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Abstract

Image panoramas are of importance for virtual naviga-
tion in remote or synthetic environments. To process these
panoramas, different representations have been proposed;
this paper presents a study of cubic panoramas. Standard
projective geometry concepts are adapted to cubic panora-
mas to derive the notions of fundamental matrix, essential
matrix and the equivalent of stereo rectification. Meth-
ods and results are presented which could be very helpful
in obtaining solutions to disparity estimation, pose estima-
tion and view interpolation problems in the context of cubic
panoramas.

1 Introduction

The increase of interest for image panoramas resides in
the attractive and immersive possibilities they offer. In re-
mote visualization applications, panoramas allow observing
a scene from various viewing directions. When a series of
panoramas, taken at different locations, are available, then
very realistic exploration experiences can be achieved by
virtually navigating from one panorama to another.

For the processing and storage of panoramic images,
several representations have been proposed. This work fo-
cuses on a cubic representation of the image panoramas.
The idea has been proposed by Fiala in [3] and is also used
by Apple in their QuickTime panorama viewer [10]. Cu-
bic panoramas offer numerous advantages that make them
attractive for our study: storage and rendering are facili-
tated, they can be equivalently handled as set of perspective
images, it exists intrinsic relationships between the faces,
implicit calibration information is available, etc.

Cubes can therefore simplify one’s approach to multi-
view image analysis; for instance, approaches inspired by
classical stereo algorithms still apply. We study, in this pa-
per, the projective relationships between cubes and extract

the usual entities involved in two-view imagery: the funda-
mental matrices and the essential matrix.

The fundamental matrices study considers each face of
the cubes as a distinct perspective image. Our analysis iden-
tifies the intrinsic relationships that link these images and is
a first step in the expression of the epipolar geometry ap-
plied to cubic panoramas. More interestingly, the essential
matrix reveals to be a much more convenient and compact
representation of the multi-cube geometry. The essential
matrix applied to cubic panoramas has been discussed by
Fiala and Roth in [4]. They also proposed a method for ad-
jacent panorama alignment in which they assume that the
translational component can be neglected. The rectification
method presented here is a generalized solution of the align-
ment problem that applies to any cube configuration. Cubic
panoramas rectification is also of interest to disparity esti-
mation, view interpolation and pose estimation problems. It
is carried out here on the model of stereo rectification dis-
cussed among others in [8] and [6].

This work is part of the NAVIRE research project1 at the
University of Ottawa. This research aims at developing
the necessary technology to allow a user to virtually walk
through in an image-based representation of a remote envi-
ronment. The next section briefly discusses cubic panorama
acquisition. Section 3 describes the fundamental matrix re-
lations. Section 4 concerns the estimation of the essential
matrix in the context of cubic panoramas. Section 5 de-
scribes the rectification method. Section 6 is a conclusion.

2 Cubic panoramas acquisition

Cubic panoramas being the subject of the study it is nec-
essary to provide some elements on the way they are ob-
tained. The capture of the images that are composed into
panoramas is done using the Ladybug camera from Point

1visit the website www.site.uottawa.ca/research/viva/projects/ibr/ for
more information on this project



Figure 1. Cube reference frame.

Grey Research. It is essentially a camera composed of 6
sensors (1024 × 768 pixels each), 5 laterals and 1 point-
ing upwards that capture a view of the world at 360 degrees
around the azimuth completed by a top view. Since the cam-
era’s sensors have been accurately calibrated, it is possible
to fuse the six images to form an almost complete spheri-
cal panorama. This panorama can therefore be considered
to have been produced by a central projection camera that
collects all light ray coming from all directions, incident on
a point in space. The resulting two-dimensional plenoptic
function can then be re-projected on any type of surface.
We use here a cubic representation that have been shown
to be easily manipulable and that can be rendered very effi-
ciently on standard graphic hardware [1]. The fact that a cu-
bic panorama is effectively made of six identical faces, each
of them acting as a standard perspective projection camera
with 90o field of view, makes the representation very con-
venient to handle; all standard linear projective geometry
concepts still being applicable.

One such cube is shown in Figure 2, laid out in a cross
pattern with the faces in the order (from top to bottom and
left to right): up, left, front, right, back, down. The panora-
mas we used have been generated from the real images of
the Ladybug sensor using a procedure that is explained in
[1]. The reference frame chosen in our study is the stan-
dard openGL frame, located at the projection center, inside
the cube with the x axis pointing toward the “right” face,
the y axis toward the “up” face and the z axis consequently
pointing toward the “back” face (cf. Figure 1).

3 Fundamental Matrices in Cubic Panora-
mas

This section introduces the concept of epipolar geometry
applied to cubic panoramas through the study of the funda-
mental matrices. Essentially the 3D structure of the cube
is used to derive interesting properties between faces of a
same cube and between corresponding faces of two cubes.
In particular, the intrinsic relationship between the faces ap-

Figure 2. Example of a cube laid out in a
cross pattern

pears to be very useful in our derivations as will be seen in
the following sections.

3.1 Notations

Let us consider two cubes (C) and (C ′) and let us des-
ignate each face of the cube by a label i ∈ {U, L, F, R, B, D}
with U standing for the up face, L for the left face and so on.

The projection of 3D point X = (X,Y, Z)T on a face i
of the cube is noted x̃i = (xi, yi, 1)T . Rx(θ) stands for a
rotation around the axis x of amplitude θ and t stands for a
translation vector. We denote Pi the projection matrix for a
given face and K the common calibration matrix since the 6
faces have identical characteristics. We can therefore write:
Pi = K[Ri|ti].

3.2 Homography between two faces

Let us consider in this section the face F and the face i for
any i in {U, .., B}. Without loss of generality, if we consider
the world coordinate system to be attached to the center of
the cube with axis “aligned” with the front face F, the re-
spective projection matrices for F and i are the following:

PF = K[I3|0] (1)

and
Pi = K[Ri|0] (2)

with I3 the identity matrix of order 3. The projection ma-
trices PF and Pi differ only by a rotation Ri since the focal
center is the same for all faces. Note that for all i, we have
Ri = Raxis(θ) with θ in the set {−π

2 , 0, π
2 , π} and axis

standing for x, y, or z depending on the face : for example



RR = Rx(−π
2 ). All these matrices are detailed in appendix

A. For a point X in space, its projections x̃F and x̃i, are
given by :

x̃F = PFX (3)

and
x̃i = PiX (4)

From (1) and (3) we can extract an expression for X as done
in [7]:

X =
(

ZK−1x̃F
1

)
(5)

By replacing X in (4) by its expression in (5), we obtain :

x̃i = ZKRiK
−1x̃F (6)

Let us note :
Hi = KRiK

−1 (7)

As a consequence, (6) becomes :

x̃i = ZHix̃F (8)

which, in projective space, is equivalent to (Z being a
scalar):

x̃i = Hix̃F (9)

In the general case, i.e between any two faces i and j, the
previous equation is rewritten as:

x̃j = KRjR
−1
i K−1x̃i = Hij x̃i (10)

with
Hij = KRjR

−1
i K−1 (11)

3.3 Fundamental Matrices between two
Cubes

The standard 8-point algorithm mentioned in [6, 12] can
be used to compute the fundamental matrix between a pair
of faces given a set of point correspondences. The rest of
the procedure explained below is carried on once one of the
possible six fundamental matrices is computed.

For two corresponding faces i in two cubes, we have:

x̃′i
T Fix̃i = 0 (12)

where x̃i and x̃′i are matches visible on both face i of (C)
and face i of (C ′) respectively (matches visible in differ-
ent faces are not considered here since each face is consid-
ered as a distinct camera; this case will be handled in the
computation of the essential matrix presented in Section 4).
Inserting (9) in (12) yields:

x̃′F
T Hi

T FiHix̃F = 0 (13)

From which we conclude :

FF = Hi
T FiHi (14)

or
Fi = Hi

−T FFHi
−1 (15)

with Hi = KRiK
−1 as defined in (7). A similar equation

that links the F matrices of any two faces i and j can be
obtained; we thus have:

Fj = H−T
ij FiH

−1
ij (16)

with Hij defined in (11).

3.4 Observations

We have seen so far that an interesting intrinsic relation-
ship existed between the fundamental matrices of the faces
of two cubes. An important point to note is the necessity
of knowing the calibration matrix K associated with each
face. As mentioned in sections 1 and 2, an advantage of the
cubic representation resides in the constraints it introduces.
The calibration matrix K can indeed be deduced from L,
the size of a cube in pixels. The image plane is at a dis-
tance L

2 , the principal point of each image plane is always
at (L

2 , L
2 ). Thus we can write :

K =




L
2 0 L

2

0 −L
2

L
2

0 0 1




Another aspect of the epipolar geometry which provides
a verification mean for the previous computation of the fun-
damental matrices is the epipolar plane. Since all cube
faces share the same projection center, this epipolar plane
is the same for all faces. The epipolar lines on each face are
therefore obtained by intersecting the cube with the epipo-
lar plane generated by a given image point in the other cube.
As a consequence, the epipolar lines on the faces of a cube
should be connected across adjacent faces.

Finally, to obtain the epipolar lines around the cube, it is
important to note that:

a. for a point x̃i in face i of (C), its corresponding line in
face i of (C ′) is lii = Fix̃i. This is the classical case
met in state of the art stereo.

b. for a point x̃i in face i, its corresponding line in face j
of (C ′) is given by lij = Fj x̃j = FjHij x̃i with j 6= i
and Hij given by expression (11). This corresponds
to re-projecting the point to the face of interest before
applying the appropriate fundamental matrix.

Figure 3 shows a set of epipolar lines relating the six
fundamental matrices of a cube (C), not shown here, with



Figure 3. Epipolar lines over a cube.

a cube (C ′) shown on this figure. The fact that there is a
double epipole visible on the frontal and backward faces
indicates a configuration where the two cubes are aligned
one in front of the other. The result is also visually satisfy-
ing guaranteeing we are indeed witnessing intersections of a
cube by a plane with the noticeable and expected connected
line pattern.

4 The Essential Matrix

In the previous sections we looked at the cubes’ epipo-
lar geometry based on a stereo approach where each face
of a cube was considered as a distinct camera. The notion
of essential matrix constitutes a more compact form of all
relationships between the cubes faces. The essential matrix
concept applied to cube has also been discussed by Fiala
and Roth in [4].

a. By definition [7, 12], the essential matrix embeds more
information than its counterpart discussed in the pre-
vious section. The calibration needs to be known to
be able to estimate E. Nonetheless, in the case of the
cube, we have seen that the calibration matrix is im-
plicitly known. Estimating E then becomes a matter
of solving the classical problem m′T Em = 0 with for
example the 8-point algorithm used previously as rec-
ommended in [7].

b. An advantage of the cube representation resides in the
fact that the coordinates of a point on a face of the cube
can be expressed by the corresponding 3D coordinates
of that point with respect to the reference frame dis-
played on Figure 1. Each image point on a cube face
is therefore mapped to a 3D point coordinate p that is
function of the point position on the face and of the
cube side it is on.

c. Approaching the problem from the point of view of
E has the advantage of making us work directly with
the epipolar plane. Indeed for any point p of C, Ep
is a plane in C ′ - the epipolar plane - intersecting the
cubic panorama (the complete derivation is given in
[4]): E allows a closed form recovery of the epipolar
geometry.

4.1 E Estimation

In the estimation of E, the coordinates of each matched
point must first be converted from its projective coordinates
to the cube coordinate system by applying the appropriate
transformation, p = Tix̃. All Ti are given in Appendix B.
The 8-point algorithm is then applied to solve for E in the
well-known classical equation p′T Ep = 0 for a given set
of matches. Nonetheless two important remarks are to be
mentioned here.

First, the estimation algorithm typically requires a nor-
malization procedure [5] that is simplified in our case by
the fact that the points all belong to a cube. Indeed, assum-
ing that all the feature points are uniformly distributed over
the faces, the centroid of the image points expressed in cube
coordinates should be close the origin of the cube reference
frame. The normalization step will therefore just be a scal-
ing of the 3 coordinates of all pk by the maximum possible
coordinate value which is L

2 .

Second, the singular values E should be equal: if a and
b are the two singular values of the best estimate of E, we
consequently have to force both of them to be equal to s =
a+b
2 ; the third singular value being null. For more details

the reader is advised to consult [2].

4.2 Results

This section shows simply the consistency between the
approach based on fundamental matrices and the one rely-
ing on E. The epipolar lines associated with any point x̃ on
a face of the cube can be obtained by intersecting the epipo-
lar plane Ep with the corresponding cube. As explained in
Section 3, they can also be obtained from the knowledge
of one of the cube face’s fundamental matrix. To validate
the consistency of the two approaches, few epipolar lines
are displayed on the cube image shown in figure 5 that has
been matched with the cube of Figure 2. These lines corre-
spond to the three image points identified by square markers
on the frontal face of the image in Figure 2.



5 Cubic Panorama Rectification

5.1 Principle

To rectify the images of a stereo pair, the procedure gen-
erally consists in sending the epipoles to infinity in the x
direction. This can be achieved by applying two rectify-
ing homographies h and h′ to each image of the stereo pair
[6, 8]. The net result is a set of (horizontal) parallel epipolar
lines. In the case of cubic panoramas, the rectification pro-
cess would consist in making the corresponding cube faces
parallel to each other. To achieve this goal, a principle ana-
log to [8] is followed that, here, consists in finding the two
rotations R1 and R′1 that align the cubes in the preferred
configuration.

The resulting configuration can be seen on Figure 4. It
basically shows that the rotations R1 and R′1 are such that
the x axis of both cubes coordinate systems merge into a
common axis between both cubes going through both cen-
ters (baseline axis): the difference between the cubes (C)
and (C ′) becomes only translational. In such a configura-
tion [7, 8] showed that the corresponding essential matrix is
:

Erect = [(1, 0, 0)T ]x =




0 0 0
0 0 −1
0 1 0


 (17)

Thus, we want to find R1 and R′1 such that, if E is the es-
sential matrix between (C) and (C ′), then:

R′−T
1 ErectR

−1
1 = E (18)

or
Erect = R′T1 ER1 (19)

Compared to the stereo case, we have homographies be-
coming equivalent rotations and the fundamental matrices
replaced by their essential counterparts.

The interest of such a rectification procedure resides in
the simplifications it introduces. For example such align-
ment could greatly facilitate cubic panorama interpolation.
It could also help stabilize a linear sequence of cubes (as
done in [4]) by aligning them along a common direction,
thus reducing navigation jitters. There is also a great ben-
efit in applying dense stereo algorithms to rectified images.
Finally, the fact that cube rectification eliminates the rota-
tional component between cubes could greatly simplify the
pose estimation process as the only unknowns become the
relative translations between a set of cubes.

The next subsections detail the proposed cube rectifica-
tion procedure.

5.2 Rotation R1

To recover this rotation, we only need to align the x-axis
of the reference frame of (C) with the baseline axis of the

Figure 4. (a) Cubes in general configuration
(b) Aligned cubes

cube pair. This is done by first recovering the epipole vector
e which gives the direction C → C ′ in (C) reference frame.
We know that Ee = 0 meaning that e can be obtained from
the SVD decomposition of E. The next step is to geometri-
cally align the x-axis (1, 0, 0)T with e = (ex, ey, ez). Two
rotations Rz(θ) and Ry(φ) suffice and are composed to find
R1 such that :

R1 = Ry(φ)Rz(θ) (20)

with the constraint:

R1(1, 0, 0)T = e (21)

which allows us to recover :

θ = arcsin(ey) (22)

and
φ = arctan(

ez

ex
) (23)

5.3 Rotation R′1

The exact same procedure as above is applied to recover
R′1, the only difference being the x-axis of (C ′) is aligned
with −e′ instead of e′.

5.4 Additional rotation R′2

One could think that R1 and R′1 provide the final solu-
tion to the problem. As a matter of fact they only allow the
(C) and (C ′) x-axes to be aligned. Nothing then guarantees
the complete face alignment. This explains the need for an
additional rotation R′2 that will supplement R′1 to force the
face alignment of (C ′) with respect to (C). This problem is
formulated as follows :

(R′2R
′
1)
−T ErectR

−1
1 = αE (24)

We know that the additional rotation will be around the axis
−e′. We also know Erect, R1, R′1 and E. The fact that we



know the axis of rotation reduces the number of unknowns
in (24) to 2: the rotation angle θ around the axis −e′ and
the scaling factor α. The equation can then be considered
of the form :

f(θ, α) = 0 (25)

It is a minimization problem that we solved using the sim-
plex algorithm [9].

The rotation R′1 in section 5.3 is multiplied by R′2 to ob-
tain the final rotation to apply to (C ′).

5.5 Rectification Example

Tests were conducted on two cubes in arbitrary configu-
ration. Figure 6 displays a 3D view of the situation before
and after alignment generate. To create the original configu-
ration on the left, the rotation between the cubes is extracted
from the essential matrix following [2]. The rectifying ro-
tations were then applied to the two cubes. The resulting
rectified configuration shown is what was expected in terms
of x-axis and faces alignment.

One should note that one critical step is the approxima-
tion of R′2 through the minimization of 25 which will prac-
tically give only an approximate compensating angle. De-
pending on the accuracy of the minimization technique cho-
sen and in some cases on the initial estimates of the angle,
the result may vary.

6 Conclusion

This paper presented a study of important aspects of the
epipolar geometry in the case of a particular format of im-
ages panoramas.

Cubic panoramas have proved by many of their advan-
tages to be worthy of interest. Among these advantages in-
trinsic relationships between faces and implicit calibration
were used to derive important epipolar concepts through
fundamental matrices linking pairs of matching faces and
the essential matrix. From these results, one can then use
the epipolar constraint deriving from these matrices, to de-
fine a reliable matching procedure following a RANSAC
scheme such as the one proposed in [11]

Finally, from the essential matrix we derive the equiva-
lent principle of stereo rectification in the case of cubes and
we showed how rectification can eliminate the rotational
component in a multi-cube configuration.

Appendix A : rotations matrices

The rotations Ri mentioned in the article are obtained by
simply observing the frame on figure 1. To align the frame
to each face i, a trivial rotation needs to be applied. We thus
can derive the following expressions for each face :

RU = Rx(
π

2
) =




1 0 0
0 0 −1
0 1 0




RL = Ry(
π

2
) =




0 0 1
0 1 0
−1 0 0




RF = Rx(0) =




1 0 0
0 1 0
0 0 1




RR = Ry(−π

2
) =




0 0 −1
0 1 0
1 0 0




RB = Ry(π) =



−1 0 0
0 1 0
0 0 −1




RD = Rx(−π

2
) =




1 0 0
0 0 1
0 −1 0




Appendix B : 3D conversion and plane inter-
sections

In the case of a cube of side L, faces are located at trivial
coordinates with respect to the cube reference frame : x =
±L

2 for right and left faces, y = ±L
2 for top and down

faces, z = ±L
2 for front and back faces. This allows us to

convert easily 2D faces coordinates into 3D cube reference
frame coordinates. In general, if x̃ = (x, y, 1)T is the point
of concern, an affine transformation is applied to x and y to
find two of the three 3D coordinates along the axis x,y or z
that form the plane of the face, the third coordinate being a
constant as mentioned above.

TU =




1 0 −L
2

0 0 L
2

0 −1 L
2




TL =




0 0 −L
2

0 −1 L
2

−1 0 L
2




TF =




1 0 −L
2

0 −1 L
2

0 0 −L
2




TR =




0 0 L
2

0 −1 L
2

1 0 −L
2






face ai bi ci

U a −c gU(b)
L −c −b gL(−a)
F a −b gF(−c)
R c −b gR(a)
B −a −b gB(c)
D a c gD(−b)

Table 1. Epipolar lines as intersections of
cube and epipolar plane

TB =



−1 0 L

2

0 −1 L
2

0 0 L
2




TD =




1 0 −L
2

0 0 −L
2

0 1 −L
2




On the other hand, the fact that the faces lie at particular
coordinates allows us also to find the intersections of a plane
with the cube. The epipolar plane is given by Ep if p is the
point of interest. It is a plane that goes through the center
of the cube and is noted (a, b, c) to designate its normal.
We therefore have the results presented in table 1 where the
different lines li = (ai, bi, ci) lie on the faces of the cube
as the intersections of the latter with the plane (a, b, c). The
functions gi in table 1 are defined as follows :

gi(m) =
L

2
(m− (ai + bi))
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Figure 5. Epipolar lines over a cube as computed from E and from the matrices Fi.

Figure 6. The estimated 3D position of the tested cube pair (figures 2 and 5). Original configuration
(left). After rectification (right)


