/SGSS feature is capable of improving

the detection performance, and the resulting two-level cascade is competitive

with other top-performing approaches.

Note that the proposed GSS/SGSS feature is built on simple regular grids470

and composed of comparisons of a number of HOG block pairs in the sliding

window. This leads to the question on how to design an ideal sampling pattern,

which would work better than regular grids. Inspired by the work of Alahi et

al. [39] mimicking the human visual system, we now would like to design a

center-symmetric sampling pattern which has higher density of points near the475

center with a variation of the Gaussian kernel size in order to gain performance

in our future work.
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