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Abstract

In this paper, we present a real-time approach for 3D
object detection using a single, mobile and uncalibrated
camera. We develop our algorithm using a feature-based
method based on two novel naive Bayes classifiers for view-
point and feature matching. Our algorithm exploits the
specific structure of various binary descriptors in order to
boost feature matching by conserving descriptor proper-
ties (e.g., rotational and scale invariance, robustness to il-
lumination variations and real-time performance). Unlike
state-of-the-art methods, our novel naive classifiers only re-
quire a database with a small memory footprint because we
store efficiently encoded features. In addition, we also im-
prove the indexing scheme to speed up the matching pro-
cess. Because our database is built from powerful descrip-
tors, only a few images need to be ’learned’ and construct-
ing a database for a new object is highly efficient.

1. Introduction

Vision systems for object detection, localization and
tracking enable numerous applications in human-computer
interaction, mobile applications and surveillance. In our
system we aim to both, detect the presence of an object as
well as locate it in the image. Mobile applications place re-
strictions on compute resources and memory footprint of an
application. These restrictions motivate us to improve per-
formance and reduce database size of our object detection
and tracking system compared to the state-of-the-art.

Many different strategies have been proposed for ob-
ject detection including divide-and-conquer search [14, 15],
edge matching [4, 19], gradient matching [20, 10], recogni-
tion by parts [11], and feature-based methods [21, 23, 18,
27]. In this paper we present a 3D object detection and lo-
calization framework that mixes feature-based approaches,
binary descriptors and classifiers and is capable of detect-
ing moving objects from a moving uncalibrated camera (see

Figure 1). We exploit the most relevant characteristics of
the particular descriptor employed in our framework (i.e.,
invariant to rotation, scale, illumination, noise, etc.) while
improving the classification rates. Our database has a small
memory footprint (i.e.,O(n) where n is the number of key-
points stored in the database) compared to existing clas-
sifiers (i.e., Random Forests [9], Ferns [18]) because we
assume a classic naive Bayesian model with independent
binary features. Also, we efficiently store encoded fea-
tures derived from a set of images of the object to reduce
memory usage. Our improved indexing scheme speeds up
the matching process and outperforms pattern-based index-
ing [23]. Finally, our framework uses a Kalman filter for
object prediction and tracking while reducing noise in the
estimations [28].

The contributions of our paper are a framework for
real-time 3D object detection and localization (Section 3),
two novel naive Bayes classifiers for viewpoint and feature
matching and a fast indexing scheme for searching (Sec-
tion 4). We show experimentally (Section 5) that assuming
complete independence between binary features generates
competitive classification rates while reducing memory us-
age.

2. Related Work

Feature-based object recognition systems have been ex-
tensively studied in the literature [21, 23, 18, 27]. They
strongly rely on feature matching schemes to recognize
and localize objects in different views. Different matching
schemes and similarity measures have been created. The
two main approaches in the literature are keypoint descrip-
tors and classifiers.

A keypoint descriptor is a function that is applied to the
neighborhood of a keypoint location, creating a compact
signature that describes the keypoint in an image. A de-
scriptor is an ’unique’ representation of a keypoint which
can match to another keypoint in a different image based
on their similarity (as measured by, e.g., L1-norm, Euclid-



Figure 1. Object detection examples. The different objects in each row from top to bottom were trained with 8, 6 and 10 views, and the
recognition rate was 91%, 93%, and 80% respectively. The circle inside the detection box represents the ratio of training views over the
total training views used in the detection (full circle corresponds to all training views used).

ian norm, Hamming distance, etc.). Descriptors of a key-
points may be invariant to changes such as rotation, illumi-
nation, noise, scale, etc. Descriptors can be classified as bi-
nary (i.e. BRIEF [8], ORB [22], FREAK [24], BRISK [16],
HIP [23], etc.), or gradient-based (i.e. SIFT [17], SURF [2],
HOG [10], etc.). Unfortunately gradient based descriptors,
although considered to be the gold standard, are compu-
tationally expensive and less appropriate for low-powered
embedded platforms in their original form. On the other
hand binary descriptors demonstrate accuracy while achiev-
ing fast performance, low memory requirements and are
simple to implement. They can take advantage of CPU
and GPU specific instructions for their implementation and
matching [8], making them even faster. Binary descriptors
have been effectively used in mobile platforms for planar
object detection [23, 3, 1].

Classifiers treat the matching/similarity problem as one
of classification [6, 5, 18]. They improve the classification
rates while reducing computation after the feature database
is learned in an off-line training phase. Some classifiers
such as Random Forrest and Ferns learn the feature distri-
bution of a database by means of randomization [5]. The
off-line learning step ensures a better encoding of the most
relevant features and their structure for very significant per-
spective changes. One of the leading approaches in feature
classifiers is Ferns [18, 27, 26].

Fern classifiers learn the distribution of binary features
around a relevant location using multiple views of the same
keypoint. The features are binary comparisons between im-
ages intensities at random positions around the keypoint.
Fern solves the classifying problem as the maximization of
the posterior probability given a set of binary features ob-
servation around the keypoint. Ozuysal et al. [18] propose a
Semi-Naive Bayes Classifier where they assume that groups
of binary features are conditionally independent as a trade
off between complexity and performance. Ferns are cre-
ated assuming dependency between binary features them-

selves and by randomly grouping the features (by choos-
ing the size of a Fern group and the number of groups to
describe a keypoint). Finally, the conditional distributions
for each group (Ferns) are learned in an off-line phase by
warping the image patch around each keypoint using multi-
ple random transformations. The learned distributions are
used as a lookup table at run-time to speed up the clas-
sification problem. The drawbacks of Ferns are a large
memory footprint and the off-line learning phase. The
memory requirement is exponential in the Fern size, i.e.,
2fernSize × nFerns× nKeypoints× sizeof(data). For
example, if we train for 1000 keypoints (nKeypoints) us-
ing 50 ferns (nFerns) of size 11 (fernSize) with 4 bytes
floats (sizeof(data)), storing their conditional probabili-
ties results in a 400 MB database. The random selection
of binary features is time consuming because the training
phase needs to generate all possible transformations to be
able to classify from arbitrary viewpoints.

Some modifications of the original Ferns have enabled
their use on mobile platforms [26, 27]. Most of these modi-
fications target the memory consumption by tuning the Fern
size, the number of ferns and the data used to store the con-
ditional probabilities but Ferns are inherently exponential in
their size. Also, the improvements do not address the off-
line learning phase. Daniel et al. [27] combine PhonySIFT
and PhonyFerns for a mobile platform, by executing both
in the same pipeline for object detection. Other approaches
to adapt Ferns for mobile platforms execute computations
on an remote server. But these approaches suffer from low
performance due to restricted bandwidth, and high power
consumption because of the required network communica-
tions [27, 25]. Ventura et al. [25] associate 2D locations in
the video frame with 3D locations in the real world which
requires building and updating a 3D model.

Our work combines descriptors and classifiers in one sin-
gle matching scheme. We show through our experimental
results that a full Naive Bayes classifier combined with bi-



nary descriptors, reduces the training time and memory us-
age, and improves the matching rate of the descriptors while
performing as well as the original Ferns.

3. Framework Overview
We create a two-phase framework: an off-line feature

training and a runtime-matching scheme for object detec-
tion and localization (similar to Ferns [18], Taylors and
Drummond [23], and Akhoury [1]). During the training
phase (Section 4.1) we learn the model of the 3D object of
interest based on a set of images of the object from different
viewpoints. Each image is randomly warped several times
for learning the most relevant keypoints and their binary
descriptors. We then use the most stable keypoints for all
views and their set of descriptors to train our Naive Bayes
Classified Descriptors (NBCD) (Section 4.2). A tree-like
index data structure from the classifiers is created to speed
up classifications (Section 4.3). We compute the keypoint
correspondences between the images using a RANSAC ap-
proach and a likelihood test to validate the geometrical con-
straints (Section 4.4). During the runtime object detec-
tion and localization phase, we extract the most relevant
keypoints from a video stream. Once the match between
the database and the video frame is created, we have sets
of matching points for all close database views. These
matched keypoints are used to select the closest view in
the database with another Bayes classifier (Section 4.5). Fi-
nally, the closest view is projected back (Section 4.6) to the
video input and tracked using a Kalman Filter (Section 4.7).

4. Implementation
4.1. Training Features

We use a training set of images covering different view-
points of the 3D object of interest. Our approach wraps
each reference image using random transformations from
different viewpoint bins and scales similarly to [1, 23]
and [18]. Each warped keypoint selected for voting is back-
projected to the original reference image. Stable keypoints
{k1, k2, k3, . . . , kn} are selected as the points with more
votes [18]. In our training stage we use binary descriptors
instead of images patches. Also we do not have to create
multiple viewpoint ’bins’ to train thanks to the invariant
properties of the descriptors. For each artificially warped
image, we extract a binary descriptor (e.g., BRIEF, ORB,
BRISK, FREAK) of its relevant keypoints. The descrip-
tor is a binary string [f1, f2, . . . , fL] of length L, denoted
D = f (1:L) (we consider each bit of the string as a feature).
Once the keypoints are back-projected and merged with the
reference image keypoints, each keypoint contributes with a
descriptorD extracted in the warped image. Typically, 1000
images are generated for each viewpoint bin. The use of bi-
nary features instead of image patches considerably reduces

the amount of memory needed while creating the dataset of
stable keypoints before training the classifier. A gray scale
image patch of 32x32 pixels with 8-bit depth has a memory
usage of 1 Kb compared to 32 bytes (128 bits) in case of
ORB, or 64 bytes (512 bits) in case of FREAK, or BRISK.
The number of viewpoints bins used in training is related
to the properties of the binary descriptor. In previous solu-
tions [23, 18, 1], the reference images needed to be trained
from all possible viewpoints but with rotation-invariant de-
scriptors there is no need to train for the 360◦ in-plane rota-
tions around the keypoint. The same idea applies when the
descriptor is scale-invariant. In fact, all our examples in this
paper use only one viewpoint bin with perspective transfor-
mations around the center of the image frame. Aside from
the numbers of bins, we use the same perspective warping
during training as in [1] (i.e., we generate 1000 viewpoints
inside a single bin with yaw and pitch of [−45◦, 45◦] each,
a roll of [−30◦, 30◦], and 3 scale factors of {0.6, 1, 1.6}.

4.2. Naive Bayes Classified Descriptors

Once we computed the set of most stable keypoints and
their associated descriptors, we want to learn the distribu-
tion of the binary features describing a keypoint. Formally,
we want to be able to assign the most likely keypoint ki
given a binary descriptor D, argmaxi P (K = ki|f (1:L)).
The event f (i)ε {0, 1} is the binary value of the descriptor
at ith index.

Assuming independence between the descriptor features,
an uniform prior P (K), our problem reduces to the maxi-
mum likelihood classification problem. We assume all key-
points are equally likely for simplicity but it is possible to
learn the prior distribution while training. In contrast to
Ferns [18] we do not assume dependencies between the
binary features combining them into groups. Our experi-
ments demonstrate correct classification of binary descrip-
tors into classes while removing the exponential memory
use of Ferns. Each binary feature of the descriptor con-
tributes a specific weight to the classification giving a strong
unique representation. Repeated observations with invariant
descriptors reinforce a feature. For example, a rotation in-
variant descriptor should have the same value for each index
under any rotation but in practice the binary feature is not
completely stable. In our Bayes classifier, we describe the
likelihood of every single bit inside the descriptor without
knowing nor learning the relation with other features but at
the same time benefiting from the descriptor’s invariance.

Each binary feature’s conditional probability is learned
as the maximum likelihood estimation of the mean with a
scale factor to ensure that the model is not invalidated when
there is not enough training data or one of the features has
zero probability [13].

P (f (i) = 1|K = ki) =

∑M
j=1 f

(i)
j +Nc

M + C ×Nc
(1)



Where
∑M
j=1 f

(i)
j is the sum of the ith bit values of all the

descriptors associated with keypoint ki and M is the total
number of descriptors belonging to keypoint ki. In practice,
the value of Nc does not influence the results, we use the
values of Nc = 1 and C = 2 because we have two possible
classifications f (i)ε {0, 1}.

We reduce memory and computation by storing the log-
arithmic values logP (f (i) = 0|K = ki) and logP (f (i) =
1|K = ki) for bit i in a single byte. Each logarithmic prob-
ability is stored using 4 bits and hence values in the range
of 0 to 15. The logarithm of a probability value is a neg-
ative number but we just save the absolute rounded integer
value ( see figure 2). Finally, for each keypoint we use a
lookup table with L bytes where L is the size of the binary
descriptor in bits. Where the ith byte encodes the nega-
tive conditional log-probability of the feature f (i) given the
keypoint. For each byte the 4 most significant bits encodes
the probability of feature i being 0 given keypoint ki and
the least significant bits the probability of the binary feature
being 1.

...10001110100

...11001010111

...11001010101

...

...

...

Figure 2. Given a point k1 and its associated de-
scriptors {Dj , j = 1, 2, ...,M}, we encode F

(i,j)
k1

=

round(− logP (f (i) = j|K = k1)) as the negative round
value of the log conditional probability. We use only 4 bits (i.e.
values from 0 to 15) to store each conditional probability, making
a byte for each binary feature in the descriptor.

4.3. Indexing

We do not use standard pattern-based indices because
they are not rotationally-invariant, e.g., the patterns used
in [23] suffer deformations under different keypoint ori-
entation which causes the same keypoint to generate dif-
ferent indices depending on orientation. Computationally
expensive solution such as sub-pixel interpolation are not
fast enough for indexing but high repeatability is neverthe-
less required. We propose a different index computation
based on certain pattern positions around the keypoint, we
select a list of binary features indices from the computed
binary descriptor. This ensures that two keypoints with the
same descriptors will have the same index value. Also, this
scheme allows us to have a variable index size L according
the database size and we select the proper index size (i.e.
number of bits) accordingly.

As in [23], we assign an integer index value to each bi-
nary descriptor corresponding to the most relevant keypoint
ki by combining their binary values. Finally, we select the
most repeated indices for each keypoint. Every index value
will be pointing to a list of keypoint classifiers containing

the same index (e.g., for a 13-bit index we will have a max-
imum of 213 − 1 index values). Each index will have ap-
prox. n

2L
×Z keypoint classifiers where Z is the amount of

indices per keypoint added to the database, L is the number
of bits of the index and n the total amount of keypoints in
the database. This makes our indexing search order O( n

2L
),

and in practice it is fast with an appropiate choice of L.

4.4. Probabilistic Model for Fundamental Matrix
Verification

Our fundamental matrix verification step uses the
likelihood-ratio test of Brown and Lowe [7]. In the test
nm is the number of matches and ni is the number of in-
liers defined by RANSAC. The event of a correct/incorrect
Fundamental Matrix is represented by the binary vari-
able FC ε {0, 1}. The event that the ith keypoint match
K

(i)
M ε {0, 1} is an inlier/outlier is assumed to be indepen-

dent Bernoulli, so that the total number of inliers is Bino-
mial.

P (K
(1:nm)
M |FC = 1) = B(ni;nm; p1) (2)

P (K
(1:nm)
M |FC = 0) = B(ni;nm; p0) (3)

Where p1/p0 is the probability a keypoint is an inlier given
a correct/incorrect Fundamental Matrix. The set of key-
point matches is denoted K

(1:nm)
M and B(.) is the Bino-

mial distribution. The fundamental matrix is accepted if
P (FC = 1|K(1:nm)

M ) > pmin which leads to the likelihood-
ratio test

B(ni;nm; p1)P (FC = 1)

B(ni;nm; p0)P (FC = 0)
≷acceptreject

pmin
1− pmin

(4)

Following Brown and Lowe [7], we choose values of
P (FC = 1) = 10−6, pmin = 0.999, p1 = 0.6 and p0 = 0.1
leads to ni > 8.0 + 3.0nm.

4.5. Naive Bayes Classifier for View Matching

Given an observation of keypoints, view matching finds
the closest view in our database to a frame in the video se-
quence. Let V = {vj , j = 1, 2, ..., v} be the set of views in
our database, each view vj = k(1:n) is composed of a set
of most stable keypoints from the training phase. The event
that the ki keypoint belongs to view vj is represented by a
binary variable Ki

jε {0, 1} that we assume to be indepen-
dent Bernoulli.

Formally, we are looking for the most likely view
given an observation of keypoints in the video frame,
argmaxvj P (V = vj |K(1:n)

j ).
Using Bayes Formula and assuming an uniform

prior P (V ), neglecting the constant denominator, our
problem reduces to finding the maximum likelihood
argmaxvj

∏n
i=1 P (K

i
j |V = vj). Because we assumed Ki

j



to be independent Bernoulli given vj , the total number of
inliers becomes binomial.

n∏
i=1

P (Ki
j |V = vj) = B(ni, n, ωj) (5)

Where ωj is the probability of a keypoint corresponding
to view vj , n is the total number of keypoints in a view and
ni is the amount of inliers and B(.) is the Binomial distri-
bution. Note that if we assume ωj to be the same for every
view vj , the most likely view from our model database will
be the one with the highest number of inliers.

4.6. Object Detection and Localization

Once we know the fundamental matrix between the clos-
est view in the database and the video frame, we proceed
by finding the location of the object. However, we nei-
ther have 3D object information nor the camera intrinsic
parameters. Instead of devising a computationally expen-
sive camera auto-calibration process, we project the object’s
boundary in the closest view from the database to the video
frame. The approximate object boundary has been previ-
ously identified by the user during the training stage. We
simply assume that there is a plane that contains the object
in the 3D space and compute a homography between the
two views. The relationship between this homography Hφ

and the Fundamental Matrix F is given as F = [e′]X Hφ

where [e′]X is a skew-symmetric matrix defined by Hartley
and Zisserman [12]. The homography is computed using
the RANSAC inliers of the Fundamental Matrix. The final
projection of the objects boundary is forced to be on the
epipolar lines by moving it to the closest point on its corre-
sponding epipolar line.

4.7. Kalman Filter for Object Prediction

Each corner of the object bounding box is indepen-
dently processed by a Kalman filter [28] at each video
frame to produce a statistical estimate of the underlying sys-
tem. The corner measurements are in pixel coordinates and
passed through the filter each time we accept the likelihood-
ratio 4.4. In case of a rejection we use the filter’s predictions
to narrow the search of the object in the next frame, which
reduces the search between the keypoints in the video frame
and database. If the object is not detected in the predicted
area, the region is expanded to the frame size. The main
reason of using a Kalman filter is to compensate for the
noise associated with keypoint classifiers, for the noise in
the Fundamental Matrix computation, and also to stabilize
the detection results. We do not attempt to model the ob-
ject’s dynamics accurately and hence we simply use a con-
stant velocity model for each corner separately.

5. Experimental Results
We compare our framework against Ferns and Binary

Descriptors in terms of performance, memory usage, and
running time. Our framework uses the binary descriptors’
implementations of OpenCV (i.e., BRIEF, ORB, BRISK,
FREAK) with their default parameter configurations. The
Ferns implementation was the authors’ [18] from their web-
page. We use it unmodified except for adapting their train-
ing intervals to show the impact of training on their solution
and ours.

5.1. Memory Usage

First, we compare the memory usage between binary de-
scriptors without a training phase for Ferns and our frame-
work. It is easy to see that binary descriptors are the most
compact with a memory usage of bits × K, where bits is
the size in bits of the descriptor and K the amount of the
keypoints in the database. On the other hand, the memory
footprint of the Ferns database grows exponentially with the
Ferns’ size S, i.e., 2S ×M × byteS ×K, where M is the
number of Ferns and byteS is the size of bytes used to store
the conditional probabilities. The original Fern implemen-
tation uses S = 11, M = 30 and byteS = 4 (float). How-
ever, the memory needed for our database is 8× bits×K,
i.e., it is O(K) just as the binary descriptors. We use a
byte to represent every bit of the descriptor. For exam-
ple, 1000 keypoints using the BRIEF descriptor will require
31.25Kb for storage, Ferns will require 234Mb, and ours
250Kb. Or put differently, adding an extra keypoint to the
Ferns database will require 240Kb, almost as much as an-
other 1000 points in our representation.

Figure 1 shows three tracking results with our frame-
work. The car object in the first row uses a database with 8
views for a total of 450Kb, the cup in the second row with
6 views uses 350Kb, and the toy in the third row uses 10
views and 550Kb. Each view contains ∼200 keypoints.

5.2. Performance

Next, we evaluate the performance of each algorithm un-
der different images transformations. We synthetically gen-
erate perspective transformations of the planar object (see
Figure 3) at different scales and different positions in the
image with changes in contrast and brightness (see Table 1).
The background is filled with white noise. See Figure 3 for
some example transformations.

In considering Table 1, it is important to take training
into account. The parameters for the transformation dur-
ing the feature learning (Section 4.1) with our Naive Bayes
Classified Descriptors (NBCD) are the same for all ob-
jects with rotations of roll of [−30, 30], pitch and yaw of
[−45, 45], and with three scale levels {0.6, 1, 1.6}. The
average training time for each view is ∼25 seconds. Al-
though the range of training transformation is considerably



Algorithm Rotation∗ Scale× Illumination+

BRIEF 9% 43% 62%
NBCD + BRIEF 15% 62% 64%

ORB 75% 74% 89%
NBCD + ORB 92% 91% 90%

BRISK 79% 75% 82%
NBCD + BRISK 94% 92% 84%

FREAK 69% 70% 79%
NBCD + FREAK 84% 89% 81%

Ferns 14% 46% 61%
Ferns* 89% 88% 68%

∗ roll = [−180◦, 180◦], pitch and yaw = [−70◦, 70◦]
× scale = [0.2, 2]
+ α× I(x, y) + β, α = [.3, 3], β = [−100, 100]

Table 1. Comparison of detection rates between matching with
only binary descriptors, with Ferns and with our Naive Bayes Clas-
sified Descriptors (NBCD) when combined with binary descrip-
tors. The detection rates were tested under random rotation, scale
and illumination variations and averaged. The detection rates of
Ferns are listed with similar training range to ours and in the line
Ferns* with complete training.

less than the object transformation for the detection test, our
NBCD with BRISK or ORB has the highest detection rate
in all three tests as shown in Table 1. Our NBCD exploits
properties of the descriptor, e.g., BRIEF lacks rotation in-
variance and hence our NBCD with BRIEF also lacks this
feature but our NBCD with ORB demonstrates rotational
invariance because it is a feature of ORB. Ferns use affine
transformations in their training. We compare to them with
two set of transformations in training. The set Ferns in Ta-
ble 1 uses the same training parameters than for our NBCD
and the set Ferns* uses a full range of rotations and a wider
scale range of 0.5 to 1.5.. The average training time for
Ferns and Ferns* was ∼170 and ∼360 seconds, respec-
tively. The results in Table 1 demonstrate the dependency
of Ferns on training for all possible view transformations to
successfully detect an object. In contrast, our NBCD with
the corresponding descriptor is successful even with limited
training.

Figure 3. Example of an object viewed under different rotations,
scales and illuminations.

We also compare Ferns and our NBCD with ORB on
the mouse pad example of Ozuysal et al. [18]. Both meth-
ods achieve a similar detection rate but ours uses 200x less
memory with training that is 14.5x faster (see Table 2). We

Algorithm Fps Detection Memory Time
Ferns 25.1 87.4% 16Mb 348s

NBCD + ORB 26.5 86.9% 80Kb 24s

Table 2. Comparison between Ferns and our framework (i.e.,
NBCD + ORB) for the mousepad example of Ozuysal et al. [18].
We compare fps (i.e., frame per seconds), detection rate, memory
usage and construction time of the model.

also compare both approaches using 200 frames of a video
of a more complex 3D object (see Figure 5). Our detection
rate is 88% compared to 72% for Ferns because the pla-
narity assumption in Ferns is violated by 3D objects. Run-
ning times for Ferns and NBCD are similar but we find that
our NBCD is independent of keypoint detection and feature
extraction (see Figure 6). Our framework can therefore take
advantage of improvements in speed of new binary descrip-
tors or of hardware implementations.

Figure 4. Mousepad example of Ozuysal et al. [18]. Frames 131,
171, 219 are shown: Ferns in first row and our NBCD with ORB
in the second row (see Table 2).

Figure 5. The planarity assumption in Ferns does not perform well
with more complex non planar objects (e.g., top images). The use
of the fundamental matrix is stable and can be used with planar
and non-planar object.

5.3. Running Time

Binary descriptors use the Hamming distance as a simi-
larity measure because it can be computed efficiently count-
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Figure 6. Running time of our framework using different binary
descriptors. The running time is separated by keypoint detection,
descriptor extraction, keypoint matching, view matching, and lo-
calization of the object. Our framework is independent of the key-
point extraction and descriptor selection.

ing bits in parallel [29]. Solutions exist to count the num-
ber of ones in a 32 bits integer with less than 15 operations
in C. Ferns use a lookup table approach where the S bits
(Ferns size) are packed together and used as the index for
M lookup values (number of Ferns). As a result Ferns simi-
larity is linear in the number of bits and the number of Ferns.
Using S=8 or 16 creates better performance because the bits
are already grouped like primitive data types. Our keypoint
classification is also a lookup table and it depends on the
amount of bits of the descriptor, each descriptor bit is trans-
lated to a log probability value. Overall they are all linear in
terms of the number of bits O(bits). However, our classifier
and Ferns are capable of creating a better classification than
the Hamming distance similarity measure (see Figure 7);

Figure 7. Matches between the database view and the video feed.
The matches in the top image are using Hamming distance (118
matches: 92 inliers and 26 outliers). The bottom shows our clas-
sifier (84 matches: 82 inliers and 2 outliers). All matches in both
images have the same Hamming distance. Ferns show similar re-
sults to ours.

5.4. Indexing

Finally we compare pattern-based indexing [23] to our
indexing scheme. We find that pattern-based indexing is
highly dependent on the keypoint location and orientation.
We check if the same keypoint from different viewpoints
produce the same index value because this is indicative of
rotation and scale invariance. In our experiments, we rotate
(i.e., from 0 to 180) and scale (i.e., from 0.3 to 2) the ob-
ject’s views and compute the keypoint matches between the
original and the transformed views. Matches are all those
points that have more than 90% of descriptors bits with the
same value. Finally, we compute their index value in both
locations and compute the repetition rate out of all matches
in Fig. 8. In our index scheme (IS), we use a 13-bit index of
randomly selected bits from the descriptor. For the pattern-
based, we extracted a 5-bit (i.e., P5) and a 13-bit (i.e., P13)
indices as described in [23]. In the case of FREAK which
does not provide a feature detection; we use a combination
of ORB feature detector plus FREAK descriptor to match
the keypoints. BRIEF was removed from the comparison
because it did not perform well under the transformations.
See Fig. 8.
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Figure 8. The diagrams show the index matching rates under dif-
ferent rotation and scale transformations. We compare pattern-
based index schemes (i.e., P5 and P13) and our proposed index
scheme (IS) using binary descriptors. The matching rate shows the
repetitive rate indices from the matched keypoints.

6. Conclusion

We present a framework for 3D object detection and
tracking from an uncalibrated mobile camera at frame rates
higher than 24 fps. Our NBCD framework achieves high
recognition rates and can take advantage of the properties
of the used keypoint detector and binary descriptor. We in-
troduce an improved indexing scheme for speeding up the
keypoint classification that is rotation and scale invariant.
NBCD successfully combines binary descriptors and classi-
fiers for keypoint classification, leading to increased perfor-
mance as compared to binary descriptors by themselves and
to reduced memory footprint in comparison to Ferns classi-
fiers. Unlike Ferns, the framework detects a non-planar 3D



object from different views. As a result, 3D objects are de-
tected even if they are partially occluded and in different
orientations. Experimental results confirm the effectiveness
of the proposed solution.
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