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C amera calibration plays a key role in every computer 
vision application dealing with the problems of re-
covering a camera’s geometry with respect to a 3D 

world reference, making 3D measurement in a captured scene 
or extracting 3D data from observed objects. These problems 
emerge in various applications such as structure from motion, 
robotics, augmented reality, 3D object recognition, and Simul-
taneous Localization And Mapping (SLAM). Using a camera 
as a measuring device is becoming an important trend [1], and 
as a consequence the need for calibrating this instrument also 
becomes of prime importance. 

Cameras are, by nature, projective devices that map our 3D 
world onto a 2D image. Their prime use is to create representa-
tions (i.e., images) of an environment and its actors as pictured 
from a particular viewpoint at a precise moment in time. Ex-
tracting 3D data from such devices is therefore inherently 
difficult. The camera measures the intensity of the light emit-
ted or reflected from a certain direction; however, the depth 
information is lost. The projective process also implies that, in 
the absence of any external reference, the scale of the observed 
objects is undeterminable; that is an object of a given size at a 
given camera distance will produce the same image as an ob-
ject of twice the size seen at twice the distance. In spite of these 
limitations, with a good understanding of the camera geom-
etry, 3D reconstruction can become possible under specific 
circumstances.

In this article, we review some techniques proposed in the 
literature to parameterize camera metric information, also re-
ferred to as camera calibration techniques. We also illustrate 
the use of calibrated cameras by describing two application 
examples involving camera pose estimation and distance 
estimation.

The Pin-Hole Camera Model
A camera is a simple instrument that captures rays of light 
coming from an observed scene and projects them onto an im-
age sensor in order to produce a picture. This image sensor 
is composed of a grid of photosites that collect the incoming 
photons converging from the camera lens. Surprisingly, as 

complex as the camera technology can be, the image forma-
tion process can be accurately described by the rudimentary 
pin-hole model. This simple, yet realistic model assumes the 
image sensor is a two-dimensional Euclidean plane and is 
used as a standard basis to formulize cameras’ intrinsic and ex-
trinsic quantities.

As Fig. 1 shows, the camera model (also known as per-
spective projection) can be described as a 3 × 4 homogenous 
transformation that maps a 3D world point M = [X Y Z 1]T ex-
pressed in homogenous coordinates to a 2D pixel m = [u v 1]T 
also in homogenous coordinates. Thus, we can write:

  (1)

where P is a  mapping up to scale factor s with 11 
degrees of freedom. To factor out the projection matrix into 
intrinsic and extrinsic parameters, (1) can be decomposed as: 

  (2) 

Intrinsic Parameters
Intrinsic parameters denoted as K in (2), embed the internal 
configuration of a camera. The focal length f measured in pixel 
unit is the shortest distance between pinhole C and the sensor 
plane. The coordinate of the pixel on which the focal length 
vector pierces the image plane is the principal point. The camera 
principal point is ideally taken to sit at the center of the image 
sensor that is represented by [cu, cv]T. To more accurately model 
image sensors with non-square pixels, two scale factors pro-
portional to pixel density per unit distance, namely kx and ky, 
are introduced. A small non-zero parameter  represents the 
skewness of the pixel grid and 

  (3)

However, under a reasonable assumption [2],  can be 
neglected in most normal cameras where image axes are 
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perpendicular. Incidentally, in modern CCD cameras, pixels 
are usually considered to be square, thus resulting in both ku 
and kv to be equal to 1.

Extrinsic Parameters
To complete the perspective projection P matrix, camera ex-
trinsic parameters must be taken into account. In fact, extrinsic 
parameters describe the position and orientation of the camera 
in 3D world coordinates comprising of R3×3 and t3×1, respec-
tively. Referring to Fig. 1, the transformation from a 3D point 
in the camera coordinate system to the world coordinates can 
be expressed as:

  (4)

in which, -R-1t describes the camera center in world coor-
dinates. Therefore, we can alternatively reformulate (2) as 
follows:

  (5)

Lens Distortion
One aspect that is not taken into account by the pin-hole model 
is the distortion introduced by the camera lens. Although, it 
is expected to have straight lines mapped into straight lines, 
in some practical cases, the camera lens induces a distortion 
that cannot be neglected. The corresponding distortion is com-
posed of two displacement terms, namely radial distortion 
and lens shift distortion. Letting xu and xd be undistorted and 
distorted 2D points, respectively, we can write:

  (6)

While the lens shift is usually ignored, the radial distortion 
can be modeled by the following polynomial expression:

  (7)

where r is the radial distance from the center of image plane. 
Lenses of shorter focal length usually exhibit higher image 
distortion.

The Calibration Process
Camera calibration is the process by which the exact values of 
a camera’s parameters are determined. There is a mass body 
of literature concerning different calibration techniques. How-
ever, we focus here on calibration using apparatus methods as 
being more practical and accurate. In its simplest form, a cal-
ibration apparatus is a 2D plane showing a pattern of known 
geometry. 3D calibration objects could also be used, but these 
ones are more difficult to manufacture and to handle. The role 
of the apparatus is to provide the camera to be calibrated with 
a set of points of known 3D coordinates (with respect to some 
world reference). These 3D points and their corresponding ob-
served image on the camera sensor are then used to estimate 
the intrinsic parameters (and the distortion) from the projec-
tive relation that the pin-hole camera defines. The most widely 
used 2D apparatus are the chessboard pattern and the circle 
pattern (Fig. 2). They present the advantage of having calibra-
tion points (corners and circle centers) with image coordinates 
that can be estimated at subpixel accuracy.

In principle, the more points observed, the more accurate 
will be the calibration. The calibration points should also cover 
as much as possible the field of view of the camera as well as 
being presented at various depths. This requirement cannot be 
achieved from a single planar calibration pattern; it is therefore 
a common practice to capture multiple images of the calibra-
tion pattern at different positions. It follows that during the 
parameter estimation process not only the intrinsic will need 
to be estimated but also multiple extrinsic parameters, that is 
the position of the pattern with respect to the camera for each 
captured image. Note that more accurate results can be ob-
tained when a precise motion control platform is available, 
such that the calibration pattern can be moved in a controlled 
way.

The Linear Method of Hall
In 1982, Hall et al. [3] proposed a direct linear method, based on 
direct linear transformation (DLT), to estimate elements of pro-
jection matrix by forming a set of equations. Equation (1) can 
be explicitly decomposed into three simultaneous equations, 
the first two giving expressions for su and sv while the third 
one gives an expression for s only. We can therefore substitute s 
in the first two equations by this last expression, and with some 
variable rearrangements, we can derive:

  
 

(8)

Fig. 1. Pinhole model of a digital camera.
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where, pij constitute the 12 parameters of the projection ma-
trix P. Since P has 11 degrees of freedom, we can set the very 
last element of P to unity (i.e., p34 = 1). Given n pairs of corre-
spondences, we can rewrite (8) in the form of a homogeneous 
system (Ap = 0):

 

(9)
Vector p is solved such that the algebraic error constrained by 
calibration points is minimized, that is:

  (10)

A norm constraint ( ) is also imposed to avoid trivial so-
lution. The least square solution is obtained by applying the 
so-called Singular Value Decomposition (SVD), so the right null 
vector of matrix A corresponds to the smallest eigenvalue, 
minimizing the error function defined by (10).

The Two-Stage Method of Zhang
Since the camera lens is precisely modeled with some non-lin-
ear terms, linear approaches like the Hall approach are inferior 
when dealing with the non-linear radial distortion. Zhang 
[4] proposed a flexible two-fold method that also covers the 
radial distortion. The method initially estimates an explicit so-
lution and then refines it through an iterative scheme based 
on Maximum Likelihood Estimation (MLE). In addition, this 

method resolves the problem in a way that is more geometri-
cally meaningful.

The idea behind this approach is based on homography 
transformations between multiple views (at least two) of a pla-
nar target. Assuming a planar calibration target to be located 
at Z = 0 cancels the third row of the projection matrix of (1). It 
results then in a new relation involving a homography H relat-
ing the 3D point with the 2D image, that is:

    , where    (11)

where r1 and r2 are the first and second vector of the rotation 
matrix, respectively. From the given H obtained from the DLT 
solution and bearing that r1 and r2 are two orthonormal vectors, 
the cameras’ intrinsic parameters can then be constrained by 
the following system of equations:

  (12)

 

B is a symmetric matrix with six degrees of freedom, referred 
as to the projection of the absolute conic. Following the steps 
described in [4], one can find an initial estimate of intrinsic pa-
rameters K, as well as the extrinsic R and t.

Refinement Using Maximum Likel ihood 
Estimation 
Now that an initial estimate of the camera parameters is 
available, it can be refined through a Maximum Likelihood Es-
timation (MLE) that minimizes a geometric distance function. 
In this case, MLE relies on the set of independently and iden-
tically distributed data obtained from the m calibration points 
observed across n views. Given this set of observations, MLE 
determines, from a parametric model f(.|K,Ri,ti), the vector of 
parameters that exhibits the highest degree of consistency with 
the observed data. The distance function to be minimized is ex-
pressed as:

  (13) 

Given an initial guess P0 from the previously found closed-
form solution, an iterative non-linear minimization algorithm 
such as Levenberg-Marquardt is used to find the refined solu-
tion. Note that function f can also include the parameters that 
model the lens distortion.

Self-Calibration
In cases where an offline calibration process cannot be ap-
plied, it is still possible to rely on self-calibration methods. These 
methods require no or little prior information about the cam-
era and can be conducted online during the scene capture 
process. Although these methods bring more flexibility than 

Fig. 2. Circle and chessboard calibration patterns.
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classical methods, they are more complex to deploy and lead 
to less accurate solutions, often at a higher computational cost.

Source and Impact of Uncertainties in Calibration
When a camera is used to perform measurements, it becomes 
essential to understand the effect of calibration errors on 3D 
reconstruction. The uncertainties in the measurement system 
may stem from an inaccurate camera model, noisy obser-
vations or a systematic error associated with the method of 
calibration. It is important to realize that any error introduced 
in the calibration process will follow a chain of propagation 
that will lead to errors in the 3D measurements to be made. 
Error in calibration target measurements and uncertainties in 
extracted feature point position introduce errors in calibration 
parameters which, in turn, introduce errors in 3D estimations. 
To analyze the impact of these errors, a sensitivity analysis 
must be performed [5]. This is generally done by computing 
a covariance matrix on the calibrating objective function, de-
scribing how the variations of a noisy input parameter (e.g., 
feature point position) result in variations of an estimated pa-
rameter (e.g., focal length) [6]. 

Error analysis in vision-based measurements is also made 
more complex by the fact that its impact also depends on how 
the camera is used to perform the measurements. For exam-
ple, an error in the estimate of the camera’s principal point will 
have a more important impact on a forward-moving camera 
than on a camera measuring the same object but by following 
a lateral movement [7]. It has also been observed that some pa-
rameters have more impact than others on the measurement 
uncertainties. For example, focal length and camera distortion 
parameter accuracy have been shown to be critical to the pro-
duction of reliable 3D estimates. 

Camera Pose Estimation
Once a camera has been calibrated, it becomes possible to esti-
mate the position of the camera with respect to some 3D objects. 
This problem is generally formulated as finding the pose, or ex-
trinsic parameters, of a calibrated camera given a set of observed 
3D points and their 2D images. This is known as the Perspective-
n-Point problem (PnP). Theoretically, three points (n = 3) called 
P3P, is the minimal amount of information required to solve the 
PnP problem [8]. Various methods capable of explicitly solving 
this problem for n ≥ 3 have been proposed; those bringing low 
complexity, yet accurate result are of particular interest.

One of the earliest attempts on this ground has been made 
by [9] to find an explicit solution for the P3P problem by form-
ing a bi-quadratic polynomial. Following their proposed 
approach, the transformation is estimated by first computing 
the distance between 3D object points and the camera center C. 
In Fig. 3, let La, Lb and Lc be the length of three legs that connect 
the camera center to the 3D object points A, B, and C respec-
tively. Letting a, b and c be the projection of these points on the 
image plane, the goal is to determine La, Lb and Lc.

By applying basic geometry, one can determine the length 
of the three sides of DABC and its interior angles from 3D ob-
ject points. Applying the law of cosines yields:

  

  

  (14)

Equation (14) comprises three second-degree polynomi-
als; therefore, it brings up to eight unique solutions. However, 
since the polynomials only contain second degree and con-
stant terms, it has a maximum of four positive solutions. If we 
denote  and  it is proven in [9] that a bi-qua-
dratic polynomial can be derived from (14).

Although the described method is usually considered as 
a basic solution, other analytical and iterative solutions have 
been proposed by computer vision scientists. For example, 
Lepetit et al. in [10] showed that any n 3D points in a world 
coordinate can be expressed as a weighted sum of four vir-
tual control points. Their so-called EPnP solution with O(n) 
complexity is capable of handling arbitrary values of n. In ad-
dition, the virtual control points in EPnP also allow recovering 
the shape of deformable objects. POSIT developed by Dan-
iel DeMenthon [11], is another well-known iterative method 
that does not require an initial guess. Instead, it starts with a 
Scaled Orthographic Projection (SOP) as an approximation to 
the perspective projection. The approximate projection is re-
fined through an iterative process, minimizing the projection 
error. Unlike many other Newton-based methods, POSIT ob-
tains the optimal solution by iteratively shifting object points 
and re-calculating a new SOP, until the shifting parameter 

Fig. 3. P3P geometric view.
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remains unchanged from one iteration to the next. The POSIT 
algorithm has been further modified in [12] for dealing with 
co-planar configurations. Since an orthographic projection 
induces two different planes which look the same when be-
ing seen from the image plane, the algorithm selects the pose 
yielding minimum projection error. SoftPOSIT [13] is an-
other variant of the POSIT algorithm that simultaneously 
establishes correspondences while determining the pose. Soft-
POSIT exploits the POSIT strategy integrated with an iterative 
correspondence assignment technique referred to as softas-
sign technique.

Pose Estimation from Planar Targets
The PnP algorithm allows estimating the pose of a camera 
from a set of 3D points. But one may wonder how these 3D 
points can be obtained in practical applications. One technique 
that is often used, in augmented reality applications for in-
stance, consists in using a predefined planar target. The recent 
progress in image matching has made possible the reliable de-
tection of a planar target at a high frame rate, which makes this 
kind of approach very attractive for the real-time pose tracking 
of a calibrated camera [14].

Approaches for the detection of planar targets are based 
on interest point detection and matching. The target is cho-
sen, therefore, such that it contains sufficient textural details 
to produce enough distinctive feature points that could be reli-
ably matched. Interest points are generally obtained using the 
FAST feature detector [15]. Recent binary descriptors such as 
BRIEF [16] or FREAK [17] combine both efficiency and distinc-
tiveness, and when integrated to a robust matching scheme 
they yield to very reliable match results. Fig. 4 illustrates how a 
reference target is detected in a camera view by matching cor-
responding image points. When the size of the target image is 
known, it follows that the 3D coordinates of these points can 

be obtained in the target 
reference frame (generally 
assuming that Z = 0). Using 
one of the PnP algorithms, 
camera pose with respect 
to the target can then be 
obtained.

Augmented reality ap-
plications would use this 
information and add ex-
tra virtual points (or more 
generally 3D objects) in-
side the target’s coordinate 
system and then back-
project this 3D data onto 
the camera sensor using 
the computed projection 
matrix (2). However, per-
forming per-frame pose 
estimation would lead to 
camera jittering effects due 
to the noisy estimation. 

Most augmented reality systems use different strategies to 
stabilize the rendering of the virtual objects such as combin-
ing estimates from several views or using Kalman filtering 
and feature tracking to smooth out the successive camera 
positions.

In [18], pose estimation from a planar target is used for 
the self-localization of a patrolling robot. Targets are used as 
natural landmarks accurately positioned in the environment 
patrolled by the robot. Using odometry and inertial devices, 
the robot navigates the space. However, as it moves, its po-
sitional estimates accumulate errors. Whenever a target falls 
inside the field of view of the robot’s camera, the position of the 
robot can then be re-established. For instance, reported experi-
ments show an error of 2.3 cm and 2.1 degrees in the estimation 
of the calibrated camera position from a target viewed at 3 m.

Obstacle Distance Estimation
In the previous example, a camera was freely moved over 
a planar pattern and its position was estimated. Let us now 
consider the case where the position of a camera is fixed with 
respect to the world and the need is now to estimate the posi-
tion of observed moving objects. This is the case, for example, 
of a car back-up camera for which you want to estimate the dis-
tance to potential obstacles [19].

Fig. 5 illustrates a typical vehicle-mounted camera config-
uration. Full calibration is  required here, which in addition 
to the intrinsic parameters will provide us with the height h 
and orientation Rc of the camera with respect to the ground. 
Without loss of generality, it can be assumed that the camera 
is located along the Z-axis with ground plane at Z = 0, which 
gives us tc = [0, 0, h]T. Equation (11) has demonstrated that 
when a camera observes particular points on a planar surface, 
an invertible 3 × 3 homographic relation exists between the 
world points on the ground and their image.

Fig. 4. Matching of local features between a target and an image of it.
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Now assuming that the vehicle is moving over the ground 
surface, the planar motion [Rp,  tp] of the vehicle can then be es-
timated by observing the image of points on the ground. These 
points are tracked as the vehicle moves such that their position 
can be obtained in two image frames. Let m and m be the images 
of one of these points, and let M and M be the 3D coordinates 
of these image points on the ground plane as obtained using the 
camera-to-world-plane homography. We can then write:

  (15)

since this is a planar motion, the only unknowns are the 2D 
translation parameters and the rotation angle q of the in-plane 
vehicle rotation, which allows writing:

  
  (16)
  

with a = cos(q) and b = 
sin(q). This system of equa-
tions can be solved linearly 
for n points. This approxi-
mate solution can then be 
refined using ML estima-
tion. Combining the planar 
motion estimate with the 
camera calibration infor-
mation, we thus obtain the 
full camera projection ma-
trices P and P of the two 
camera views.

These motion estimates 
will be accurate as long as 
all tracked points are lo-
cated on the ground plane. 
When an obstacle is pres-
ent, then this assumption 
is no longer valid and some 
of the tracked points will 

be located on the visible 3D object. It is then necessary to use a 
robust estimation scheme like RANSAC that discards the out-
lier points not moving in a way consistent with the ground 
plane assumption. The inlier points are then used to estimate 
the vehicle motion while the outlier points correspond to the 
obstacle points. The images of each outlier point can then be 
triangulated to obtain the corresponding 3D position. This can 
be done by solving (14) but this time with the coordinates of the 
3D point as unknowns; the two estimated projection matrices 
result in four independent linear equations. Fig. 6a demon-
strates the ground surface with extracted features while Fig. 6b 
shows reconstructed obstacle points.

Conclusion
We reviewed in this article some of the important concepts in 
camera calibration. In particular, we considered the case of cal-
ibration using a planar apparatus that remains a method of 
choice because it allies both simplicity and accuracy. We also 

Fig. 6. (a) The tracked feature points to the ground surface. (b) The reconstructed obstacle points.

Fig. 5. Coordinate system of a mounted camera on the back of a vehicle.
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looked at the pose estimation problem that is also, in essence, 
a calibration problem but for which the unknowns to be recov-
ered are the extrinsic parameters.

Reliable and accurate calibration relies on the use of good 
quality apparatus and on sub-pixel accurate image measure-
ments. Refinement of the parameter values from non-linear 
optimization using physically meaningful geometrical quan-
tities is also essential. Finally, a good calibration approach 
should also take into account the particular geometry of the 
configuration used. 

Because of its importance in computer vision and vision-
based measurement applications, camera calibration remains 
a very active topic of research. In addition, the advent of new 
imaging devices and positional sensors such as Omni-direc-
tional cameras [20], depth cameras [21], multi-view cameras, 
laser [22], inertial measurement units [23], also pose new re-
search challenges.
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