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Abstract

This paper presents a new metric to assess the perfor-
mance of the image fusion algorithm. The proposed metric
is based on image phase congruency, which provides an ab-
solute measurement of image feature with a numeric value
ranging from zero to one. By comparing the local cross-
correlation of corresponding phase congruence maps of in-
put images and fusion output, the quality of the fused result
is assessable without a perfect reference. The preliminary
experimental results on multi-focused image pairs demon-
strate the efficiency of this approach.

1 Introduction

Pixel-level image fusion has been investigated in various
applications and a number of algorithms have been devel-
oped and proposed. A typical fusion operation implemented
at the pixel level is illustrated in Figure 1. The success of the
post-processing or analysis relies largely on the efficiency
of the particular fusion algorithm. However, few authors
have addressed the problem of how to assess the efficiency
of those algorithms and evaluate the resulting fused images
objectively and quantitatively.

Figure 1. Pixel-level image fusion.

A typical example for pixel-level image fusion is the fu-
sion of multi-focused images from a digital camera [6, 15].

In such case, a cut and paste operation is applied to obtain
the full-focused image that will serve as a reference for eval-
uating the fusion results. However, such operation does not
assure a perfect reference image. In some applications, the
ground truth reference can be generated from a more precise
measurement [3]. Such comparison can only be applied af-
ter the acquired images are fully registered, i.e. converted
to the same resolution, size, and format. The evaluation
metric should be optimized for the image feature. Pixel-by-
pixel comparison does not meet the requirement, because
in the original image pixels are closely related. Moreover,
it would be better if the quantitative evaluation can still be
achieved without the presence of reference image. This is
the case of most practical applications. The evaluation met-
ric should provide a measurement of how well the informa-
tion of the inputs is integrated into the output.

In this study, a new fusion quality index is proposed
and implemented through the local cross-correlation of the
phase congruency maps of the input images. Therefore, the
image feature-based measure provides a blind evaluation of
the fusion result, i.e. no reference image is needed. This
metric takes the advantage of the phase congruency measure
which provides a dimensionless contrast- and brightness-
invariant representation of image features. The fusion qual-
ity index is compared with recently developed blind evalua-
tion metrics. The efficiency of the new metric is verified by
the test on the fusion results achieved by several multireso-
lution pixel-level fusion algorithms.

2 Feature-based Assessment

2.1 Image feature from phase congruency

Gradient-based image feature detection and extraction
approaches are sensitive to the variations in illumination,
blurring and magnification. The threshold applied needs
to be modified appropriately. A model of feature percep-
tion named local energy was investigated by Morrone and



Owens [9]. This model postulates that features are per-
ceived at points in an image where the Fourier components
are maximally in phase. A wide range of feature types give
rise to points of high phase congruency. With the evidence
that points of maximum phase congruency can be calculated
equivalently by searching for peaks in the local energy func-
tion, the relation between the phase congruency and local
energy is established, that is [4, 5]:

PC(x) =
E (x)
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wherePC (x) is the phase congruency at some locationx

andE (x) is the local energy function.An represents the
amplitude of thenth component in the Fourier series ex-
pansion. A very small positive constantε is added to the
denominator in case of small Fourier amplitudes. In the
expression of local energy,F (x) is the signal with its DC
component removed andH (x) is the Hilbert transform of
F (x).

To extend the algorithm to images, the one-dimensional
analysis is applied to several orientations and the resultsare
combined in different ways. The 2D phase congruency can
be expressed as [4]:
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where o denotes the index over orientation. The noise
compensationTo is performed in each orientation indepen-
dently. By simply applying the Gaussian spreading function
across the filter perpendicular to its orientation, the one-
dimensional Gabor filter can be extended into two dimen-
sions. The orientation space can be quantified using a step
size ofπ/6, which results in 6 different orientations. For an
extensive discussion of the underlying theory, readers are
referred to reference [4, 5].

2.2 Evaluation metric

The comparison of images can be carried out by com-
paring their corresponding phase congruency features. It
is appropriate to evaluate the space-variant features locally
and combine them together [13, 14]. Cross-correlation can
be one choice to measure the similarity between the feature
maps [8]. This value is computed by the zero-mean normal-
ized cross-correlation (ZNCC) [8] in formula 4:
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whereĀ andB̄ are the average value of the two images.
As stated previously, a blind evaluation of the fused im-

age is preferred for practical applications, because a ground
truth or a perfect reference is not always available for com-
parison. The pixel-level fusion is to integrate image features
like edges, lines, and region boundaries into one compos-
ite image. The success of the fusion algorithm will be as-
sessed by the measure of the image features available in the
fused image and those from multiple input sources. Phase
congruency is used as the basis for the feature extraction
and measurement. The flowchart in Figure 2 presents the
procedure to calculate the blind evaluation metricPblind.
The phase congruency maps of the input and fused im-
ages are firstly calculated. A third feature mapMpc is de-
rived by point-by-point maximum selection of the two input
mapsApc andBpc, i.e. retaining the larger feature points
Mpc (i, j) = max (Apc (i, j) , Bpc (i, j)). The feature map
of the fused image,Fpc, is then compared toApc ,Bpc, and
Mpc locally. At each sub-block, the cross-correlation values
between these maps are computed. The evaluation index P
is the average over all the blocks. The flow chart is con-
trolled by three values:Apc, Bpc, andFpc , and there is
Dpc (k) = Apc (k) + Bpc (k).

Again, when the local cross-correlation of the phase con-
gruency map is considered, the denominator in Equation 4
might be zero. However, this does not mean a low corre-
lation. The summation of each block is considered in the
flowchart of Figure 2: 1) when the input blocks are zero
(Dpc(k) = 0), the correlation result should be one if the
fused block is zero too (Fpc(k) = 0 ); otherwise the cross-
correlation value is set to zero; 2) when the fused block is
not zero, the cross-correlation value is computed with ei-
ther of the input block that is not zero; 3) when both the
input and fused blocks are not zero (Dpc(k) 6= 0 ), the max-
imum of the cross-correlation of the fused block withApc,
Bpc, andMpc is selected as the result. The overall cross-
correlation value is:P = 1

K

∑K

k=1
P (k) , whereK is the

total number of blocks.
Herein, we use the maximum-selected feature map as

part of the reference, because the feature can be compared
through the dimensionless measure directly. Unlike pixels
which are closely related in the original images, the points
in the phase congruency map indicate the salience of im-
age feature. Therefore, the selection of feature points is not
equivalent to the selection of pixels with larger value in the
original image followed by the computation of the whole
phase congruency map. Selecting larger feature points can
provide a reference for comparison although this arrange-
ment is not always optimal. For the combinative fusion, es-
pecially when heterogeneous sensors are involved, the fea-
ture in the fused image may come from input images or a
combination of them, as shown in Figure 3. That is why
we need both the inputs and maximum-selected map for the



Figure 2. The blind evaluation algorithm by using phase congruency map.

similarity measure and comparison.

Figure 3. Four cases in a combinative fusion.
For a small local region in the fused image,
the local feature may come from the corre-
sponding block of the input image A or B, or
a combination of them.

3 Experimental Results

In the experiment, we use five pairs of multi-focused
images for testing1 The following algorithms are selected
for comparison: Laplacian pyramid, gradient pyramid,
ratio-of-lowpass (RoLP) pyramid, Daubechies wavelet four,
spatially-invariant discrete wavelet transform (SIDWT),
and Simoncelli’s steerable pyramid. The detailed im-
plementation of these algorithms can be found in refer-

1Courtesy of SPCR Lab of Lehigh University and Ginfuku at Kyoto.

ences [1, 2, 12, 11, 7]. The basic fusion rule applied is av-
eraging the low-frequency components while selecting the
coefficients with larger absolute value in other frequency
bands. The decomposition was carried out to level four and
four orientational frequency bands were employed in the
steerable pyramid implementation.

The fused images were evaluated by Piella’s fusion qual-
ity index (Q) [10] and blind assessment method. The results
are listed in Table 1 and the difference can be much easily
identified from the proposedPblind metric.

4 Summary

In this paper, we propose a new metric to assess the per-
formance of mutliresolution image fusion algorithms. The
metric is based on the local cross-correlation of image fea-
ture maps. The measurement of image feature is imple-
mented with Kovesi’s phase congruency theory. Both the
reference-based evaluation and blind assessment are carried
out on the fusion of a group of multi-focused images.
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Table 1. Evaluation of the fusion result of multi-focused images.
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metric
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Figure 4. The multi-focus images used for the
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age, and right-focused image.
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