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Abstract
This paper presents a new operator for corner de-

tection. This operator uses a variant of the morpholog-
ical closing operator, which we have called asymmetri-
cal closing. It consists of the successive application of
different morphological tranformations using different
structuring elements. Each of these structuring ele-
ments used to probe the image under study is tuned to
affect corners of different orientation and brightness.
We found that this kind of approach, based on bright-
ness comparisons, leads to better quality results than
others and is achieved at a lower computational cost.

1 Introduction
Corners constitute attractive 2D features, often

used in computer vision for tasks such as stereovision,
3D interpretation, motion estimation, and structure
from motion. They abound in indoor scenes where
several polyhedral objects and intersecting planes
(floor, walls, etc.) are present. Corners serve as points
of interest in two-view matching algorithms [1][2][3].
Corner detection is also used in camera calibration for
the localization of reference points on a calibration
pattern ([4] for example).

Corner detection is sometimes realized through the
analysis of binary edge maps from which chain codes
are extracted in order to find high curvature points
[5][6][7]. However, most approaches work directly at
the grayscale level [8]-[17]. These methods usually
use local measurements in order to obtain a corner
strength. Non-maxima suppression and thresholding
lead then to a binary map showing where corners have
been detected. These corner finder are usually char-
acterized by an accuracy of few pixels and a relatively
high level of false positives. Model-based approaches
such as [18][19] also exist and allow corner localization
at a subpixel accuracy. But these methods are more
CPU-intensive and are only used after a first corner
map has been obtained.

One of the difficulties with corner detection lies in

the corner definition itself. A restrictive description
simply defines corners as the junction of two homoge-
neous regions separated by a high-curvature boundary.
This definition is incomplete since it does not include
X, Y and T junctions that should also be categorized
as corners since they might be the image of 3D corners
(intersection of three planes). A less rigid definition
assimilates corners to points with high derivatives in
several directions. This is a very loose description of
the term corner since since several “non-corner” points
fall into this category.

This paper proposes an approach to corner detec-
tion based on mathematical morphology. The goal
was to obtain a fast corner detector that is accurate,
stable, selective and robust to noise. The next section
is a short review of existing corner detectors. Section
3 presents some mathematical morphology concepts.
Section 4 describes the proposed corner detector and
Section 5 shows some comparative results. Section 6
is a conclusion.

2 Corner detection
We review here the main corner detectors that work

directly at the grayscale level. All these methods
use local measurements in order to obtain a corner
strength c(x, y) for each point of the image. Local
non-maxima suppression and thresholding are then
performed in order to extract points that will be re-
ported as corners.

The use of the Hessian determinant of the intensity
surface to estimate corner strength has been proposed
by Beaudet [8]. Kitchen and Rosenfeld [9] proposed to
use the gradient magnitude and the rate of change of
gradient direction along an edge contour. Very similar
operators have also been proposed by Dreschler and
Nagel [10] and Zuniga and Haralick [11]. Deriche and
Girondon [12] proposed a scale-based approach that
uses the Beaudet’s operator in conjunction with the
Laplacian.

Following the idea of points of interest developed



by Moravec [13], the Plessey detector [14] is based on
the following matrix:
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where 〈I〉 denotes a smoothing operation on I. Cor-
ner strength has been first defined by Noble [15] from
which a slightly different version has been proposed
by Harris and Stephen [16]:

cHS(x, y) = Det
(
M(x, y)

) − k Trace2(M(x, y)
)
(2)

The role of the parameter k is to remove sensitivity to
strong edges.

All of the above methods are based on directional
derivatives. They all suffer from the same drawback:
local estimation of derivatives is very sensitive to noise
and, when smoothing is applied, the corner localiza-
tion precision is reduced. In addition, the computa-
tional complexity of the smoothing operation, deriva-
tive estimation and corner strength computation that
are involved in such methods can be quite high.

A simpler approach based on brightness compar-
isons has been proposed by Smith and Brady [17].
The SUSAN corner detector is a modified version of
the edge detector of the same name. It is based on the
computation of the area of points inside a circular re-
gion Nxy having a brightness similar to the one of the
center point (x, y). This area is computed as follows:

n(x, y) =
∑

(i,j)∈Nxy

e−( I(i,j)−I(x,y)
t )6 (3)

The parameter t controls the sensitivity to noise, i.e. it
defines the similarity between brightness values. The
value of n(x, y) is therefore compared to a fixed thresh-
old equal to nmax/2 where nmax is the maximum value
that n() can take, that is:

cS(x, y) =

{
nmax

2 − n(x, y) if n(x, y) < nmax

2

0 otherwise (4)

The value of this function corresponds to the corner
strength. In order to reduce the number of false pos-
itives due to smooth boundary, thin lines and fine
textures, two criteria must be added. The center of
gravity of the circular region must be (1) located suf-
ficiently far away from the center point and (2) all
pixels lying in a straight line from the center point to
the center of gravity must be of similar brightness.

Because of their computational simplicity, methods
based on brightness comparisons constitute an attrac-
tive solution to the problem of corner detection. More-
over, our experiments showed that this kind of ap-
proach allied accurate corner localization with good
robustness to noise. The corner detector we propose
follows this approach and makes use of some basic
morphological tools.

3 Mathematical morphology
Mathematical morphology is a methodology for im-

age analysis that has been widely used in computer
vision. The principle of all basic morphological opera-
tors is to probe the image under study with a structur-
ing element. This structuring element is a set of pixels
on which an origin is defined. To evaluate the results
of a morphological operation on an image point, the
structuring element is translated in such a way that
its origin coincides with this image point. The shape
of the structuring element defines a set ISE(x, y) that
includes all pixels of the image hit by the structuring
element. From this set, the elementary morphologi-
cal operators erosion and dilation can now be defined.
The erosion of an image I with a structuring element
SE is given by:

Iε
SE(x, y) = min ISE(x, y) (5)

Similarly, the dilation of an image I with a structuring
element SE is given by:

Iδ
SE(x, y) = max ISE(x, y) (6)

Two morphological transformations are defined by
the successive application of these operators. The
opening of an image I by a structuring element SE
is defined as an erosion followed by a dilation:

Io
SE =

(
Iε
SE

)δ

ŠE
(7)

where ŠE is the symmetrical transposition of SE with
respect to its origin. All image structures that cannot
contain the structuring element are removed by the
opening. Therefore, the shape and size of the struc-
turing element must be set according to the informa-
tion that is to be extracted. The closing of an image
I by a structuring element SE is defined as a dilation
followed by an erosion:

Ic
SE =

(
Iδ
SE

)ε

ŠE
(8)

4 Asymmetrical closing for corner de-
tection

In the context of corner detection, one interesting
choice is to consider a cross-shaped structuring ele-
ment (Figure 1(a)). Indeed, because of the particu-
lar shape of this structuring element, the opening and



closing operators alter mainly this kind of image struc-
ture. However, these corner detectors suffer from three
problems:

1. Opening affects only bright corners over dark
background while closing affects only dark cor-
ners over bright background.

2. Small image structures (including impulsive noise
and thin lines) are also eliminated and thus can
be wrongly assimilated to corners.

3. This kind of corner detection is not rotationally
invariant.

A concurrent application of opening and closing can
solve the first problem, but we introduce a more effi-
cient solution. We propose to perform what we call
an asymmetrical closing, that is, the dilation of an
image using a given structuring element followed by
an erosion using another structuring element (note
that asymmetrical opening could also have been con-
sidered). The central idea is to make dilation and
erosion complementary in terms of the type of cor-
ners they affect. This can be realized by choosing a
cross as the first structuring element and a lozenge for
the second one (Figure 1(b)). We can then write the
asymmetrical closing as:

Ic
+,� =

(
Iδ
+
)ε

� (9)

and corner strength will be given by comparing the
resulting image with the original one, that is:

c+(I) =
∣∣I − Ic

+,�
∣∣ (10)

Basically, the value of c(x, y) corresponds to the
brightness difference between the corner and its back-
ground. Note that, as defined, the transformation pro-
duces a three-pixel L-shaped response in the case of
dark corners We also observed this kind of multiple-
pixel response for real images. This must be inter-
preted as a consequence of the fact that the precise lo-
cation of smooth corners is not well defined. If needed,
it is still possible to select only the central point in
each set. Corners detected by c+ on a test image are
shown in Figure 2(a) (for all experiments to follow,
we used the structuring elements shown in Figure 1).
Clearly, rotational invariance and small structure sen-
sibility have not been solved. To detect the missing
corners, the following operator can be used (which is
a 45◦ rotated version of the preceding one):

c×(I) =
∣∣I − Ic

×,✷

∣∣ (11)

(b) (c) (d)(a)

Figure 1: (a) structuring element +. (b) structuring
element �. (c) structuring element ×. (d) structuring
element �.

Figure 2(b) shows the corners detected by this oper-
ator. Surprisingly, it appears that the two comple-
mentary operators, c+ and c×, are sufficient to detect
corners of almost any orientation. While these two op-
erators are sensitive to corners of different orientation,
they are both sensitive to the same small structures.
Consequently, the combination of these two operators
should make corner detection almost rotationally in-
variant and insensitive to small image structures. This
leads to the following operator:

c+,×(I) =
∣∣Ic

+,� − Ic
×,�

∣∣ (12)

Results obtained using this last operator are shown
in Figure 2(c). This is the operator that we propose
to use as a corner detector. To extract corners from
the output of c+,×(I), it appeared to us that a sim-
ple global thresholding is sufficient even if this leads
to multiple-pixel response for some corners (i.e. oc-
currence of a corner represented by a few connected
pixels in the binary corner map). In fact, we found
that non-maxima suppression, which is required in
the other methods, does not improve the quality of
the detection in the case of asymmetrical closing. In
particular, non-maxima suppression does not rule out
the multiple-pixel response mainly because the cor-
ner strength at these location are nearly equal (to the
brightness difference between the corner and its back-
ground). However, this multiple pixel response be-
havior is not problematic in most applications and the
elimination of the non-maxima suppression process re-
duces the computational load of the corner detection
task.

5 Comparative results
In order to test the validity of the operator c+,×(I)

as a corner detector, a series of tests were performed.
Comparisons were made with the Plessey corner de-
tector and the SUSAN corner detector.

Sensitivity to noise was tested by adding a gaussian
noise to the test image. The comparative results are
shown in Figure 3. These tests demonstrate the su-
periority of methods based on brightness comparison



(a)

(b)

(c)

Figure 2: Corner detection by asymmetrical closing.
(a) corner detected by c+. (b) corner detected by c×.
(c) corner detected by c+,×.

over differential detectors. This observation has also
been made in [17]. The SUSAN operator has also been
reported to be 10 times faster than the Plessey oper-
ator. We observed that the method proposed here is
about 2 times more efficient that the SUSAN operator.

To evaluate the stability of these detectors, we used
a test sequence of 4 images showing a table from dif-
ferent points of view. The checkerboard pattern on
the table creates 24 corners; the goal here is to test
the ability of each operator to detect these 24 corners.
Among these corners there are 4 L-junctions, 12 T-
junctions and 8 X-junctions. All parameters in each
method have been set in order to obtain the best possi-
ble results and a comparable density of corner points.
For each method, the same parameter values are used
for all images of the sequence. For the SUSAN opera-
tor and our operator based on asymmetrical closings,
we have tested two different threshold values. Results
are shown in Figure 4 where we show 2 of the 4 im-
ages. Table 1 presents the number of corners that
each method has detected. It is not surprising to find,
from the analysis of these results, that a lower thresh-
old leads to a higher number of detected corners. But,
at the same time, the number of false positives grows
rapidly. In order to estimate the number of false pos-
itives that each method produced, we have counted
the number of detected corners lying on the table in
each image. The result of this analysis is presented in
Table 2. These results demonstrate the reliability of
the operator based on asymmetrical closings. It ap-
pears to be more stable while producing fewer false
positives. It is also interesting to note that, in the
case of the operator proposed in this paper, several of
the false positive detections are due to the fact that
X-junctions tend to produce a two-corner response.

6 Conclusion
We have presented a new operator for corner de-

tection. It uses a variant of the morphological closing
operator, which we have called asymmetrical closing.
We found that this kind of approach, based on bright-
ness comparisons, leads to better quality results than
other approaches and is achieved at a lower computa-
tional cost. Stable and accurate corner detection has
been obtained using the operator presented in this pa-
per. Because of its algorithmic simplicity, we believe
that this operator is an efficient means of producing
input points of interest for feature-based approaches
to 3D structure and motion estimation problems.
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Figure 3: Test image with gaussian noise of variance
σ2 = 50. (a) Plessey. (b) SUSAN. (c) asymmetrical
closing.

(a)

(b)

Figure 4: Corner detection on the test sequence. (a)
The SUSAN operator (threshold = 12). (b) Asym-
metrical closing (threshold = 10).


