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Abstract – This paper presents a novel algorithm to iteratively com-
pute camera paths of long image sequences. Scale Invariant Features
are first extracted from the ordered set of images. These images are
then matched pair-wise sequentially and correspondences are com-
puted. An initial geometric path can be found after by applying a
bundle adjustment algorithm on these correspondences. Distances
between cameras can be computed from this initial estimation. The
iteration process starts by grouping nearby cameras and then bundle
adjusting the groups, and ends by merging the groups. This process
is repeated until the reprojection errors fall into the preset tolerance.
The key point in this algorithm is to take the advantages of loopbacks
in the image sequences. We have obtained excellent results for two
particular camera paths, namely the spiral path and the snake like
path. Our algorithm achieves both precise and stable results.

I. INTRODUCTION

Camera pose estimation has been explored for the past
few decades and it still remains an active topic. Its applica-
tions involve but are not limited to image based rendering [1],
robotics [2], photogrammetry [3] and virtual navigation [4].
Several successful pose estimation methods have been pro-
posed for specific short image sequences [5], [3], [6]. Among
them we can see that the bundle adjustment brings better results
since it provides a true maximum likelihood estimation even
when a few input data were missing [7]. Unfortunately, bundle
adjustment has intrinsic drawbacks that prevent it from being
used directly. These drawbacks include [7], [8]: i)Good ini-
tialization requirement; ii)Extremely time consuming process;
and iii)Convergence problem. These become severe when
dealing with long image sequences that contain hundreds of
images.

The two practical methods that use bundle adjustment indi-
rectly [7] are the hierarchical merging of sub-sequences and the
incremental approach. Royer et al. [2] presented a hierarchical
method. The original long image sequence is recursively sub-
divided into two parts with two overlapping frames until there
are only three frames left in each final segment. Local esti-
mations are done by running the bundle adjustment over all
the triplet frames. These triplet frames are merged and then
a global bundle adjustment is exploited to find the reconstruc-
tion. However, it is not efficient to run the global bundle ad-

justment on long image sequences because of the very large
number of frames involved. Shum et al. [8] presented another
hierarchical method that uses the bundle adjustment efficiently
with virtual key frames. Instead of recursively subdividing the
original image sequence, they only divided the sequence into
small segments once and no further subdivision is performed.
These small segments are merged to find a complete 3-D recon-
struction after bundle adjustment is applied to each segment.
Also, two virtual key frames are extracted from each segment.
The final 3-D reconstruction is found by running bundle ad-
justment on the virtual key frames. This method significantly
speeds up the bundle adjustment process for long image se-
quences. However, both these hierarchical methods suffer from
the accumulated error built by the merging process. It results
an initial reconstruction that has drifted away from the real lo-
cation and the final bundle adjustment may not converge due
to the poor initial reconstruction.

Mouragnon et al. [9] presented an accurate incremental
method for reconstruction and localization. The bundle ad-
justment is run whenever a new key frame and 3-D points are
detected and added to the system. Although this method works
better than global bundle adjustment, it requires that the in-
volved frames be relatively far from each other and that the
camera be precisely calibrated. This may not be appropriate
for a video sequence in which the frames are very close to each
other.

In this paper, we present an iterative algorithm that com-
putes the camera path of long image sequences. It consists in
applying successive bundle adjustment phases on different seg-
ments of the image sequence. The local models thus obtained
are merged together into a common reference frame. The pro-
cedure is then repeated on a new grouping of the cameras, until
the reconstruction error has reached a given error tolerance.

The main objective of the approachwe proposed is to ensure
the scalability of the reconstruction and the good convergence
of the bundle adjustment process by imposing a limit on the
number of views for which the structure and motion parameters
have to be simultaneously optimized. Indeed, the method does
not require a global bundle adjustment phase on the full set
of images. Error accumulation is here prevented by exploiting
the presence of loopbacks and common field of views in the



camera path.

II. BUNDLE ADJUSTMENT AND CAMERA MATRIX

Bundle adjustment is the process by which globally visually
consistent solutions are found for the structure and motion of
a scene viewed by multiple cameras. The bundle adjustment
procedure has been described by many authors [10], [7], [11].
The problem is usually formulated as follows:

Given the ith 2-D point of the jth image, find the maximum
likelihood camera projection matrix P ′

j and the maximum like-
lihood 3-D point M ′

i simultaneously such that the reprojected
image point m′

ij is as close as possible to the given image point
mij . Bundle adjustment tries to minimize the overall error of
the complete given 2-D points and the reprojected points by ad-
justing all the camera projection matrices and the 3-D points.
Several equivalent minimization equations of the bundle ad-
justment are shown below:

min
∑

i,j

d(m′
ij , mij)2 (1)

min
∑

i,j

d(P ′
j · M ′

i , mij)2 (2)

min
∑

i,j

d(KQ′
j · M ′

i , mij)2 (3)

Equation 3 shows that the output camera pose can be in the
form of a normalized camera matrix Q assuming the camera
calibration K is known. Different from the projection ma-
trix P , Q does not contain any camera internal parameters.
A normalized camera matrix is the combination of rotation
and translation expressed as Q = [R|T ], where R is a ro-
tation matrix and T is a translation vector. Camera pose is
defined by the camera center(translation) and the camera ori-
entation(rotation). A normalized camera matrix is enough to
compute camera pose since it contains both the translation and
the rotation. We will be focusing on the normalized camera
matrix Q when applying the bundle adjuster on the image se-
quences and a roughly estimated calibration matrix is enough
to obtain good results.

III. PATH RECONSTRUCTION

Our full path reconstruction approach is composed of two
major steps: i) camera segmentation and ii) camera registra-
tion.

In the segmentation step, the images of the sequence are di-
vided into short overlapping groups. Grouping is accomplished
such that the images in a group correspond to pictures of the
scene taken from nearby locations. Consequently, the disparity
between adjacent images of a group is relatively small, which
means correspondences can be easily established. However, at
the same time, a sufficiently large baseline must exist within

the group in order to ensure that the reconstruction process re-
mains sufficiently accurate.

It is also necessary to have a significant amount of over-
lap between each group. The connected groups must therefore
share a certain number of common images. This redundancy
will make it possible to connect the different groups together
during the registration step where the individual reconstruction
results are merged in a common reference frame. Since the ac-
curacy of the resulting representation depends on the level of
overlap, the groups are built to ensure that at least half of the
images in a group are shared with at least one other group.

The complete path of the sequence is therefore recon-
structed by iteratively processing each group; merge the cam-
era together through registration and then re-group the camera
set based on the new estimated positional information.

A. Segmentation

In the segmentation process, the goal is to group together
spatially neighboring cameras; however for the first iteration
the pose of the cameras is unknown. Consequently, the groups
are initially built based on the ordering of the image sequence.
The assumption is that the images have been taken in sequence
while moving the camera across the scene. As it will be shown,
this is sufficient to obtain an acceptable initial estimate of the
scene and to detect the potential loops in the camera path.

To obtain the initial match set that will be used by the bun-
dle adjuster to reconstruct the scene, the image sequence is
processed following its natural order. The feature points used
are the Scale Invariant Feature Transform (SIFT) corners [12]
and a Random Sample Consensus(RANSAC) [13] strategy
based on both fundamental matrix and tensor estimations is
used in order to extract reliable correspondences between im-
ages [7]. The resulting triplets of matches are then chained
together across the sequence segment to get multi-view corre-
spondences. These steps can be accomplished with the help of
the Projective Vision Toolkit (PVT) [6].

The resulting match set is sent to the bundle adjuster [14] to
find camera positions as well as the 3-D reconstruction. The
reconstruction of all the segments of the sequence is obtained
in the same way. Registration (see Sect. B) is then required to
merge these segments to obtain an initial 3-D model.

The segmentation process will then have to be repeated
on the reconstructed cameras in order to form new groups.
This new grouping aims at taking into consideration the possi-
ble loops in the camera sequence that connects together non-
consecutive image sub-sequences because of their spatial prox-
imity. This grouping is realized by using the available 3-D
camera pose estimates obtained from the previous iteration.

A.1 Camera grouping

The objective here is to create a new partition of the cam-
eras, from their estimated spatial locations, such that the full



group set will be connected and that a level of overlap between
the groups will be obtained.

We have N cameras C1, · · · , CN , we want to create a parti-
tion made of groups {Gi}, each containing K cameras. Each
camera must belong to at least one group and, to ensure good
overlap, at least t% of the cameras in a group must belong to
at least one other group.

A.1.a Grouping algorithm.

1. Create two disjoint sets A and U , whereA is the assigned
camera set and U is the ungrouped camera set. Initially,
set A to empty while U contains all cameras to be pro-
cessed.

2. Start with n = 1, randomly selected an image from U as
the starting point; the corresponding camera C is assigned
to Gn, added to A and removed from U .

3. For each Ci in U find dmax(Ci, Gn) by computing
the distance between Ci and all cameras in Gn, where
dmax(Ci, Gn) = max

Cj∈Gn

d(Ci, Cj).

4. Get Cmin that is the camera with the smallest
dmax(Ci, Gn). Cmin is assigned to Gn, added to A and
removed from U .

5. Repeat step 3 and step 4 until the group size is reached or
U = ∅; then n = n + 1.

6. For each Ci in U find dT (Ci,A) with T = tK (e.g. with
t = 50%, T = K/2). dT (Ci,A) is defined as the distance
between camera Ci and its T th nearest neighbor in A.

7. Get Cmin that is the camera with the smallest dT (Ci,A).
Cmin is assigned to Gn, added to A and removed from U .

8. Get the T closest camera to Cmin in A. All these cam-
eras are assigned to Gn. (They constitute the overlapping
cameras in the group Gn). Go to step 3.

A.2 Multi-view correspondence

Once the groups formed, valid correspondences within each
group must be found. Since a group is generally made of
distinct image sub-sequences, some correspondences have al-
ready been established from the previous step. The sub-
sequences are then connected together using a multi-view cor-
respondence strategy [3].

A.3 Reliable bundle adjustment

Bundle adjustment is a complex multi-variable optimization
process that is not always guaranteed to converge. It is highly
affected by the presence of outliers and since the automatic cor-
respondence process tend to produce large number of matches,
the presence of such outliers in the set is difficult to avoid. A
good initial estimate of the 3-D camera positions is an impor-
tant factor in obtaining reliable solutions.

B. Registration

Registration is the process by which two adjacent 3-D re-
constructions of points and camera positions are merged into a
single reference frame. This is possible because the adjacent
groups exhibit a high degree of overlap. The registration pro-
cess consists in finding the similarity transform that will bring
two corresponding 3-D points and 3-D camera positions to the
same location. Although registration on the overlapping 3-D
points is possible, we found that it was more reliable to regis-
ter the groups based on camera positions only.

The relative position of a camera in a group Gn can be ex-
tracted from the normalized camera matrix Qn

i = [Rn
i |T n

i ] ob-
tained as a result of the bundle adjustment step. The ith camera
center as computed in the reference frame of Gn is given by:

Cn
i = (Rn

i )T (−T n
i ) (4)

where (Rn
i )T is the transpose of the matrix Rn

i .
Since each bundle adjustment procedure were applied inde-

pendently on each group, the scales in the reconstructed cam-
era sets are different. A consistent scaling factor must there-
fore be identified. This is done using the cameras that belong
to more than one group. Let’s consider Ci and Cj that both
belong to Gn and Gm. The ratio of the distance between these
two cameras, as computed in each reference is then equal to
the scale factor that exists between the two groups, that is:

Smn =
d(Cm

i , Cm
j )

d(Cn
i , Cn

j )
(5)

In practice, we use the mean of the scale factors computed
from all pairs that are common to groups Gm and Gn.

A maximum likelihood rotation and translation is to be
computed [15] in order to minimize

∑
2 =

T∑

i=1

‖Cm
i − (Rmn · (Smn · Cn

i ) + Tmn)‖2 (6)

where Rmn is a 3 by 3 rotation matrix representing the ori-
entation difference between two 3-D sets, Tmn is a 3-vector
representing the translation between two 3-D sets.

The registration is done by applying Rmn and Tmn to the
cameras of group Gn. The complete registration is then ob-
tained by iteratively connecting each group to the registered
set of cameras in this fashion. A complete estimate of the cam-
era positions is thus obtained. Initially, this estimate will be
approximate, but sufficient to form new groups, taking into ac-
count the potential loopbacks in the sequence as detected by
the grouping procedure. The positional estimates are then re-
fined through a few iterations of the grouping-bundle adjust-
ment and registration procedure.



IV. EXPERIMENTS

We have tested the proposed algorithm on two specific cam-
era paths: a spiral path and a snake like path. These two par-
ticular paths contain a number of loopbacks, which are critical
for the iteration process to converge.

Images were taken by moving the camera in the scene. The
first a few images of the spiral path are displayed in figure 1.
We will focus more on the spiral path hereafter since the snake
like path can be processed similarly.

Fig. 1. The first a few images from the spiral path.

Over two hundred images were taken to generate the spi-
ral path made of about two complete turns. There is always
a trade off between the size of the groups and the precision
of the result. Larger groups are preferred because fewer reg-
istrations are needed for the same long image sequence. The
difficulty is that the longer the sequence, the less likely it is
that the bundle adjustment will converge. We tried the bundle
adjuster on different length of segments to find a appropriate
segment length. Figure 2 shows that segments with less than
30 images are stable and that 20 images in a segment seems to
be a good choice. We also need to determine the number of
overlapping images in the segments for registration. Although
three images are enough to compute the rotation and transla-
tion, involving more images stabilizes the registration process.
The number of overlapping images has then been set to be half
of the total images in a group to ensure both stability and effi-
ciency. Following the steps described in section A we can find
the reconstructions of all the segments. These reconstructed
segments are then registered incrementally until we reach the
last segment.

The complete initial 3-D reconstruction is shown in figure 3.
The box-like objects in the graphs are the cameras and the
small dots are 3-D feature points. A complete circle contains
95 images. Starting from camera 1, the first loopback is cam-
era 96, and the second loopback is camera 191. We enlarged
these three particular cameras in figure 3 for better viewing
and comparing purposes. The corresponding three images are
in figure 4.

Three major problems arise from the initial 3-D reconstruc-
tion:

Fig. 2. Reprojection error of different length of segments.

Fig. 3. Initial reconstruction. Camera 1, camera 96 and camera 191 have been

enlarged; these ones should be aligned according to views shown in figure 4.

1. Drifting errors. Camera 96 (The enlarged one on the mid-
dle circle) is supposed to be aligned to camera 1 (The en-
larged one on the inner circle). In figure 3, camera 96 is
drifting away and camera 191 (The enlarged one on the
outer circle) is drifting even farther.

2. Off path errors. The distance between the inner and outer
circles is not constant while it was constant when the im-
ages were taken.

3. Off plane errors. The reconstructed camera path is not in
the same plane while the actual path is in the same plane.

However, this initial estimate is sufficient to have these cam-
eras included in the same group at the next iteration. More iter-
ations are performed until the reprojection error falls below the
error tolerance. Figure 5 shows the final 3- D reconstruction of
the spiral camera path, from which we can see that the drifting
errors, the off path errors and the off plane errors have all been
greatly reduced.

Our algorithm can be applied to the snake like path and



Fig. 4. Loop back images: from left to right are image 1, image 96 and image

191.

Fig. 5. Top view and side view of the final reconstructed camera paths.

other long image sequences similarly as long as loopbacks ex-
ist in the path. We process the snake like path using the same
algorithm and display the reconstructed cameras along with the
3-D feature points in figure 6. When taking the images of the
snake like path, we deliberately move the camera with unequal
paces to demonstrate that our algorithm is also capable of un-
evenly separated paths.

Fig. 6. Snake like path reconstruction.

V. CONCLUSION

We have presented an iteration algorithm to compute long
camera paths. This system deals with long image sequences
with loopbacks. We limit the bundle adjustment to only local

reconstructions and this ensure precise reconstruction of or-
dered segments and unordered groups. Errors introduced by
registration are reduced by the iteration process and a precise
complete reconstruction can be expected. Furthermore, our
system does not require that the distance and angle between
images to be constant. In fact, it tolerates large difference of
distances and angles between images. This is critical for videos
taken with hand held cameras or vehicle mounted cameras in-
stead of cameras being controlled by smoothly moving motors.

Our objective was to propose a reconstruction method that
can scale to a very large number of images while ensuring the
good convergence of the bundle adjustment process. This was
achieved by imposing a limit on the number of views for which
the structure and motion parameters have to be simultaneously
optimized and by exploiting the presence of loopbacks and
common field of views in the camera path. Feature matching
and bundle adjustment are the two main time consuming steps.
SIFT features are used here to ensure a match set of good qual-
ity but these are more complex to extract; the matching step
can however be executed in matter of seconds. Bundle ad-
justment is an optimization process that can take few minutes
to converge depending on the number of views and features.
However, since a fixed number of views are simultaneously
optimized, the computing time grows linearly with the number
of frames in the image sequence.
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