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Abstract

To acquire seamless visualization of environments from
different viewing positions and orientations, it is desirable
to generate virtual images for an arbitrary position given
a set of reference views. In this paper, a simple interpola-
tion method based on ray-tracing is proposed for viewpoint
synthesis from panoramas taken with multi-sensor cameras.
Instead of attempting to recover a dense 3D reconstruction
of the scene, the method estimates the pose between each
panorama and then backward project the point along the
ray that exhibits the best colour consistency. We show that
by limiting the search space using sparse depth information
both the speed and the accuracy of the interpolation are im-
proved.

1 Introduction

In the recent years, there has been a great deal of interest
in image-based rendering (IBR) techniques for producing
novel views from a set of pre-captured reference images.
This kind of techniques is often called view synthesis. Com-
pared with traditional geometry-based approaches which
render directly from geometric models, the IBR methods
can produce more photorealistic results, and avoid tedious,
error-prone 3D shape modelling of complex scenes.

View synthesis can be classified into two categories
based on viewing freedom: (i) viewing from limited view-
points; (ii) viewing from arbitrary viewpoints. The first
group can only produce virtual images from a restricted set
of points of view, providing a limited immersive user ex-
perience. In ”View Morphing” [13], the novel views are
directly generated by interpolating the corresponding pixels
of the input images. Seitz and Dyer adopt a three-step al-
gorithm to guarantee the intermediate view being geomet-
rically correct or 3D shape preserving. To improve view
morphing, Lhuillier and Quan [9] propose a quasi-dense
matching algorithm based on region growing, and used the

joint view triangulation to interpolate novel views. Sun
and Dubois [16] improve the quality of triangle-based view
morphing by using a feedback-based method to determine
the weights to use when combining the textures from dif-
ferent reference images. These methods often limit the new
viewpoint to lie on the straight line connecting the projec-
tion centers of reference viewpoints. Another typical view
synthesis method which also has constrained view point but
with a richer user experience is Multi-Center-Of-Projection
(MCOP) [12]. MCOP samples the scene by placing the
camera around the objects of interest, and interpolates these
images to generate virtual view. The navigation is then re-
stricted to a circular trajectory.

The second group of the methods can theoretically gen-
erate arbitrary point of view with user-specified rotation and
translation. Laveau and Faugeras [8] employ the epipo-
lar constraints to perform a raytracing-like search of cor-
responding pixels in reference images for novel view pix-
els. Dense correspondences are computed in their approach.
”Plenoptic Modelling” [10] can allow rendering from arbi-
trary viewpoints without explicit 3D reconstruction. After
cylindrical panoramas are composed, the method computes
stereo disparities between cylinder pairs, and then project
disparity values to an arbitrary viewpoint. ”Layered Depth
Images (LDI)” [15] constructs ”multiple overlapping lay-
ers” by using stereo techniques. To render an arbitrary
novel view, it is only needed to warp a single image, in
which each pixel consists of a list of depth and colour val-
ues. These methods require solving the difficult dense or
quasi-dense feature correspondence problem to extract dis-
parity or depth values. Dense correspondence is an ill-posed
problem, especially when the reference images have large
difference in rotation and scale due to viewing orientations
and zooming or large baseline separations. Sometimes it is
almost impossible to compute dense correspondences due
to the untextured and slanted regions in real image.

In this paper, we test an approach to synthesize novel
views from panoramas for any specified position and view-
ing direction that avoids the computation of dense corre-



spondences. Our approach is similar to that of [8] in that
we use a raytracing-like algorithm. For every pixel in the
new target image, a search is performed to locate the cor-
responding pixels in reference images. However, instead
of computing dense correspondences, we use a colour con-
sistency constraint among multiple panoramas to guide the
search. We also show that by limiting the search space us-
ing sparse depth information improves both the speed and
the accuracy of the interpolation.

This paper is organized as follows: the next sec-
tion briefly introduces acquisition and geometry of cubic
panorama. Section 3 describes the basic ray-tracing inter-
polation approach and Section 4 proposes two implementa-
tions of the algorithm. In Section 5, we present some exper-
imental results. Section 6 is a conclusion.

2 Geometry of Cubic Panoramas

Cubic panoramas have been introduced by Greene [4]
and made popular by Apple QuickTime 5 VR. They con-
stitute a convenient representation for360◦ panoramas as
they can be stored and rendered very efficiently in modern
graphic hardware [3]. We use here the Point Grey Lady-
bug camera to capture and generate these panoramas. The
Ladybug camera consists of six 1024x768 colour CCDs,
with five CCDs positioned in a horizontal ring and one po-
sitioned vertically.

After capture, the six raw images, with roughly 80 pixels
overlap between neighbouring sensors, need to be stitched
together to form a panorama image. This can be done by
fusing the six images to form a spherical mesh that is then
projected onto six cube faces [?]. Figure 1 shows a cubic
panoramas where the cube is laid out in a cross pattern, the
middle image alignment showing the left, front, right and
back faces (since there is no sensor positioned downward,
there is a black hole in the bottom face of the cube).

An ideal pinhole camera model is assumed under which
a cubic panorama is made of six identical ideal cameras
whose optical centers are located at the cube center. Conse-
quently, the calibration matrixK and relationships of differ-
ent faces of cubic panorama are implicitly known given the
size of cubic image [5]. Each cube is captured from a point
in space, and its location and orientation can be represented
with translation vectort and rotation matrixR. The essen-
tial matrix E is a compact representation of the relationship
between two panoramas. The relative position between two
panoramas is therefore obtained as follows:

1. Use Lowe’s scale-invariant SIFT [?] to detect and
match a few, but accurately, features using stringent
threshold;

2. Estimate the essential matrixE and discard misde-
tected matches by the robust RANSAC method.

Figure 1. Example of a cubic panorama of the
outdoor set laid out in a cross pattern.

3. Find more matches using SIFT with a relaxed thresh-
old, and use the re-computed E to remove mismatches

4. Extract translation vectort (up to a scale) and rota-
tion matrix R from SVD decomposition of the essen-
tial matrix E.

3 View Interpolation using Ray-tracing

Our goal is to generate photo-realistic novel views for
virtual navigation. Given a set of pre-captured cubic
panoramas, we are interested in generating arbitrary novel
views so that we can achieve seamless visualization of envi-
ronments from arbitrary viewing positions and orientations.

The approach used in this paper is straightforward and
well-known in image synthesis: for every pixel of the tar-
get image, the optical ray coming from the optical center is
traced in the 3D world. A search along this ray is therefore
performed to locate the corresponding point in the reference
images. This search is guided by a colour-consistency con-
straint. Once the correct 3D point is identified, the pixel
colour in the target image is simply obtained through back-
ward mapping.

Let us consider the example of the interpolation of one
view from two reference cubic panoramas (see Figure 2).
The two reference cubes areC0 andC1, and the world frame
is attached to the frame ofC0. The Euclidean transforma-
tion between the world (cubeC0) andC1 coordinate frames
is specified byR01 andT01. We need to generate the novel
view Cs, which has an Euclidean transformation[R0s|T0s].
For an image pixelxs(i) of target cubeCs, we trace the op-
tical rayOsxs(i) in order to locate the 3D pointX(i), that
is the intersection of the ray with one object of the environ-
ment. If no occlusion is involved (cf. Section 4.3),x0(i)



Figure 2. Novel view generation using ray-
tracing.

andx1(i), the projection of the 3D pointX(i) onto cubeC0

and cubeC1 respectively, should have same colours. This
colour consistency information is used to guide the search
for the depth value of the 3D pointX(i).

3.1 Colour consistency

Figure 3. Colour consistency. On the left,
the pixels from two images have the same
colours at a point on a surface. On the right,
the pixels from two images show inconsis-
tent colours at points not on the same sur-
face.

Colour consistency, introduced by Seitz et al. [14], is
widely used in volumetric scene reconstruction [14, 1, 6,
2, 7]. As shown in Figure 3, it is used to differentiate sur-
face points from others in a scene. It is assumed that the
scene is completely composed of rigid Lambertian surfaces

under constant illumination. If two pixels show inconsis-
tent colours, they must be the projection of different scene
points.

The colour consistency of a set of pixels can be defined
as the maximum of absolute difference of colour channels
between all pairs of pixels [2]. LetX be a 3D point, and
Ri(X), Gi(X), Bi(X) be the three colour channels of visual
information at the projection ofX on viewi. Then we have

|γiRi(X)− γjRj(X)| +

|γiGi(X)− γjGj(X)| +

|γiBi(X)− γjBj(X)| < Θ (1)

with

γi = 1/ (Ri(X) + Gi(X) + Bi(X)) . (2)

The thresholdΘ is applied to decide if the pixels are the
projection of the same scene pointX. The normalization
factor is introduced to reduce the effects of the illumination
variations.

Another method to measure the colour consistency of a
3D point is by computing the standard deviation of its pro-
jected pixel colours [11, 7]. Let̄R(X), Ḡ(X), B̄(X) be the
three colour channels of the visual information atX aver-
aged over n views, we can compute the deviation of viewi
as:

d2

i (X) =
(

Ri(X)− R̄(X)
)2

+
(

Gi(X)− Ḡ(X)
)2

+
(

Bi(X)− B̄(X)
)2

(3)

This deviation will be low if all the cameras see the same
surfaces pointX. Otherwise, cameras viewing different
points of the scene will result in a large deviation.

4 Algorithm Implementations

4.1 Brute-force Depth Searching

A first direct approach consists in trying to determine the
correct backward mapping through an exhaustive search.
Given an image point of a novel view, we trace the optical
ray Osxs(i), expressed as

X(i) = λs(i) xs(i) (4)

whereλs(i) corresponds to the depth (up to scale) of 3D
point X(i). This brute-force depth searching algorithm is
given in Algorithm box 1. In our experiments, we set
λmin = 0.0005, λmax = 2 (the depth is up to scale),
ǫ = 0.5 andstep = 0.0002.



forall xs(i) do
dopt =∞;
for λs(i) = λmin to λmax do

computeX(i) = λs(i) xs(i);
projectX(i) to cubeC0, C1,...,Cm ;
computedk(X(i)) using Equation (3);
if

∑

dk(X(i)) < dopt then
dopt =

∑

dk(X(i));
λopt

s (i) = λs(i);
if dopt < ǫ then break;

end
λs(i)+ = step;

end
end

Algorithm 1: Brute-force Depth Searching Algorithm

Figure 4. Brute-force depth searching. A
point is chosen from “virtual” cube s. The
corresponding search ranges are shown on
the four reference cube faces of the set.

After the optimal depthλopt
s (i) is found, we can back-

project the pointX(i) = λopt
s (i) xs(i) to all the input cubes

in the set. This results in a set of projected image points,
namely,x0(i), x1(i), ..., xm(i) on reference cubesC0, C1,
..., Cm, respectively. The colour values of novel view
pixel xs(i) can then be interpolated from these input image
points.

To illustrate the search range that is implied by this brute-
force algorithm, we performed an experiment with five cu-
bic panoramas. Four of them are used as references and
the fifth one constitutes the ground truth for the panorama
we will interpolate at its location (this fifth panorama is the
one shown in Figure 1). We select one point on the right
face of the target panorama as shown in Figure 4. The cor-
responding search ranges in the four reference panoramas
are also shown in Figure 4 (we show here only the relevant
cube faces). As it can be seen, these ranges can be quite
large. This is especially true when an object is close to the
camera, such as the searching ranges of cubea and cubeb
in Figure 4. The broader these search ranges are, the more
“similar” colour pixels there can be in the reference cubes,
and hence the higher the probability to find a wrong depth
value. Of course, another fundemental problem with the
brute-force strategy is its high computational cost.

4.2 Guided Depth Searching Through
Sparse 3D Reconstruction

The view generation process can be improved by narrow-
ing down the search range; this can be achieved by using the
sparse matching results we obtained at the pose estimation
step. Interestingly, it turns out that this modification im-
proves both the speed of the view generation process and the
quality of the interpolated images by reducing the chance of
getting wrong depth values.

In this version of the algorithm, the search along the
traced ray is guided by a sparse 3D reconstruction. Firstly,
we find the pairwise sparse feature matches from the input
cubes of the set. Then the corresponding 3D points are re-
constructed. In order to get depth range information on the
target view, we transfer the reconstructed 3D points from all
input cubes onto the target cube frame.

The Euclidean transformation from the frame of cubeCi

into that of cubeCj is denoted asRji, tji. The depth infor-
mation of thejth pixel x(j) of cubeCi is λi(j). The 3D
point corresponding to depthλi(j) is Xi(j). Sparse recon-
struction and point transfer then proceed as follows:

1. Use the method of Section 2 to find matches and com-
puteRij , tij for every two cubes of the set.

2. Given xj(i) ←→ xk(i), the ith correspondence of
cubeCj with the cubeCk, triangulateXj(i), the 3D
point (up to scale) in the frame of cubeCj .



3. Transfer all computed 3D pointsXj(i) of cube Cj

frame into cubeC0 frame (world frame) using:

X0(i) = R0iXj(i) + t0i. (5)

4. Remove repeated 3D points from the set.

We thus obtained a large set of 3D points, designated
X̃0 (k), that can then be projected on any novel viewpoint
(a cubeCs). A set of image points̃xs(k) and their depths
λ̃s(k) in cubeCs is obtained. These depth values can be
used to guide the searching during the ray-tracing proce-
dure. The guided depth searching algorithm is given in Al-
gorithm box 2.

project allX̃0(k) ontoCs;
computẽxs(k) and λ̃s(k);
forall xs(i) do

dopt =∞;
forall λ̃s(k) for which x̃s (k) ∈ neighborhood of
xs (i) do

computeX(i) = λ̃s(k) xs(i);
projectX(i) to cubeC0, C1,...,Cm ;
computedk(X(i)) using Equation (3);
if

∑

dk(X(i)) < dopt then
dopt =

∑

dk(X(i));
λopt

s (i) = λ̃s(k);
if dopt < ǫ then break;

end
end

end

Algorithm 2: Guided Depth Searching Algorithm

The experiment of the previous subsection is repeated
for the guided search algorithm. The results are shown in
Figure 5. Compared with Figure 4, it can be seen that the
search ranges are much smaller than those of thebrute-force
depth searchingwhich as it will be shown in the next section
improve both the speed of the panorama generation and the
quality of this interpolated panorama.

4.3 Dealing with Occlusions

All IBR systems must deal with the problem of occlu-
sion. An occlusion occurs when a visible surface in some
input images is hidden in another. To generate a novel pixel
from a set ofN reference cubes, ray-tracing is applied to
find the depth for which the best colour consistency is ob-
tained among theN reference panoramas. Then the refer-
ence cube with the pixel colour that differs the most from
mean colour value is eliminated. The novel pixel is thus
interpolated fromN − 1 pixels.

Figure 5. Guided depth searching. A point
is chosen from “virtual” cube s. The corre-
sponding search ranges are shown on the
four reference cube faces of the set.

5 Experiments

An indoor and an outdoor experiments have been per-
formed to test our panorama interpolation algorithm. We
used 4 pre-captured cubic panoramas to generate a virtual
cube plus one extra panorama that serves asground truth.
We therefore input the algorithm with the computedrota-
tion matrix andtranslation vectorof this extra cube. If our
algorithm works well, the generated cube and the real cube
should be identical.

For the first experiment, we used the four indoor cubes
shown in Figure 6 as input views. The largest translation
among these input cubes is about 1 meter. The world frame
is attached with the frame of cube 1. We used the panorama
shown in Figure 1 as ourground truth. The interpolated
cubic panoramas generated from these four cubes using the
two proposed implementations are shown in Figure 7. In
the case of the guided depth searching algorithm (bottom of
Figure 7), the results are good considering the complexity
of the scene and the relatively large translation. However,
reconstruction errors are visible, especially on the computer
monitor on the right face. This monitor is very close to



Figure 6. Indoor cube sequence (top and bot-
tom faces not shown) used to generate vir-
tual cubes.

camera, which results in a large searching range. As stated
previously, the closer the objects are to camera, the broader
the searching ranges, and the higher the probability is to
reconstruct pixels with wrong colours.

Theguided depth searchingalso improve the searching
speed dramatically. To generate novel cube view from 4
input cubes, the computation time for a cube resolution of
512 × 512 × 6 faces on an AMD 64x2 1.6GHz, 1024MB
memory laptop computer took 26 hours and 33 minutes for
the brute-force searching and 1 hour 23 minutes 38 seconds
for the guided depth searching.

The next experiment shows the viewpoint interpolation
results for a set of outdoor panoramas. In this case, the
largest translation among the reference cubes is about 7 me-
ters, which is a very severe condition for image interpola-
tion. The four input outdoor cubes are shown on Figure
8, and the extra panorama used asground truth is shown
on top of Figure 9. The accuracy of the interpolation is
not as good since the translation is very large. For exam-
ple, there are very large reconstruction errors for the bikes
in the scene. The main reason is that the large translations
among input cubes result in very small resolution of bikes
in cube 6andcube 8shown on Figure 8. Also, the homo-
geneous colours in the scene (the colours of the ground and
the main building are almost same) put more challenges on
our method.

Figure 7. Virtual cube Vs. real cube for in-
door cubes: the top cube is a virtual view
generated from 4 cubes shown on Figure 6.
This virtual cube is designated to produce
the same view as the bottom real cube

6 Conclusion

This paper presented a comparison of two implementa-
tions of a ray-tracing algorithm for the interpolation of vir-
tual viewpoints from a set of panoramic views. Our contri-
bution was to show that using a very simple approach based
on colour consistency leads to relatively good results. We
showed also that by limiting the search space using sparse
depth information improve both the speed and the accuracy
of the interpolation. It should be emphasized that in our ap-
proach, we were concern only by the quality of the visual
reconstruction; obtaining true depth information was not an
objective here.
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Figure 9. Outdoor panorama generation. Top:
real captured panorama, center: panorama
generated using guided depth searching,
bottom: panorama generated using brute-
force searching.


