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Abstract

This paper studies the performance of various scale-
invariant detectors in the context of feature match-
ing. In particular, we propose an implementation
of the Hessian-Laplace operator that we called Scale-
Interpolated Hessian-Laplace. This research also proposes
to use Haar descriptors which are derived from the Haar
wavelet transform. It offers the advantage of being compu-
tationally inexpensive and smaller in size when compared
to other descriptors.

1. Introduction

A common step in most computer vision algorithms
requires representing image content in terms of features.
These features which represent specific visual patterns can
be used to identify corresponding structures between im-
ages. In the last decade, a lot of research has been done to
study the properties of invariant features. These are features
detected and described in a way that is invariant to scale
and affine changes in the image. The rapid development
in the domain of invariant features has led to a significant
improvement in the performance of recognition algorithms.

In this paper, we propose a comparative study of the per-
formance of the Scale-Interpolated Hessian-Laplace to de-
tect feature points. The detector uses the Hessian matrix to
locate points in the image plane and a Laplacian function to
compute scale for those points. A localization step ensures
that the location and scale of the points detected is close
to their true location. We also introduce Haar descriptors
which are based on the Haar wavelet transform. Haar de-
scriptors offer the advantage of being compact and easy to
compute.

2 Scale Invariant Features

The concept of scale-space representation was intro-
duced by Witkin[12] for representing one dimensional sig-
nals at multiple scales. The scale-space representation for
an image is built by convolving the image with different size
of kernels. The scale parameter associated with each image
is directly related to the σ value of the kernel convolvedwith
that image. Various studies in the literature have shown that
Gaussian kernel is the most optimal kernel to build such a
representation.

Using Gaussian kernels, the process of generating a
scale-space representation can be mathematically expressed
as

Gn(x, y) = g(x, y, σn) ∗ I(x, y) (1)

where Gn(x, y) denotes the nth level Gaussian image in
the scale-space representation and g(x, y, σn) is the two di-
mensional Gaussian kernel given and σn corresponds to the
standard deviation of the kernel at the nth scale, with:

σn = sn−1σ1 (2)

where s denotes the scale ratio between adjacent images.
Scale-invariant features are extracted using multi-scale

image representations where image points are associated
with a scale parameter by searching for maxima of some
function. The scale parameter thus obtained is used to as-
sign a circular region to each feature point. Hence, unlike
ordinary features, scale invariant features have associated
regions. These regions are later used to generate descrip-
tors for these feature points which are eventually used to
match feature points between images.

Lindeberg[5] proposed a method for detecting blobs like
features in a scale-space representation. In order to detect
points and compute their scale, a search for 3D maxima
of scale normalized Laplacian of Gaussian is performed.
Lowe[6] proposed a scale invariant detector based on a
multi-scale representation constructed using differences of



Gaussian images. Interest points which correspond to blobs
are detected by looking for 3D extrema of the difference of
Gaussian function. The Harris matrix has been frequently
explored to detect points which are scale invariant. Miko-
lajczyk and Schmid[7] extended the detector by combining
it with the Laplacian function to form the Harris-Laplace
detector. For Harris points computed at different scales, a
scale normalized Laplacian response is calculated over all
the scales. The local extrema of this response is then used
to select the scale for a feature.

3 Scale Interpolated Hessian-Laplace Detec-
tor

The Hessian matrix is composed of second order partial
derivatives derived from Taylor series expansion. This ma-
trix has been frequently used to analyze local image struc-
tures. The 2x2 Hessian matrix can be expressed as:

H =
[
Ixx(x;σD) Ixy(x;σD)
Iyx(x;σD) Iyy(x;σD)

]
(3)

where Ixx, Iyy and Ixy are the second order derivatives
computed using Gaussian kernels of standard deviation σD .

The determinant of the Hessian matrix can be used to
detect image structures which have strong signal variations
in two directions. The scale-space representation is built by
convolving the image with Gaussians of increasing size [8].
The scale of a scale-space image is equal to the standard
deviation of Gaussian kernel used to generate that image.

3.1 Scale Selection

Once we have the spatial location of points detected on
different levels of the scale-space representation, the next
stage involves computing the proper scale for these points.
The scales where the description of the image points con-
vey the maximum information are termed as characteristic
scales. A number of previous experiments have shown that
the Laplacian function is the most suitable function for de-
tecting the characteristic scale for an image structure. The
scale normalized Laplacian function can be expressed as:

Laplacian(x;σD) = σ2
D|Ixx(x;σD) + Iyy(x;σD)| (4)

where Ixx and Iyy are second order derivatives. One of the
advantages of using the Hessian matrix is evident here as the
Laplacian function corresponds to the trace of the Hessian
matrix.

For a point detected in a scale-space image, its Lapla-
cian is computed over all scales and the scale for which
the Laplacian attains a local maximum is assigned as the
characteristic scale. Local maximum here corresponds to
response for a given scale being greater than its adjacent

scales and above a given threshold. This is the strategy used
in the regular Hessian-Laplace operator.

3.2 Keypoint Localization through scale
interpolation

The keypoints detected using the previous approach will
not be detected precisely at signal changes but in the neigh-
borhood of those changes. This drift will cause the spatial
location of a point to move away from its true location. To
localize points both in scale and space, it is better if this
procedure is carried out simultaneously.

Brown and Lowe[1] use a 3D quadratic function to esti-
mate the new location and scale of a point using an iterative
procedure. This procedure was used by Lowe[6] to localize
points detected with difference of Gaussian detector.

An observation that can be made from a scale-space rep-
resentation is that for large scale values the scale difference
between successive images is greater. This causes the lo-
calization error to increase for larger scales. This error in
the scale value also affects the computation of orientation
and descriptor as the these operations require the selection
of an image patch around the point that is proportional to
its scale value. Hence, here we focus more on choosing the
correct scale for a point than localizing it in the spatial do-
main. Given a point at a scale image s, we fit a parabola
between the image s and its adjacent scale images. The
scale for which the parabola attains a maximum is selected
as the new scale for the point. We also compute the sub
pixel location of the point using bilinear interpolation in
a 3x3 neighborhood. This interpolation is performed on
the scale-space image where the point was originally de-
tected. Even though the Hessian-Laplace points obtained
using this scale-interpolation method are not perfectly lo-
calized in space (2D location in the image plane), these
points are well localized in scale which we will show be-
ing crucial for feature matching.

4 Repeatability Tests

Repeatability is one of the most important criteria used
for evaluating the stability of feature detectors. It measures
the ability of a detector to extract the same feature points
across images irrespective of imaging conditions. For two
images having n1 and n2 feature points, the repeatability
rate is defined as:

Repeatability rate =
n3

min(n1, n2)
(5)

where n3 is the number of repeatable feature points com-
puted between the two images using n1 and n2.

In the context of scale invariant detectors, the scale pa-
rameter also has to be incorporated into the computation of



repeatability. The scale of a point is used to associate a re-
gion with a point proportional to its scale value. The overlap
error for two points can be expressed as:

Overlap Error = |1 − s2
min(σ2

1 , σ
2
2)

max(σ2
1 , σ

2
2)
| (6)

where s is the actual scale factor between images.
Here we compare the performance of three detectors; the

Difference of Gaussian detector 1 proposed by Lowe[6] and
referred to as DOG, Hessian-Laplace detector2 proposed by
Mikolajczyk and Schmid[8]) and referred to as HL and the
Hessian-Laplace implementation proposed in this research,
referred to as SIHL (Scale-Interpolated Hessian-Laplace).
The performance of the detectors is compared using an im-
age set consisting of 10 images where different amounts of
scaling (up to a scale factor of 4.4) and rotations are applied
to the reference image3;. For comparing these different de-
tectors we use the repeatability code provided by Mikola-
jczyk and Schmid on their webpage4.

There are two parameters that can affect the repeatabil-
ity score between images; first is the number of regions de-
tected in both images and second is the size of those re-
gions. Detecting a smaller number of points leads to regions
which are distinctive and stable. A large number of points
on the other hand can at times clutter the scene and lead to
ambiguous matches. While evaluating the performance of
affine detectors Mikolajczyk and Schmid[10] observed that
for some detectors the repeatability increased with an in-
crease in number of regions while for others it decreased.
Hence in order to compensate for region density and to im-
prove the accuracy of the results, we detect the same num-
ber of points for all detectors in each image.

Figure 1 shows the repeatability in percentage and the
number of correspondences obtained for the different ap-
proaches for different scale factors. A better repeatability
is obtained for SIHL detector as compared to the other de-
tectors. The points detected using the SIHL approach are
detected in close proximity which basically leads to a large
number of points detected in the common region of two im-
ages which eventually results in high repeatability.

5 Feature Descriptors for Matching

Having extracted features from an image, the next step
in any matching or recognition application requires associ-

1DOG points are computed using the publicly avail-
able SIFT executable from David Lowe’s webpage
http://www.cs.ubc.ca/ lowe/keypoints/

2The executable binaries have been taken from
http://www.robots.ox.ac.uk/ vgg/research/affine/detectors.html

3The image data sets were taken from
http://www.robots.ox.ac.uk/ vgg/research/affine/. The ground truth
for all images with respect to the reference image is known.

4http://www.robots.ox.ac.uk/ vgg/research/affine/evaluation.html
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Figure 1. Repeatability tests of different fea-
ture detectors . (a) Repeatability score for
40% overlap error (b) Number of repeated
correspondences for 40% overlap error.

ating every feature with a unique identifier or a signature
which can be used to identify the feature from a database.
These identifiers or signatures used to describe features are
termed as feature descriptors.

A key attribute of descriptors that is vital in determin-
ing their robustness, relates to their ability to handle differ-
ent geometric and photometric transformations. Ideally, de-
scriptors are designed such that they are invariant to changes
in image scale and image rotation. In addition to these prop-
erties, the descriptor should also be robust to errors in lo-
calization of features and should not be affected by partial
occlusions.

The SIFT (Scale Invariant Feature Transform) descriptor
proposed by Lowe[6] has been one of the most widely used
descriptors. It uses the local gradient information inside the
patch to build a representation based on an histogram of ori-
entations. In a survey done to compare the performance of
different descriptors by Mikolajczyk and Schmid[9], SIFT
was shown to perform better than all other local descriptors.

Principal Component Analysis-SIFT (PCA-SIFT) was
proposed by Ke and Sukthankar[3] to overcome the prob-
lem of the high dimensionality of the SIFT descriptor.
Rather than generating orientation histograms like SIFT, the
descriptor is computed by extracting horizontal and vertical
gradients from the patch. This is followed by a PCA oper-
ation which leads to the reduction in dimensionality of the
descriptor.

6 Wavelet Descriptors

Wavelet transform has been frequently used for multi-
resolution analysis of images in order to perform compres-
sion, feature extraction and texture analysis. It is the abil-
ity of wavelets to generate a compact representation of an
image, that is of particular interest when they are used to
represent local image structures.



Amongst all the different wavelet basis, Haar wavelets
are the ones that are most commonly used for computing
descriptors. This frequent use of Haar wavelets arises from
that fact that Haar basis functions are computationally very
easy to implement. The basis functions for Haar can be
numerically expressed as:

ψj
i (x) = 2j/2ψ(2jx− i) i = 0, ...., 2j − 1 (7)

where

ψ(x) =

⎧⎨
⎩

1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1
0 otherwise

(8)

The above notation represents the Haar basis functions in
one dimension. Then given a one dimensional signal, its
representation in terms of Haar basis can be written as:

f(x) =
∞∑

i=−∞
cj′i φ

j′
i (x) +

∞∑
i=−∞

∞∑
j=j′

dj
iψ

j
i (x) (9)

where

φj
i (x) = φ(2jx− i) i = 0, ...., 2j − 1 (10)

φ(x) =
{

1 for 0 ≤ x < 1
0 otherwise

(11)

Here j′ is the starting scale. The functions φj
i (x) are known

as the scaling functions. The coefficients cji associated with
the scaling functions are used to represent the average val-
ues. The coefficients dj

i of the wavelet functions represent
the detail coefficients which can be used along with the av-
erage values to reconstruct the original signal.

In the context of image features, the objective of using
Haar basis is to represent the image patch around a fea-
ture in terms of Haar coefficients. The idea is that some
of the detail coefficients can be neglected without losing
too much information about the patch. Haar basis functions
are orthogonal; this property helps to preserve Euclidean
distances between feature descriptors. Thus, the Euclidean
distance measure can be applied directly on Haar descrip-
tors to find the nearest neighbor.

Krishnamachari and Mottaleb[4] proposed a method to
perform image retrieval and match video segments using
a descriptor computed from Haar basis functions. Their
method is based on extracting color histogram of an im-
age and converting it into a 63 bit descriptor of Haar trans-
form coefficients. This descriptor is then used as an index to
perform image retrieval from a database. Utenpattanant et
al.[11] proposed a method using the same descriptor along
with a pruning technique for their retrieval application.

Brown et al.[2] developed a method for matching images
where a 8x8 patch of sampled intensity values extracted for

a point, was converted to a 64 bit descriptor of Haar trans-
form coefficients. The first three non zero Haar coefficients
were then used to represent a feature and used as an index
to find nearest neighbors using a lookup table method. Our
method of computing Haar descriptors is closely related to
their method.

6.1 Haar Descriptor Computation

The computation of Haar descriptors is done by first se-
lecting a patch around a point whose size is proportional
to its scale value and rotated depending upon its orienta-
tion. The patch which is selected at the keypoint’s scale
image is then resized to a patch of size patchsize. We
have used patches of patchsize 8, 16, 64. Normalization
is performed to ensure the patch has zero mean and unit
standard deviation. This ensures that the descriptor is un-
affected by changes in image illumination. Then the patch
is converted to a descriptor of Haar coefficients using the
Haar wavelet transform. We generate the final descriptor by
selecting a few or all of the Haar coefficients. The number
of coefficients to be selected is decided by the parameter
vectorsize. Using different patchsize and vectorsize re-
sults in different configurations of Haar descriptors.

To measure the similarity between two descriptors, the
ratio of Euclidean distances used in SIFT can be used. The
measure is calculated by computing the ratio of distance to
the closest and the second closest neighbor for a given de-
scriptor. It is assumed that the nearest neighbor is a correct
match while the second nearest is an incorrect match. It has
been shown that it is easier to differentiate between correct
and incorrect matches using this measure based on ratio of
distances rather than using the distance of nearest neighbor
alone.

7 Image Matching Experimental Results

Various evaluation metrics have been proposed in the lit-
erature for analyzing matches. Here, we evaluate our re-
sults using two evaluation metrics. For the first metric, we
compute the number of correct matches obtained for vari-
ous matching algorithms in both absolute and relative terms
[10].

Every feature point is associated with a scale-
proportional region and a descriptor. Two points are said
to be matched if the overlap error between their respective
regions is below 50% and the Euclidean distance between
their descriptors is below a threshold. Once we have the
number of correct matches, we compute the matching score,
which is defined as the ratio of correct matches to the num-
ber of detected points.

In any matching application, not only are we interested in
knowing the number of correct matches but also the number



of false matches obtained. The metric which is widely used
for performing such analysis is based on measuring recall
and 1-precision. The correct and false matches are analyzed
by this metric for different values of the matching threshold.

In the context of our research, a true positive corresponds
to a correct match between the two images while a false
positive refers to a false match. Consequently, we redefine
recall and 1- precision as:

recall =
number of correct matches

number of correspondences
(12)

1 − precision =
number of false matches

total number of matches
(13)

The ideal recall vs 1-precision curve is a vertical line which
starts at zero recall and goes up to a recall value of one
for a zero value of 1-precision and is horizontal thereafter.
However, in any scenario due to image distortions and non
repeated points we will get false matches. Usually, as
the threshold parameter is relaxed, the number of correct
matches increases which in turn increases recall but as more
false matches are introduces, 1-precision increases as well.

8 Matching Experiments

Any matching algorithm consists of two distinct entities,
namely the feature detector and the feature descriptor. The
feature detector is used to detect points in an image while
the feature descriptor is used to generate a description for
these points. Here we use the above mentioned metrics to
evaluate the performance of different detectors when com-
bined with different descriptors. The different configura-
tions evaluated in this research are given below:

• Difference of Gaussian (DOG) detector + SIFT/PCA-
SIFT descriptor5 6

• Hessian-Laplace (HL) detector + SIFT/PCA-SIFT de-
scriptor7

• Scale Interpolated Hessian-Laplace (SIHL) detector
(our Hessian-Laplace approach) + SIFT/PCA-SIFT
descriptor8

• Scale Interpolated Hessian-Laplace (SIHL) detector
(our Hessian-Laplace approach) + Haar descriptor

5For computing SIFT descriptors for DOG detector we use the
publicly available SIFT executable from David Lowe’s webpage
http://www.cs.ubc.ca/ lowe/keypoints/

6For computing PCA-SIFT descriptors, we use the binaries provided
by Yan Ke http://www.cs.cmu.edu/ yke/pcasift/

7SIFT and PCA-SIFT descriptors are computed using the
code provided on K.Mikolajczyk and C.Schmid’s website
http://www.robots.ox.ac.uk/ vgg/research/affine/descriptors.html

8We use our implementations of SIFT and PCA-SIFT

From the results of Figure 2, it can be observed that the
size of the patch has little effect on the number of correct
matches. Also, the 64 bit Haar descriptors produce more
matches as they produce a more distinctive representation.
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Figure 2. Matching score for different Haar
descriptors combined with SIHL detector.

Figure 3 shows the matching scores for the enumerated
configurations. The first observation that can be made from
these graphes is that for every feature detector, a better score
is obtained when the detector is combined with SIFT de-
scriptor than PCA-SIFT. This leads to the conclusion that
SIFT is a better descriptor than PCA-SIFT. The SIHL de-
tector gives the maximum number of correct matches and
the highest matching score when combined with the SIFT
descriptor. A similar pattern can be observed when the three
detectors combined with PCA-SIFT descriptor are consid-
ered. In this case, the SIHL detector along with PCA-SIFT
gives the highest number of correct matches. Surprisingly,
the 64 Haar descriptor obtains the second highest matching
score and the second largest number of matches throughout
the range of scales for the given image scene. This indicates
that once a patch has been selected around a point which is
invariant to scale change and image rotation, even a simple
operation like Haar decomposition can be used to generate
a sufficiently reliable descriptor.

Although these curves do indicate how good a match-
ing technique is in finding the number of correct matches, it
tells us nothing about the number of false matches obtained.
In order to investigate that aspect, we look at the recall
vs 1-precision curves of different strategies for both near-
est neighbor matching and distance ratio matching measure
(refer to Figure 4). A quick look at the these curves in-
dicates that even though the DOG detector with SIFT de-
scriptor doesn’t give the highest number of matches, it still
gives the most stable matches with the fewest mismatches.
This is due to the distinctiveness of DOG points which re-
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Figure 3. Results for different matching
strategies for the scaling and rotation image
dataset.

sults in very few ambiguous matches (point in one image
being matched to two or more points in the other). The
curves obtained for the two Hessian-Laplace detectors with
the SIFT descriptor are quite similar. The Haar descriptor
and the combination of DOG detector and PCA-SIFT de-
scriptor also give good curves. Another thing that can be
observed from the two graphs is that the SIFT descriptor
obtains a higher recall for the same 1-precision value for
the ratio matching measure while the PCA-SIFT descrip-
tor obtains a higher recall for the same 1-precision for the
nearest neighbor measure.
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Figure 4. Comparison of different match-
ing strategies for two images from the scal-
ing and rotation image dataset. (a) Nearest
neighbor matching measure (b) Distance ra-
tio matching measure


