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Abstract

This paper proposes an algorithm that detects the

occurrence of planar homographies in an uncalibrated

image pair. It then shows that this plane identi�cation

method can be used, to great advantage, as a �rst step

in an image analysis process, when point matching be-

tween images is unreliable. The detection is performed

using a RANSAC-like scheme based on the linear com-

putation of the homography matrix elements using four

points. Results are shown on real image pairs where

series of matched points belonging to common planes

are automatically and correctly identi�ed.

1 Introduction

Planes abound in man made environments. They

are very simple structures for which simpli�ed analy-

sis are available. For this reason, they have been used

in several computer vision tasks such as camera auto-

calibration [14], metric reconstruction [6], visual mea-

surement [2], and obstacle detection [7]. These works

demonstrate that when planes are expected to occur

in a given scene, it is always advantageous to exploit

their presence. The main simpli�cation brought by

planes is due to the fact that under perspective pro-

jection, the transformation between the world plane

and the image plane is de�ned by a projective linear

relation, called a homography. The same kind of re-

lation also holds between two perspective views of a

plane, that is a homography relates image points of the

plane in one image to the images of the same points

in the other image.

But in order to bene�t from the presence of planes,

these special structures must be detected. Most of the

techniques cited above assume that the planar struc-

tures have been previously identi�ed. In some cases

like in [7], some strategies are proposed to detect the

ground plane. But none of them propose techniques

to detect multiple planar structures of arbitrary con-

�guration.

We describe here an algorithm based on RANSAC.

This technique was used for the detection of a global

homography corresponding to a pure rotation motion

or a single plane in [12] and [13]. In this latter case,

the homography was considered as a degenerate con-

�guration of the fundamental matrix.

By itself, RANSAC can require much computations

when only very noisy data is available. We will de-

scribe strategies that allow the e�cient identi�cation

of homographies using a set of point matches that was

generated automatically from two images, and where

the correct matches represent as few as 5 percent of

all matches.

An important aspect of the method presented in

this paper, is that we propose to proceed to plane

identi�cation as a �rst step in an image analysis

process. This idea has also been exploited in [10],

but in this case, only local homographies are found

in order to produce a viewpoint invariant measure for

stereo matching. Detection will be performed on an

uncalibrated pair of images and because planes allow

a reliable and precise feature-based matching, their

early identi�cation can be useful to subsequent tasks,

such as the estimation of the epipolar geometry of the

cameras (weak calibration), and the 3D structure es-

timation.

The rest of this paper is organized as follows : Sec-

tion 2 reviews some basic concepts in projective geom-

etry. Section 3 presents the proposed algorithm for

planar homography detection. Section 4 shows the

result of an application of our algorithm. Finally, sec-

tion 5 studies brie
y how this algorithm could be used

in the context of weak calibration. Section 6 is a con-

clusion.

2 Projective Relations

The fundamental matrix is a key concept in stereo

vision. It mathematically represents the epipolar

geometry of a system of two cameras. For each pair

of corresponding points, represented by two 3� 1 ho-

mogeneous vectors, x and x0, the well-known epipolar

constraint is expressed as:

x
0T
Fx = 0 (1)

where F is the 3 � 3 fundamental matrix, a singular

matrix with 7 DOF.

A homography is a plane projective transformation

represented by a nonsingular 3 � 3 matrix H. If x is

the image of a world point belonging to a plane and x0

is the image of the same point in a second view, then



there exists a matrix H such that:

x
0 = Hx (2)

Since homogeneous coordinates are used here, the

equality is only up to an unknown scale factor. When

several image points of a plane are available, it be-

comes possible to compute the value of the elements

of H. For each pair of corresponding points, it is pos-

sible to extract two independent linear equations from

(2), by rewriting it as:

x
0
�Hx = 0 (3)

Since the matrix H has 8 DOF, the element h33 can

be arbitrarily sets to 1, giving 8 unknowns. Conse-

quently, a total of 4 point correspondences is required

to determine H.

Obviously, in a context of non-perfect data, many

more points should be used. Then, H would be esti-

mated by a minimization scheme. This is usually done

by de�ning the 9� 1 vector h made of the 9 unknown

elements of matrix H, i.e.:

h = (h11; h12; h13; h21; h22; h23; h31; h32; h33)
T (4)

With N point correspondences, it is possible to ex-

tract 2N linear constraints from (3). This results in a

system of the form:

Bh = 0 (5)

We then have to solve the following problem

minhjjBhjj
2 subject to jjhjj = 1 (6)

The solution being the eigenvector of matrix BTB

that corresponds to the smallest eigenvalue. To ob-

tain a more stable linear system, the coordinates of

the point correspondence are normalized, as explained

in [4], where a similar method is used to compute the

fundamental matrix.

The minimization scheme presented above has the

disadvantage of only minimizing algebraic quantities

rather then meaningful geometric quantities that rep-

resent the error in the approximation. It might

be preferable to have a method that minimizes the

summed Euclidean distances between the measured

and mapped points. This could be achieved using

a non-linear numerical minimization scheme. Such a

scheme would still require an initial solution which

would be provided by the method described above [2].

3 The Homography Detection Algo-

rithm
In order to detect planar homographies in an un-

calibrated pair of images, an approach based on a

RANSAC-like scheme will be used. The idea behind

the algorithm proposed here is similar to the one pre-

sented in [1], which uses RANSAC to estimate the

fundamental matrix (see [8] for more on F estima-

tion). There is however an important di�erence : in

the case of F, all correct matches will obey the linear

constraint (1), while in the case of a homography, only

image points of a common plane will statisfy the con-

straint (3). A di�erent homographyH must therefore

be detected for each visible plane.

3.1 The basic RANSAC Scheme

1. First corners are detected in both images. To this

end, we use the corner detector proposed in [5].

2. A variance normalized correlation is applied and

all pairs with a su�ciently high correlation score

are accepted. These pairs form the set of can-

didate matches. All pairs are considered, this

means that a given corner may have more than

one candidate match in the other image. A sub-

set of this set will also be considered, made of the

matched pairs for which the correlation score is

higher than a very conservative threshold. It is

expected that this reduced set of matched points

will contain less incorrect matches, that is why

this latter set will be used to seed the detection

process.

3. Four points are selected from the reduced set of

candidate matches. Using equation (3), their cor-

responding homography is determined.

4. Considering now, the larger set of candidate

matches, all pairs that agree with the homogra-

phy found in step 3 are selected. A pair (x;x0),

will be considered to agree with a homography,

H, if it is such that

dist(Hx;x0) < � (7)

for some threshold �. If a su�cient number of

pairs are consistent with the homography, we can

assume that we have identi�ed a valid homogra-

phy representing the correspondence between the

images of a plane present in the scene.

5. Using all the consistent correspondences found

above, the homography is now recomputed by

solving the constrained minimization problem

(6). This will allow a re�nement of our estimate

of this homography.
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Figure 1: An homography found using our RANSAC-

like algorithm. (a) and (b) The pair of images with

the point matches that agree with this homography.

(c) The result of applying the homography to the right

image. (d) The di�erence between the left image and

the image (c).

Figure 1 is the result of the application of this algo-

rithm to an image pair. The algorithm worked from

a set of 12619 candidate matches, 210 of them hav-

ing a correlation score above the conservative thresh-

old (0.95). The threshold on the number of matches

that must agree with a valid homography was set at

250 matches, and a match was considered to agree

with a homography if dist(Hx;x) < 2. For this im-

age pair, the algorithm required on average 30000 it-

erations and detected a homography with which 270

matches agreed.

The RANSAC-like scheme described above, allows

the detection of planar homographies in a pair of im-

ages. However, it is important to note that the set of

matches obtained after corner detection and match-

ing will usually contain many false matches. This

is especially true for architectural images where fea-

tures, such as windows, are repeated all over the pla-

nar structures we want to detect. The scenes being an-

alyzed usually contain several planes so proportionally

very few candidate matches will be good matches ly-

ing on the same plane and thus agreeing with the same

homography. The basic algorithm, described above,

may therefore require many iterations, and needs to

be improved in order to perform e�ciently. We will

now describe some ways to improve the e�ciency of

this algorithm.

3.2 Selecting the Four Points

The way in which the four points are selected, can

greatly in
uence the likelihood that they will deter-

mine a valid homography. Up to now, the points were

selected using a brute force approach where they were

taken at random from the set of candidate matches.

A way to screen out degenerate con�gurations is to

look at the area between the four selected points. The

areas of the four triangles determined by the points

are computed and the points will be considered for the

next step only if all the areas are higher than a given

threshold (we used 300 pixels2). This eliminates the

possibility of the degenerate case where three of the

points are colinear. It also avoids situations where the

points lie too close to one another, and thus, where the

error in the positions of the points become signi�cant

in comparison to their relative positions.

Using this area threshold, as described above, we

have been able to eliminate around 50% of the selected

four point con�gurations in the image pair shown in

Figure 1. These con�gurations were unlikely to pro-

duce a valid homography and not considering them

eliminated useless computations.

Another possible strategy would be to select points

that lie on the same edges in the image. Points ly-

ing on the same edge are very likely to belong to the

same plane. However, points lying on the same edge

are more likely to be colinear or to lie close to one

another, then the method does not perform well. An

alternative solution consists in choosing four points on

two di�erent edges. This increases the likelyhood of

the points lying on the same plane while generating

less degenerate con�gurations.

We have also considered selecting points lying on

the same straight line. However, we found experimen-

tally that these edge-based strategies often give poor

results. They can be advantageous on particular im-

age pairs, but do not generally improve the e�ciency

of the algorithm. They often require more iterations

than the brute force approach. A case where select-

ing points that lie on two lines becomes advantageous,

is when the disparity between the two views becomes

very signi�cant. An example of such a situation is

given in Figure 4. For this image pair, the point se-

lection heuristic gave, on average, a 37% improvement

in the performance of the algorithm over a completely

random selection.

3.3 Using the Determinant of the Homog-
raphy Matrix

Another element that can be considered in order to

increase the e�ciency of the algorithm is the deter-



minant of the homography matrix. If we can expect

the determinant to be within a certain range, then it

becomes possible to eliminate several preliminary ho-

mographies based on this simple criteria.

If the determinant of a homography is close to zero,

it corresponds to a degenerated case and should not

be further considered. If the determinant of a matrix

is very large, the determinant of its inverse (which

corresponds to the inverse homography) will be close

to zero, this is again a degenerate case. Consequently,

we have chosen to eliminate all homographies with

determinants having an absolute value outside of a

range [1=n; n] for some value n.

Experimentally, we have found that most homogra-

phies we detected had a determinant relatively close

to one. This can be justi�ed by observing that all the

detected homographies in several image pairs we con-

sidered were almost a�ne transformations. This is not

surprising since an a�ne transformation can describe

any combination of translations, rotations, shearings

and scalings, and in the case where the di�erence in

perspective between the two images of plane is small,

such a combination of transformation can be a good

approximation of the true transformation. This is es-

pecially true for stereo pairs. For a�ne transforma-

tion, the determinant corresponds to the ratio of the

areas of the projections of the plane on the two image

planes. We should therefore require that this ratio be

close to one, if it is not the case, then even matching

becomes problematic.

By choosing n = 10 we were able to discard around

51% of the preliminary homographies found from four

points selected randomly in the image pair shown in

Figure 1, but satisfying the minimum area require-

ment previously described. The determinant of the

dominant homography in that image pair was found

to be approximatively 1:16.

3.4 Relaxing the Distance Threshold

During the homography estimation process, we ex-

perimentally found that several of the homographies

rejected by the algorithm as it iterates, are relatively

close to valid homographies, although not enough

matches agree with them. A strategy that could re-

duce the number of iterations needed to �nd a homog-

raphy using our algorithm, would be to devise a way

to get a good approximation of a homography from a

very crude one. Then the threshold on the number of

matches that must agree with a homography for it to

be considered valid could deliberately be set low, and

the crude homographies found with this soft threshold

could then be re�ned.

We start by using a fairly generous distance thresh-

old (the value of � in equation (7)), such as 3 pix-

els, with a relatively low threshold for the number of

points needed to be compatible with the homography.

This allows us to �nd a homography relatively fast.

However, because of the low threshold on the number

of points, the homography will only be somewhat close

to a valid homography. Now to �nd the real homogra-

phy, we iteratively recompute the current homography

using all matches compatible with it at that stage.

This strategy works well when the distance thresh-

old is relaxed(we increase it to up to 50 pixels). Since

the computed homography is often close to a valid

one, most matches compatible with the actual homog-

raphy should now, because of the very generous dis-

tance threshold, be considered compatible with the

found homography. Since we can expect that among

the putative compatible matches, a majority will be

compatible with the real homography, the computed

homography should gravitate towards the valid one,

as we iteratively recompute it. Once the homography

has stabilized near the true homography, the distance

threshold can be gradually tighten, down to about one

pixel, so as to only include the best matches in its com-

putation.

We found that this technique can decrease by a

factor of hundreds the number of iterations in the

RANSAC-like algorithmneeded to detect an homogra-

phy. It does so by allowing us to accept crude approx-

imations of true homographies, and improving them

to obtain valid ones.

Figure 2 gives an example for which the initial ap-

proximation to the homography was found after only

48 iterations of the RANSAC-like algorithm, and 140

matches agreed with it, using a distance threshold of

3. This low number of iterations was typical for the al-

gorithm on this image pair, when only a crude approx-

imation of a homography was sought. After relaxing

the distance threshold to 50 and tightening it back to

1, the re�ned homography now agreed with 374 points.

The homography found in this way required less itera-

tions and described more accurately the plane present

in the image then the one found found in Figure 1.

3.5 Finding Many Homographies

An image pair will often contain more than one

plane. When one plane has been identi�ed, we can re-

move from the set of candidate matches, the matches

compatible with the found homography. We also want

to remove from the set of candidate matches, the in-

correct matches that have at least one of their points

lying in a part of an image where the detected plane

is visible.

In order to detect which matches, in the candidate



(a) (b)
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Figure 2: Relaxing the distance threshold. (a) and (b)

The pair of images with the point matches that agree

with the initial coarse approximation of the homog-

raphy. (c) The result of applying the coarse approx-

imation of the homography to the right image. (d)

The result of applying the �nal approximation of the

homography to the right image.

match set have one of their points lying on the de-

tected plane, we must determine which region of an

image agrees with the homography. To do this, we

consider the image that is obtained after applying the

homography to one of the images in the pair. When

this image is compared to the other image in the pair,

the region that contains the plane represented by the

homography should agree between the two images,

while the other structures in the images should not

correspond.

To �nd this region of agreement between the im-

ages, the absolute di�erence of the two images is com-

puted, and thresholded. The thus found binary image

is then cleaned up, using some morphological opera-

tors. We apply a closing using a small mask to elimi-

nate the isolated pixels in the region corresponding to

the plane that are not considered as part of the plane.

Then, we use an opening with a larger mask, to elimi-

nate the isolated areas falsely identi�ed as being part

of the plane. This procedure will incorrectly identify,

as agreeing with the homography, any featureless re-

gion of an image. This poses no problems since such

a region of the image contains no corners and could

therefore be ignored.

Figure 3 illustrates the process of �nding a second

(a) (b)

(c) (d)

Figure 3: Finding a second homography (a) The di�er-

ence between the left image and Figure 2 (d). (b) The

regions in Figure 2 (c) that were found to agree with

the homography. (c) an (d) The pair of images with

the point matches that agree with a second homogra-

phy found after eliminating matches in the regions of

(b) from the candidate matches set.

homography in the image pair. In (b), we see the re-

gions of the left image that were found to agree with

a �rst homography. All the candidate matches that

lied in that section of the left image were eliminated

before our algorithm was used to detect the second

homography. The set of candidate corners was thus

reduced from 12619 matches to 7270, while its subset

of matches with a very high correlation score was re-

duced from 210 matches to 117. Finding the second

homography required 6079 iterations. 102 matches

were consistent with this homography, using a distance

threshold of 1.

4 Additional Experimental Results

In this section, we show the application of the pla-

nar homography detection to two image pairs. The

�rst image contains two views of three planar surfaces

which are all detected by the algorithm. This is a case

where reliable matching is particularly di�cult to ob-

tain because of the repeated elements present all over

the plane structures.

Figure 6 shows the feature points belonging to the

three homographies that were detected. Notice that

the image contained no other features than the three

planar surfaces, and that among the 33655 candidate

matches, only 520 agreed with a homography with a
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Figure 4: An homography found using our RANSAC-

like algorithm. (a) and (b) The pair of images with

the point matches that agree with this homography.

distance threshold of 1. Thus less then 1:6% of the

candidate matches can be considered as exact. De-

spite this, the three homographies could be identi�ed

relatively easily.

Figure 4 shows a homography that was identi�ed in

an image pair with signi�cant disparities, and where

the di�erence in point of views is such that the per-

spective di�erences between the two images is sig-

ni�cant. The four points were selected so that two

pairs of points lied on two di�erent lines. The lines

where extracted and matched automatically. A set

of 14743 candidate matches was used. The algorithm

looked for a homography agreeing with 100 matches

with a distance threshold of 3. An homography agree-

ing with 133 matches was found in 7638 iterations,

1337 of which satis�ed the minimum area and deter-

minant requirements. After relaxation and tightening,

74 matches agreed with the homography with a dis-

tance threshold of 1.

5 Estimation of the fundamental ma-

trix

The result of the proposed algorithm is an esti-

mation of the homography matrices corresponding to

planes visible in a pair of images, together with a set

of point correspondences located on these identi�ed

planes. All this information can then be used in the

tasks to follow, within a given vision process. We pro-

pose, here, to demonstrate why these results could be

used for camera weak calibration (the estimation of

F). In particular we will show that in a case where

the set of matches used is very noisy, it would be very

advantageous to use homography detection as a �rst

step towards weak calibration.

The fundamental matrix can be estimated using at

least two homographies. The estimation can be per-

formed using the matches compatible with these ho-

mographies, or directly from the homographymatrices

[9]. In this latter case, the following relation between

F and H is used:

H
T
F+ FTH = 0 (8)

If in some case, it was much easier to �nd two such ho-

mographies than to perform calibration directly from

the set of matches, then it would be advantageous to

�rst �nd the homographies in order to perform the

calibration. Even if the calibration obtained using the

two homographies was less accurate than the one that

could be obtained directly, it could serve as a starting

point for a more accurate calibration process.

We have found that with architectural images, the

set of matches found by automatic corner detection

and variance normalized correlation can be very noisy.

In fact less than ten percent of the matches found in

this way were usually valid.

Let us now compare the problem of identifying a

planar homography in a scene using RANSAC, with

the problem of the fundamental matrix estimation

with RANSAC, in the context of noisy data.

The theoretical expression of the probability of se-

lecting a good subset of matches in RANSAC [11] is

given by:

1� (1� (1 � �out)
p
)
N

(9)

where p is the number of matches necessary to com-

pute a solution (4 forH, 8 for F), �out is the proportion

of the matches that are not compatible with the ho-

mography or fundamental matrix, and N the number

of iterations performed. In the case of homography

detection, �out is larger since not all good matches lie

on the same plane. Here, we will make the reasonable

assumption that half of the good matches are com-

patible with some homography. Using this expression,

we can compute the ratio between the number of it-

erations that would be necessary to perform the two

tasks with the same probability of success. We obtain

NH

NF
=

log (1� r8)

log (1� (1+r
2
)4)

(10)

where NH
NF

is the ratio of the number of trials needed to

computeH to the number of trials needed to compute

F, and r is the proportion of valid matches in the data

set.

Figure 5 shows the theoretical ratio of the num-

ber of iterations needed to �nd the main homography

in a scene using RANSAC, to the number of itera-

tions needed for weak calibration using RANSAC, as

a function of the proportion of the matches that are

good matches. We notice immediately that it is far



Figure 5: The number of trials required to �nd a

planar homography in a scene compared to the num-

ber of trials required for weak calibration, both using

RANSAC, as a function of the reliability of the match

set used.

easier to �nd a planar homography than to perform

calibration, when the set of matches is very noisy. For

example, estimating H is 10 times faster in the case

of r = 30%.

6 Conclusion

We have proposed in this paper, an algorithm for

the detection of planar homographies in image pairs.

The method is based on RANSAC, and we found that

by using appropriate strategies, the algorithm can ef-

fectively detect the visible planar structures even if

the available match set is unreliable. In fact, we were

able to sucessfully identify homographies, even when

this set contains as few as 5% of correct matches.

This robustness makes our algorithm potentially

attractive to be used as a �rst step in a give vision

process. In particular, we believe that the algorithm

presented for planar homography detection could be

used with great advantage towards weak calibration

in the situation were the set of matches is noisy and

when planes are expected to be present in the scene.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Three homographies found using our RANSAC-like algorithm on an image pair. (a) and (b) The point

matches that agree with a �rst homography. (c) and (d) The point matches that agree with a second homography.

(e) and (f) The point matches that agree with a third homography.


