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Abstract The present paper is concerned with the prob-
lem of robust pose estimation for planar targets in the
context of real-time mobile vision. For robust recognition
of targets at very low computational costs, we employ
feature based methods which are based on local binary
descriptors allowing fast feature matching at run-time.
The matching set is then fed to a robust parameter esti-
mation algorithm in order to obtain a reliable estimate of
homography. The robust estimation of model parameters,
which in our case is a 2D homographic transformation,
constitutes an essential part of the whole recognition pro-
cess. We present a highly optimized and device-friendly
implementation of homography estimation through a uni-
fied hypothesize-and-verify framework. This framework is
specifically designed to meet the growing demand for fast
and robust estimation on power-constrained platforms.
The focus of the approach described in this paper is not
only on developing fast algorithms for the recognition
framework but also on the optimized implementation of
such algorithms by accounting for the computing capacity
of modern CPUs. The experimentations shows that the re-
sulting homography estimation implementation proposed
in this paper brings a speed up of 25x over the regular
OpenCV RANSAC homography estimation function.
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1 Introduction

The detection of objects in video is an important and chal-
lenging problem in computer vision. When this detection
must be performed in live video captured from a mobile
device, object detection becomes even more challenging.
Mobile devices have limited computational resources and
memory and these constraints must be taken into account.
For this reason, feature-based approaches are often pre-
ferred. Assuming the object of interest contains sufficient
textural details, these approaches achieve excellent re-
sults while limiting the analysis of each frame to a small
subset of image areas.

The basic ingredients of a feature-based object de-
tection framework are feature detection and feature de-
scription. For feature detection, the FAST algorithm [27]
constitutes the prime choice since it allies good repeata-
bility at low computational cost. For feature description
however, there exists a large number of alternatives. In
the embedded vision world, binary descriptors are of-
ten preferred because they use a fast-to-compute binary
string to describe a keypoint patch, thus allowing effi-
cient matching at run-time using only simple bit-wise
operations.

Most binary descriptors use the influential pair-wise
intensity comparison exploited in [24, 15]. To supply insen-
sitivity to noise and increase keypoint quality, Gaussian
smoothing kernels are applied before conducting the pair-
wise tests. Following a similar concept, BRIEF [7] selects
pairs’ location using an experimentally chosen random
distribution over the keypoint patch. The Oriented FAST
and Rotated BRIEF (ORB) [28], as it is aptly named, is
a rotation invariant version of BRIEF that incidentally
provides more robustness to scale by extracting FAST
corners across the image pyramids. In BRISK [17], con-
centric receptive fields are uniformly distributed around
the center of a keypoint. Similarly, the sampling grid in
FREAK method [2] consists of a circular overlapping pat-
tern in which the size of Gaussian kernels exponentially
increases. According to the binary property of these lo-
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cal binary descriptors, features’ similarity can be quickly
evaluated by computing their Hamming distance.

Matching the detected features can be simply accom-
plished through a classical brute force nearest neighbor
search. Additional constraint can also be imposed in order
to produce a match set of better quality. For instance, a
distance ratio test limits the number of tentative matches
by rejecting candidates whose first to the second nearest
neighbor distance is greater than a predefined threshold
(typically set to 0.6-0.8). Imposing a symmetrical con-
straint can further improve the match set quality by only
maintaining matches in which each point is the others
nearest neighbor [33]. Obviously, the large number of
representative features makes the matching process ex-
tremely slow. Therefore, for quick access to the nearest
neighbors, a special data structure is used in [29]. They
proposed approximate Best Bin First (BBF) strategy
based on k-d tree [5] searching algorithm. In case of bi-
nary descriptors, an indexing approach can be used to
avoid exhaustive search over the entire set of features.
For instance, Locality Sensitive Hashing (LSH) strategy
has been introduced in [13] to assign an index number
to each feature by computing a hash function on the re-
gion around that feature point. So, at run-time, features
are only compared against those with the same index
number.

Nevertheless, the match set obtained will always be
contaminated by a noticeable proportion of outliers. This
is where a robust estimation phase is required. To validate
the matches, a parametric model is defined and the match
set is used to estimate the parameters of this model. The
most popular framework to perform this estimation is
RANdom SAmpling Consensus (RANSAC) firstly intro-
duced by Fischler and Bolles [11]. This hypothesize-and-
verify approach randomly selects a minimal set of samples
and estimates the model parameters until achieving con-
sensus with the strongest support for the parameters.

Despite the simplicity and efficiency of the RANSAC
algorithm even when samples are significantly contami-
nated, it still suffers from serious drawbacks which results
in overall performance degradation. In the past few years,
different RANSAC flavors have been developed to ac-
count for these boundaries. PROSAC [9] is a variant of
RANSAC that aims at an early identification of model pa-
rameters under the assumption that samples with higher
quality are more likely to generate a hypothesis with
a strong support. PROSAC follows a non-uniform sam-
pling approach in which samples are selected from a
smaller subset of correspondences. The size of this subset
progressively increases until it eventually coincides with
the full match set. FT-RANSAC extends the PROSAC
scheme to the case of multi-modal datasets [3]. Random-
ized RANSAC (R-RANSAC) [20] is introduced to address
a practical limitation of the RANSAC algorithm in the
context of real-time applications. R-RANSAC specifically
targets the evaluation step in order to adapt the process
for real-time applications by benefiting from a random-

ized pre-evaluation process that attempts to reduce the
number of verifications per model. This pre-evaluation
step that plays a key role in the performance of the pro-
cess is first started with the Td,d test [8], then leads to an
optimal sequential test called SPRT in [19]. To accelerate
the rejection of degenerate configurations, a geometrical
degeneracy test is introduced in [22] that assures selec-
tion of consistent points by accounting for geometrical
constraints imposed by homography transformation.

Recently, Raguram et al. have proposed USAC [25], a
universal RANSAC framework that incorporates most of
the recent development in RANSAC-based schemes. In-
spired by this work and with the objective of performing
real-time object detection in mobile device, this paper
revisits the hypothesize-and-verify loop in a fast matching
process. Our contributions resides in the run-time process
of the target recognition task. We comprehensively ana-
lyzed the problem of parameter estimation for fast and
robust target matching through an optimal hypothesize-
and-verify scheme. We have investigated possible lim-
itations of RANSAC-style approaches to optimize our
framework at both algorithmic level and implementation
level. The optimized framework is specifically designed
to be efficiently run on smart-phones and tablets. We
also have developed a fast C++ software package by
leveraging the state-of-the-art algorithms that have been
studied over the years. The resulting homography esti-
mation function brings a speed up of 25x over the regu-
lar OpenCV RANSAC homography estimation function.
A robust method for homography estimation based on
a computationally efficient implementation of the well
known Gaussian Elimination (GE) algorithm has been
presented in [6]. This paper describes a fast model estima-
tion framework in a robust estimation scheme that uses
this GE homography estimation component inside the
hypothesis generation step. We present the implementa-
tion of a PROSAC-based approach, perform comparative
studies and a thorough analysis of the model estimation
loop demonstrating both the efficiency and the reliability
of our proposed framework.

From the following section onwards, we explore crucial
steps toward a real-time object recognition framework. In
Sect. 2, we outline feature-based target detection system
overview. For this end, popular methods are briefly re-
viewed in the context of real-time target recognition. Sect.
3 presents a unified and efficient framework for robust
homography estimation. In Sect. 4, experimental results
are presented. We benchmark our framework against dif-
ferent implementations and we show that our framework
outperforms the state-of-the-art algorithms. We conclude
the paper in Sect. 5 and state the main findings of our
research.
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2 Target Detection System Overview

Feature recognition and matching are two important
parts of many target detection algorithms. Matching al-
gorithms are generally grouped into two categories namely
local descriptor-based and global classification-based algo-
rithms. In the descriptor-based methods, image informa-
tion is abstracted by using distinctive local descriptors,
which are invariant to fairly large level of deformations,
illumination changes and noise. Despite the robustness
and distinctiveness of descriptor-based algorithms such as
SIFT [18], PCA-SIFT [14] and SURF [4], the matching
process requires high computational power to extract and
compare local descriptors. The computational complexity
and dimensionality of these methods, especially when
considering low-powered platforms, stimulated the de-
velopment of new approaches [15, 16, 24, 34, 30]. These
approaches take advantage of a training stage to which
a great extent of computational burden at run-time is
transferred. In this particular direction, Lepetit et al. [16],
put forward matching as classification, as a strategy for
fast matching approaches.

In the training phase of their algorithm, a number of
prominent feature points is extracted from the object to
be trained. Under a local planarity assumption, patches
around the detected features and their distorted version
under a large level of affine transformation, participate
in the learning of a classifier. Thereafter, at run-time,
the classifier determines to which class, if any, a specific
patch belongs. Principle Component Analysis (PCA) is
then performed to reduce the dimensionality of patches.

Lepetit et al. further proposed to use a randomized
decision tree [15] instead of PCA-based classification to
select features, which tend to provide higher recogni-
tion rate at run-time. In the randomized tree approach,
a reference model is built by considering random pairs
of pixel locations inside a defined neighborhood of the
keypoint. It is shown that, simple intensity comparisons
would yield distinctive description and efficient matching
at run-time. Random Fern [24] is another classification

method proposed by Özuysal et al. that is perceived as
an improvement over random trees bringing higher recog-
nition rate at lower computational cost. In Fern, a simple
binary test is performed to compare the intensity values
of those pixels leading to binary features that are grouped
together to create small binary space partitions called
Ferns. Bearing in mind that a full joint probability model
of each Fern is needed, there could be an issue with the
memory requirements of this method that exponentially
grows with the size and number of Ferns.

For efficient matching at run-time, Taylor and Drum-
mond introduced a fast and efficient local binary descrip-
tor well suited for real-time target detection. In their
Histogrammed Intensity Patches (HIP) method [30, 31],
they introduced the idea of grouping artificially gener-
ated random views into viewpoint bins. The model is
built by first computing coarse histograms of intensities

of neighboring pixels around a keypoint for each view-
point bin. Once computed, each histogram is averaged
and binarized. Given a pair of HIP models, a dissimilarity
score is computed by identifying bins that are rarely hit
with the idea that corresponding patches in the live view
should have a small number of pixel values falling into
these rare bits.

Although, the aforementioned methods exhibit fast
and reliable matching at the online stage, they suffer from
a high training time and/or memory consumption. Being
inspired from the training method of [30], Akhoury et
al. [1] proposed a similar framework which reduces the
training time by more than 80% as compared to [30, 31].
The time reduction gain in [1], is mainly rooted in apply-
ing more representative perspective transformations to
synthesize the viewset images instead of affine transforma-
tions. Unlike the HIP method, in which model descriptors
are aggregated by identifying rarely hit bits, feature ag-
gregation for most binary descriptors like BRIEF can
be done by applying a majority vote on each bit of the
descriptor.

Similar to the Fern method, BRIEF [7] also uses the
concept of pair-wise intensity comparison to generate a
binary string describing a keypoint patch. Additionally, it
is proposed to apply a fixed size Gaussian kernel to each
pair’s location for better robustness against noise. The
pattern used in BRIEF method has been experimentally
chosen through a set of pre-defined distributions over
a patch of size S × S. These spatial distributions were
evaluated based on their capability to recognize a planar
target established beforehand. Among five combinations
in [7], experiments show that spatial Gaussian distribu-

tion with (x, y) ∼ i.i.d. G(0, S
2

25 ) outperforms the other
patterns and exhibits a higher recognition rate.

For real-time detection and tracking processes, BRIEF
can be allied with FAST which is a highly expedited
feature detection technique originally proposed by Rosten
and Drummond [26, 27]. At each pixel location, FAST
requires to carry out a simple test on a ring of 16 pixels
encircling the pixel of interest. Pixel p is considered to
be an interest point, if there are n pixels in adjacent
locations on the ring that are all either darker or all
brighter than the center by a threshold δt. The threshold
δt is used to control the number of detected keypoints.
In the very early work of Rosten and Drummond, they
chose n = 12 leading to an algorithm that discards large
portion of non-corner points as quickly as examining only
3 out of 4 pixels in specific locations on the 16-pixel ring.
In [27], a machine learning approach is introduced to
adjust segment’s locations and identify optimal ordering
of comparisons eventually yielding the efficient FAST-9
algorithm.



4

3 Robust Target Matching Framework

The first step toward a framework for a real-time tar-
get matching is to extract stable features from a video
frame. These features are then matched against reference
features that are extracted during an offline model gen-
eration process from the view synthesis framework as
described in Sect. 2. Considering the limited time budget
for feature detection, we propose the FAST-9 feature
detection algorithm [27]. Among different feature descrip-
tors, we experimentally found the BRIEF method [7] to
be efficient enough to fit the requirements of real-time
mobile applications.

Once an initial match set is available, the next step
consists in the robust estimation of a global transforma-
tion that best explains these matches. This transforma-
tion is a 2D homographic relation which is estimated
through a hypothesize-and-verify scheme. In the hypoth-
esis generation step, homography parameters are eval-
uated using a computationally efficient implementation
of a Gaussian elimination algorithm [6] that has been
designed for real-time planar target matching on hand-
held devices. Using Gaussian Elimination in homography
estimation scheme is not new; it has been used, for exam-
ple, in pose estimation problem from UAV imagery [21].
However, taking into account modern CPU architecture,
our implementation exploits the structure of the problem
and the sparsity of the matrices involved to the fullest. It
is observed that the DLT transform has, after some row
shuffling operations, 16 zeros and a symmetrical structure.
A generic, numerically-stable, pivoting GE implementa-
tion for an arbitrary matrix size costs O(n3) FLOPs, on
top of any control logic and pivot selection logic overhead.
For an 8-variable system, a total of 428 FLOPs is re-
quired, not counting floating-point comparisons required
for pivot selection. Our specialized GE implementation,
by contrast, is a non-pivoting, non-branching, straight-
line implementation with almost no overhead requiring a
total of 208 FLOPS. Thus, our specialized GE requires
half as many FLOPs as the generic GE, and has almost
nil overhead.

3.1 Homography Estimation by Gaussian Elimination

In the case of planar targets, a parametric model that
describes a camera pose can be formulated by a homog-
raphy relation mapping two views of a planar object.
This transformation can be obtained by directly solving a
system of linear equations. A homography or projection
transformation is a plane-to-plane (P2 → P2) relation
in a projective space. It is algebraically defined by a
non-singular 3 × 3 matrix H that maps two views of a
planar object. Let X = [X,Y, Z]T and x = [x, y, 1]T be
respectively the homogeneous coordinates of an identical
point on a reference plane and its projection that is seen
from a different view; the 2D homography transformation

is described as:

X = Hx (1)

A typical and perhaps the simplest approach for re-
trieving the homography relation with 8 degrees of free-
dom is the Direct Linear Transformation (DLT). DLT
treats the pose constraints as a system of linear equations
that can be solved by minimizing an algebraic distance.
The homogeneous system of equations corresponding to
the homography relation can be solved by posing:

Xi ×Hxi = 0 (2)

in which H is computed using the homogeneous source
points (xi, yi, 1) and target points (Xi, Yi). This equation
can be expressed in a vector-form as:

 0T −xi
T Yixi

T

xi
T 0T −Xixi

T

−Yixi
T Xixi

T 0T

h = 0 (3)

which results in equations of the form Aih = 0, with
Ai being the lines of the left matrix and h being a 9× 1
vector made of the entries of the homography matrix. Sin-
gular Value Decomposition (SVD) is a common technique
to find non trivial solution of this system of equations. Al-
ternative solutions have also been proposed to solve this
problem, such as the hyper-accurate estimator presented
in [23]. In this case, the focus was on obtaining very ac-
curate estimates while in our work, we aim at very fast,
yet reliable, computation of homographies in real-time
scenarios. In matching applications, robust estimation of
a homography from a set of putative matches is achieved
based on the RANSAC algorithm. RANSAC randomly
selects four point correspondences from the match set and
estimates a homography relation. By repetitively estimat-
ing a homography from different random pairs, the best
homography is identified as the one that is supported by
the largest number of point correspondences in the set.

Even if the SVD estimation from four point corre-
spondences can be performed with relative efficiency, its
repetitive computation can still impose a significant com-
putational load in the context of real-time estimation
using low-power devices. This observation leads us to
consider simpler approaches to resolve the 4-point homog-
raphy estimation problem. In particular, we selected the
well-known Gaussian elimination scheme [12] that can be
used to solve a 4-point non-homogeneous set of equations.
Even if this approach is known to be less numerically
stable, we show here that in the context of target recogni-
tion, stable and accurate solutions can still be obtained.
As a starting point, we consider the vector-form of ho-
mogeneous system of Eq. (3). Our implementation of the
reduction to reduced-row-echelon form of the matrix is
summarized here. It assumes that the minimum configu-
ration used to estimate the homography is 4 matches. If
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we take the matrix in Eq. (3) to be decomposed as (after
appropriate row shuffling):

x0 y0 1 0 0 0 −x0X0 −y0X0 X0

x1 y1 1 0 0 0 −x1X1 −y1X1 X1

x2 y2 1 0 0 0 −x2X2 −y2X2 X2

x3 y3 1 0 0 0 −x3X3 −y3X3 X3

0 0 0 x0 y0 1 −x0Y0 −y0Y0 Y0
0 0 0 x1 y1 1 −x1Y1 −y1Y1 Y1
0 0 0 x2 y2 1 −x2Y2 −y2Y2 Y2
0 0 0 x3 y3 1 −x3Y3 −y3Y3 Y3


(4)

We notice here that the matrix is somewhat sparse,
and what’s more, the top left 4 × 3 matrix minor is
identical to the bottom middle 4×3 minor. This is of great
help, since it means that initially, the same operations
will be applied to the top 4 rows and bottom 4 rows of
the matrix. Even better, when 4-lane or 8-lane vector
processing engines (such as SSE, AVX, Altivec or NEON)
are available, the loads of xi, Xi, yi and Yi, the multiplies
xX, xY , yX and yY and the row operations can be done
in parallel.

After the reduction procedure given in Appendix A,
the right-most column of the resulting matrix would
contain elements of homography matrix. With this non-
homogeneous solution, poor estimation would be obtained
if the element h22 has a value close to zero. Gaussian
elimination is however numerically stable for diagonally
dominant or positive-definite matrices. For general ma-
trices, Gaussian elimination is usually considered to be
stable, when using partial pivoting [12]. In practice, we
observed reliable stability when the Z-component of the
translation is significant with respect to the X − Y ones;
this is the common situation when a hand-held device is
used for target recognition.

3.2 Robust Parameter Estimation

Once a hypothesis is generated through the proposed
Gaussian elimination algorithm, it is verified by evalu-
ating its support using the complete correspondence set.
The support for each homography model is determined
by counting the number of correspondences whose repro-
jective error lies within a specific threshold. Among the
different variants of RANSAC, we chose PROSAC [9] in
our implementation which uses a similar random sampling
strategy in which a smaller ordered subset of hypotheses
are verified. Hamming distance from the matching pro-
cedure is used to sort data points based on their match
quality. Thus, compared to the typical RANSAC method,
PROSAC terminates in much fewer iterations by exam-
ining higher quality samples earlier.

Algorithm 1 summarizes our PROSAC implementa-
tion for a fast homography estimation. The kMAX pa-
rameter defines the computational budget available for
performing recognition on a frame. It starts from a max-
imum acceptable value and can be decreased based on
the current estimate of inliers’ rate.

Algorithm 1 Robust framework for H estimation

Require: Set of all detected matches UN and η0.
Sort the set of correspondences with respect to the similar-
ity score.
Pre-compute χ2 approximate of Imin

n∗ satisfying Eq. (8).
Initialize Ibest = 0, m = 4 and kMAX

for k = 0 to kMAX do
Select m non-degenerate pairs using the PROSAC non-
uniform approach (see Sect. 3.6 for the degeneracy test).

H ← Generate a hypothesis by Gaussian elimination
approach.
Ik ← Evaluate the current hypothesis support.
if Ik < Ibest then
Ibest ← Ik
Update H with the hypothesis with the strongest sup-
port.
if Ik ≥ Imin

n∗ then
Break out of the for loop.

end if
kMAX ← Apply the maximality constraint to update
kMAX (see Eq. (5)).

end if
end for

3.3 Speed vs Quality Trade-off in RANSAC Iterations

An often-overlooked element of RANSAC is the trade-off
between speed of iteration and quality of iteration. This
is primarily determined by the choice of RANSAC kernel
– the core of the hypothesize-and-verify loop.

Currently, most RANSAC-based homography esti-
mation methods lean heavily towards an accurate, but
slower, kernel. We have here taken a different approach:
we attempt to speed up as much as possible the critical
path from sample selection to acceptance or rejection of
the resultant homography. To do this we i) pre-validate
the sample using the strong geometric constraint test
first presented by [22]; ii) compute the homography from
the sample by way of a specialized Gaussian Elimination
that exploits the structure and sparsity of the matrix to
be decomposed; ii) evaluate the homography using the
early-exiting SPRT scheme.

Such an approach abandons work on any putative
candidate as soon as it becomes clear that it is invalid or
is worse than the current front-runner. It also dedicates
only a minimum of effort to do so. Key to this approach
is the computation of the homography, because it is the
computational bottleneck, because it is incapable of re-
jecting a sample by itself, and because its output is the
dependency of the evaluation stage, which makes the final
accept/reject decision. We selected Gaussian Elimination
for the homography calculation for two reasons: First, GE
is extremely fast and second, it can be specialized for our
particular case, for even greater gains. This processing,
together with the pre-validation and SPRT, greatly short-
ens the critical path from sample selection to acceptance
or rejection. We use GE as the kernel of RANSAC, and
thus any homography corrupted by GE is rejected by the
same mechanisms that reject homographies computed
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from samples that were contaminated to begin with. In
this way, GE and RANSAC synergize: GE provides the
inner speed that RANSAC needs, and RANSAC natu-
rally makes up for GE’s numerical errors by supplying
GE with alternate samples. This is the trade-off that our
GE strategy exposes: for a slightly higher risk of missing
a good homography due to a lower quality of iteration,
we gain greatly in speed of iteration.

3.4 Termination criterion

Since the hypothesize-and-verify scheme is an iterative
process, it has to be terminated once a specific termina-
tion criterion is met. There are different options that can
be considered for the termination criterion.

3.4.1 The Maximality constraint [11, 9]

The RANSAC loop is designed to keep iterating until
assuring, with some level of confidence η0, that a set
of uncontaminated samples has been already selected.
Taking this desired level of confidence η0 into account, one
can determine a maximum number of required iterations
kmax to guarantee this level of confidence. The probability
of selecting n pairs, all as inliers is wn where w is the
inlier rate of a data set. Consequently the probability
of selecting n pairs with at least one outlier is 1 − wn.
Thus, (1−wn)k becomes the probability of never selecting
outlier-free samples in k iterations and this needs to be
less than 1 − η0. So at each iteration, k is updated as
follows:

k ≤ log (1− η0)

log (1− wn)
(5)

In practice, to obtain an a priori knowledge of w, one can
estimate it by using the support of the best hypothesis
found so far. In RANSAC [11], this termination constraint
is known as the maximality constraint.

3.4.2 The Non-randomness Constraint [9]

Although the non-uniform sampling property of PROSAC
speeds up the hypothesis convergence, applying standard
maximality constraint (5) under the assumption of uni-
form sampling results in a larger number of samples
drawn than what is actually required. Non-randomness
constraint introduced in [9], is a statistical significance
test that guaranties the goodness of a solution by the prob-
ability of evaluating true outliers, which are consistent
with a good model, falling below a specific significance
level (typically set to 5 − 10 percent). The probability
distribution of evaluating i outliers out of n points all
consistent with the sought model abides by the bino-
mial distribution. The binomial distribution is denoted
as follows:

Pn(i) = βi−m(1− β)n−i+m
(
n−m
i−m

)
(6)

in which β is the of probability of a random point evalu-
ated as inlier given an incorrect model. For each subset
of the size n, we compute the minimum number of inliers
satisfying non-randomness constraint whose accumulative
p-value is less than a significance level ψ.

Iminn = min{j :

n∑
i=j

Pn(i) < ψ} (7)

Thus, the PROSAC loop is terminated once the sam-
pling subset size for a candidate solution satisfies the
maximality condition (5) and

In ≥ Iminn∗ . (8)

3.4.3 The Chi-squared Approximation

Although non-randomness criterion accelerates the PRO-
SAC algorithm by reducing the required number of itera-
tions, it still suffers from a heavy computational burden
caused by the recursive computation of binomial prob-
abilities. Considering the randomness of a solution as a
null hypothesis H0, p-value determines the significance
of rejecting H0, given a specific level ψ. Therefore, a
Chi-squared χ2 test can be used as a common statistical
interpretation of p-value. So the larger observed χ2 cor-
responds to the lower p-value and thus stronger evidence
against the null hypothesis. Figure 1 shows a graphical
illustration of normal and χ2 approximation to binomial
probability density function.

From the central limit theorem, for sufficiently large
n, Eq. (6) can be approximated by a standard normal
distribution with µ = nβ and σ2 = nβ(1− β) and that
has thus a 1 degree of freedom Chi-squared distribution
under the null hypothesis. Let χ2

ψ be the corresponding
Chi-squared value for the significance level of ψ, which
is itself approximated by a normal PDF, Eq. (7) thus
reduces to the form

Imin = ceil
(
m+ nβ + χψ

√
nβ(1− β)

)
(9)

It will be shown in Sect. 4, that the Chi-squared approxi-
mation significantly reduces the computational load by
computing Iminn∗ only once, prior to the PROSAC loop,
while exhibiting nearly similar accuracy to the standard
non-randomness approach.

3.5 Model verification

In order to evaluate the quality of a hypothesized model,
the standard RANSAC model verification step can be fur-
ther optimized by using quick hypothesis filtering strate-
gies such as the Td,d test or the Sequential Probability
Ratio Test (SPRT) [10].
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Fig. 1: Left shows χ2 dis-
tribution with 1 degree of
freedom. Right shows Bi-
nomial PDF and normal
approximation for n = 30
and β = 0.1. The red area
under the curves indicate
p-value = 0.05 under H0. ψ = 0.05

χ2value = 3.84
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7.1

3.5.1 The Td,d Test [8]

In the RANSAC process, we wish to minimize the number
of samples that have to be drawn as well as the average
time t required to validate each hypothesis. While the
early termination criterion is responsible for optimizing
the number of hypotheses, verification tests such as Td,d
[8] are designed to minimize t (which is proportional
to the number of verified points). The Td,d verification
algorithm is divided into two simple steps. In the first
step, a small portion of N data points are verified from
a randomly selected subset Ud ⊂ UN . The second step
involves the verification of all remaining data points, only
if the first pre-test passes that is, all d selected points are
consistent with the hypothesis.

It is proven in [8] that the optimal solution minimizing
the average number of verified points t, leads us to the
T1,1 (d = 1) test. Considering the probabilities of drawing
‘good’ samples Pg and its complement 1− Pg (drawing
‘bad’ samples), one can derive t as a function of d:

t(d) = Pg(αN+(1−α)tα)+(1−Pg)(βN+(1−β)tβ) (10)

Equation (10) states that when a ‘good’ sample is pro-
vided, it yields the verification of N points with the prob-
ability of α (that an uncontaminated point passes the
pre-test). Otherwise it requires tα points in average. Sim-
ilarly when a ‘bad’ sample is provided, N points have to
be verified with the probability of β that a contaminated
sample successfully passes the pre-test. Else, averagely
tβ points are verified.

Since the significance of the Td,d is mainly rooted in
a quick rejection of contaminated samples, it is prone
to reject uncontaminated samples accordingly. Although
this behavior results in drawing more samples than the
standard RANSAC, the performance gain is noticeable
when employing fast hypothesis generation approaches
such as the Gaussian elimination method.

3.5.2 The SPRT Test [19]

The idea behind the Sequential Probability Ratio Test in-
spired from Wald’s theory [35] is to conduct a statistical
test on a smaller number of data points to take an earlier
decision on accepting or rejecting the generated model.

The strategy used by SPRT is to optimize the verifica-
tion time, yet maintaining reliability, given probability
bounds on pair of hypotheses namely Hg and Hb that
state whether a model is ‘good’ or ‘bad’ respectively. The
Wald’s likelihood ratio [35] to make such a decision is

λj =

j∏
r=1

p(xr|Hb)

p(xr|Hg)
(11)

In this conditional probabilities’ ratio, xr is 1 if rth data
point is consistent with the generated model, and 0 oth-
erwise. In practice, p(1|Hg) (the probability of a random
point to be consistent with the model) is priori unknown
and we approximate it with its lower bound ε which is
equal to the best inliers ratio found so far. In addition,
the probability of a random point consistent with a de-
generate model p(1|Hb) = δ is a Bernoulli distributed
probability function that can be estimated using average
inlier’s fraction of the discarded model.

The time optimization of this statistical decision mak-
ing algorithm highly depends on an accepting threshold
A. That is that the model is known as a degenerate model
if for a specific j, λj in Eq. (11) becomes greater than
A. The authors of [10] found the optimal solution for A
by minimizing the time t = k(tM +mStv). Let k be the
average number of points to be verified and mS implies
the average number of solutions found given a minimal
sample set. tm indicates the time needed to generate a
model while tv is the time to verify each sample.

3.6 The Degeneracy Test

According to the randomness of the RANSAC algorithm,
a large fraction of hypotheses may be generated from
degenerate configurations of the points. By considering
the time needed for evaluating each degenerate hypothesis
against all correspondences, one can improve efficiency
by applying a cheap pre-filtering test prior to the model
generation stage.

In principle, to accelerate the pose estimation algo-
rithm, it is preferable to reject samples quickly rather
than speed up the hypothesize-and-verify processes. In
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[31], a pre-filtering test is proposed that prunes out de-
generate samples by relying on the rotational and po-
sitional consistency of correspondences. This pre-test
that requires local orientation of points, ensures the con-
sistency of orientation differences between the selected
points in the query frame and the corresponding points
in the reference frame. Since in many practical cases,
the orientation of participating points are not provided,
a Geometric Constraint is introduced in [22] to discard
samples with degenerate configurations. In the case of
homography estimation, the selected samples inducing
a unique plane satisfy the geometric constraint only if
the points in the query frame do not violate a relative
order of their correspondences in the reference frame.
Let S = {(a0,a1), (b0,b1), (c0, c1), (d0,d1)} be a set of
four selected points, it is proven in [22] that the relative
ordering of three out of four points is held if and only if

sign
(
(a0 × b0)

T · c0
)

= sign
(
(a1 × b1)

T · c1
)

(12)

Where × and · are cross and dot product operators re-
spectively. A Weak Constraint is defined when the first
three combinations of points hold Eq. (12) while a Strong
Constraint ensures the relative ordering of all possible
subsets from S.

4 Comparative Results

This section presents experimental results showing the
performance of our homography estimation method. We
compare it with the OpenCV SVD solution and with
a non-optimized Gaussian elimination implementation.
We embedded the homography estimation step into a
planer target recognition application using a PROSAC
hypothesize-and-verify scheme.

4.1 Homography Estimation Performance

In order to validate our homography estimation algo-
rithm, we used the test set proposed in [25] to benchmark
the USAC framework. USAC includes a number of key
elements for building a computationally efficient solution
and thus offers an ideal tool for benchmarking new ap-
proaches. We produced the same performance tables as in
[25] in which a homography is estimated using different
image pairs. The matches are provided at different level
of contamination allowing better evaluation of robustness
to outliers.

Referring to Table 1, the first column shows the perfor-
mance we obtained using the standard USAC 1.0 frame-
work. In the second column, we simply replaced the USAC
SVD estimation by our Gaussian Elimination (GE) im-
plementation. Very similar performances are obtained
which demonstrate that GE estimation is also able to pro-
vide accurate estimates. The computational timings are

also similar and this is explained by the fact that under
the full USAC framework, the homography estimation
stage does not represent a significant portion of the total
computation. We therefore ran a new set of experiments
in which we removed the more costly local optimization
and symmetrical re-projection error steps as these are
not necessarily required in a target recognition context.
In such a case, the benefit of using GE in the estimation
of the homograhy becomes apparent. Compared to SVD
results (the third column), GE results (the fourth column)
are 2 to 5 times faster. Finally, the last column shows the
performance of our PROSAC implementation based on
GE estimation of the homography.

For further evaluation, we compared in Table 2, over-
all performance of our framework against several vari-
ants of RANSAC aiming at real-time performance. For
instance, in the first and second column, R-RANSAC
[8, 19] with T1,1 and SPRT verification are respectively
evaluated. Although, these two algorithms reduced the
number of verifications, they consume more time due to a
larger number of samples drawn and models generated. In
the next two columns, performance results for PROSAC
scheme with MLE (MLESAC [32]) and standard cost
function are illustrated. MLESAC has a higher compu-
tational cost due to the more expensive estimation of a
mixture parameter, while PROSAC with standard cost
function produces slightly different errors. The last two
columns show best performing USAC selected from the
previous experiment and our proposed framework. These
two approaches significantly improved the execution time
by decreasing the number of samples drawn and models
generated. However, our proposed approach is 3x-10x
faster than the USAC framework.

4.1.1 Accuracy and Recognition Rate

In order to assess the performance of our optimized frame-
work in the context of planar target recognition, we cap-
tured four sets of image sequences for four different types
of targets, with each sequence comprising of around 250
to 300 frames1. The image sequences were captured using
an LG Optimus 2X smartphone camera with a resolution
of 480× 480. The camera was rotated by approximately
45◦ in all directions (i.e. 45◦ in- and out-of-plane rota-
tion). The scale of the target varies from full resolution
(where the target fully occupies the frame) to about one
third the image size. A majority of the images suffer from
perspective distortions and severe motion blur in some
cases. The ground truth target locations were manually
obtained by identifying the four corners of the target in
each image of each sequence.

The matching scheme based on BRIEF described in
Sect. 2 was used to match the target features with the
ones detected in each frame of the test sequences. Each

1 Available online at www.eecs.uottawa.ca/~laganier/
projects/mobilevision

www.eecs.uottawa.ca/~laganier/projects/mobilevision
www.eecs.uottawa.ca/~laganier/projects/mobilevision
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USAC 1.0 USAC GE
USAC SVD (No

LO)
USAC GE (No

LO)
our PROSAC

GE

A: ε = 0.46,
N = 2540

I 1147.6± 0.1 1147.7± 0.1 1074.4± 9.1 1017.2± 10.1 969.6± 10.2
K 4.8± 0 5.9± 0.1 7.8± 0.1 9.1± 0.2 8.4± 0.2
K rej 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
models 4.8± 0 5.9± 0.1 7.8± 0.1 9.1± 0.2 8.4± 0.1
VPM 755.6± 15.6 667± 16.4 1021.6± 16.6 869.3± 16.1 1193.5± 14.8
error 1.27 1.27 1.18 2.22 2.27
time(ms) 24.78 24.4 0.4494 0.3477 0.0810

B: ε = 0.15, N = 514 I 68.1± 0.0 68.0± 0.0 67.7± 0.5 61.5± 0.9 64.3± 0.4
K 925± 316 14557± 3676 57.0± 11.9 165.7± 23.0 13.6± 0.4
K rej 711.2± 263.8 12446.8± 3226 35.2± 10.2 128.0± 19.7 3.0± 0.1
models 214.1± 53.7 2104.8± 451.3 21.8± 1.8 36.4± 3.3 10.6± 0.3
VPM 49± 1.4 42.4± 2.3 29.6± 2.1 100.4± 3.6 294.3± 3.6
error 0.87 0.87 2.08 2.35 2.38
time(ms) 4.93 3.78 0.2873 0.07323 0.02511

C: ε = 0.23,
N = 1317

I 301.0± 0.0 300.56± 0.3 211.4± 1.2 210.9± 1.3 202.9± 1.4
K 4.8± 0.1 7.5± 0.3 4.7± 0.1 6.3± 0.2 5.0± 0.1
K rej 0.3± 0.0 0.5± 0.0 0.3± 0.0 0.4± 0.1 2.3± 0.0
models 4.5± 0.1 4.9± 0.3 4.4± 0.1 3.9± 0.2 2.7± 0.1
VPM 372.6± 4.5 593.5± 17.5 435.1± 6.6 694.9± 16.8 1215.7± 7.8
error 0.80 0.8 0.98 1.42 1.35
time(ms) 6.33 6.3 0.1127 0.07363 0.03406

D: ε = 0.34, N = 495 I 146.2± 0.1 146.3± 0.1 137.0± 1.0 139.6± 1.1 136.7± 1.2
K 14.0± 0.4 16± 0.5 5.1± 0.1 5.8± 0.1 5.5± 0.1
K rej 3.7± 0.1 4.2± 0.2 1.9± 0.0 2.0± 0.0 2.7± 0.0
models 10.3± 0.3 10.8± 0.4 3.2± 0.1 3.0± 0.1 2.8± 0.1
VPM 103.4± 2.3 111.4± 3.4 307.3± 5.4 342.1± 5.9 482.4± 1.5
error 1.16 1.16 5.72 5.70 5.87
time(ms) 2.73 2.68 0.07764 0.04241 0.016903

Table 1: Performance result of Homography estimation as in [25]. (I) is the number of inliers found. (K) and (K rej)
are the number of samples drawn and the number of samples rejected by the degeneracy test. (models) is the number
of total hypotheses, (VPM) the number of verifications per model. The symmetrical reprojection (error) is measured
w.r.t. the ground truth. (time) indicates the execution time per frame in ms. Note that all reported results are
averaged over a total of 500 runs.

R-RANSAC
(T1,1)

R-RANSAC
(SPRT)

MLE-SAC
Classic

PROSAC
USAC (No

LO)

our
PROSAC

GE

A: ε = 0.46, N = 2540
I 1329.7± 2.6 1356.4± 1.8 1027.9± 9.5 1021.5± 9.6 1074.4± 9.1 969.6± 10.2
K 62.8± 0.7 55.9± 0.4 7.5± 0.1 7.4± 0.1 7.8± 0.1 8.4± 0.2
K rej 0.3± 0.0 0.3± 0.0 0± 0 0± 0 0.0± 0.0 0.0± 0.0
models 62.5± 0.7 55.6± 0.3 7.5± 0.1 7.4± 0.1 7.8± 0.1 8.4± 0.1
VPM 493.4± 5.9 889.0± 5.7 2540± 0 2540± 0 1021.6± 16.6 1193.5± 14.8
error 2.04 2.01 2.22 2.24 1.18 2.27
time(ms) 8.4516 6.9208 155.965 1.2111 0.4494 0.0810

B: ε = 0.15, N = 514
I 55.9± 1.0 75.3± 0.1 70.5± 0.2 70.7± 0.2 67.7± 0.5 64.3± 0.4
K 2000± 0 2000± 0.0 16.1± 1.5 19.3± 4.0 57.0± 11.9 13.6± 0.4
K rej 5.2± 0.1 5.3± 0.1 2.7± 0.0 2.6± 0.1 35.2± 10.2 3.0± 0.1
models 1994.8± 0.1 1994.8± 0.1 13.4± 1.5 16.7± 4.0 21.8± 1.8 10.6± 0.3
VPM 6.0± 0.0 20.4± 0.0 514± 0 514± 0 29.6± 2.1 294.3± 3.6
error 420.0 1.68 2.07 2.06 2.08 2.38
time(ms) 251.354 191.439 58.844 1.8423 0.2873 0.02511

C: ε = 0.23, N = 1317
I 283.0± 1.0 299.7± 0.2 202.4± 1.1 202.0± 1.1 211.4± 1.2 202.9± 1.4
K 1861.7± 6.5 1713.7± 4.1 3.8± 0.0 3.8± 0.1 4.7± 0.1 5.0± 0.1
K rej 10.7± 0.1 10.8± 0.1 2± 0.0 2.0± 0.0 0.3± 0.0 2.3± 0.0
models 1851.0± 6.5 1702.9± 4.1 1.8± 0.0 1.8± 0.0 4.4± 0.1 2.7± 0.1
VPM 17.0± 0.1 72.7± 0.3 1317± 0 1317± 0 435.1± 6.6 1215.7± 7.8
error 1.30 1.2 0.99 0.98 0.98 1.35
time(ms) 229.184 186.348 21.6036 0.31071 0.1127 0.03406

D: ε = 0.34, N = 495
I 179.3± 0.0 179.8± 0.1 136.7± 1.1 137.4± 1.1 137.0± 1.0 136.7± 1.2
K 266.3± 0.2 263.5± 0.1 5.0± 0.1 5.0± 0.1 5.1± 0.1 5.5± 0.1
K rej 4.1± 0.1 3.9± 0.1 2.0± 0.0 2.1± 0.0 1.9± 0.0 2.7± 0.0
models 262.2± 0.2 259.6± 0.1 3.0± 0.1 2.9± 0.1 3.2± 0.1 2.8± 0.1
VPM 47.0± 0.4 142.2± 0.4 495± 0 495± 0 307.3± 5.4 482.4± 1.5
error 3.31 3.36 5.76 5.80 5.72 5.87
time(ms) 33.265 29.2401 11.7479 0.34246 0.07764 0.016903

Table 2: Performance result of Homography estimation for different RANSAC variants.
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Target Total matches Total Inliers Iterations Recognition rate(%)

GE SVD GE SVD GE SVD

Book 169.0± 33.1 67.1± 41.3 61.0± 34.7 756.0± 710.6 772.0± 722.5 48.82 45.40
Map 75.3± 18.7 38.1± 17.2 38.6± 17.3 317.4± 546.8 299.4± 526.3 72.24 74.75
Football 232.7± 41.9 82.2± 44.8 79.8± 40.8 747.9± 723.7 742.2± 717.4 84.58 79.06
Adv 200.8± 52.8 74.8± 41.0 83.0± 39.6 693.1± 726.8 604.1± 661.0 88.09 90.49

Average 175.6± 65.6 67.5± 41.6 67.3± 38.9 658.8± 709.7 635.4± 694.0 73.44 72.56

Table 3: Average number of total matches, inliers, required iterations and recognition rate are shown for the four
targets with both GE and SVD method.

matching set obtained is then fed to our PROSAC estima-
tor in order to obtain a putative homography. The same
experiments were repeated for the different homography
estimation methods, all of them using the same initial
match sets.

Table 3 shows the number of matches in the initial
set and the number of matches in the final set with best
support as found by PROSAC. We report these results
for the SVD solution (as implemented in OpenCV) and
for our Gaussian elimination implementation.

The recognition rate is determined by analyzing the
maximum error between the estimated target corner loca-
tions to the corresponding ground truth corner location.
This error, given in pixels, is obtained as follows:

Ei(C̃) = max
j
‖Hip̂j − p̃ij‖, 1 ≤ j ≤ 4 , (13)

where Hi is the estimated homography at frame i, p̂j is
the coordinate of target corner j in the reference frame
and p̃ij is the manually obtained location of corner j in
frame i.

If we consider, from empirical observations, that a
target is successfully detected if E(C̃) ≤ 10 pixels, we
then obtain a recognition rate of 72.56% for SVD and
73.44% for Gaussian elimination averaged over four test
sequences (last column of Table 3). Here we empirically
chose 10 pixels to provide a representative measure of
recognition rate to compare the two algorithms (the exact
value is not crucial). Individual results corresponding to
each row of Table 3 are plotted in Fig. 2.

To illustrate the behavior of the two tested homogra-
phy estimation methods, we show in Fig. 3 the evaluation
of the maximal positional error (reported every 5 frames)
for one of the test sequences. As it can be seen, except
for one large error made by Gaussian elimination, both
estimation schemes exhibit very similar behavior. Fig-
ure 4 correspondingly illustrates results of homography
estimates with some failure cases.

Finally, we also evaluated the accuracy of our GE ho-
mography estimation module outside the PROSAC loop.
To this end, we performed the experiments reported in
[23] that were used to validate the accuracy of their hyper-
accurate homography estimation solution. Five pairs of
matching were identified in two image sets, shown in Fig.
5, from which homographies were estimated. We used

OpenCV cv::findHomography function based on SVD
and our GE solution to estimate these two homographies.
From Table 4, as expected, our raw solution initially gave
a larger error but after Levenberg-Marquardt refinement,
the two estimation schemes produced comparable errors.

4.2 Target Recognition Performance

4.2.1 Computational Efficiency

We report in this section the global computational effi-
ciency of different homography estimation methods in
the context of robust target recognition. Speed is here
measured in count of instruction fetches. For complete-
ness, we evaluate the performance of different meth-
ods under different contexts; the results are shown in
Fig. 6. First, we measured the speed of the OpenCV
cv::findHomography function (version 2.4) under the
RANSAC mode. We also built our own implementation
of the RANSAC scheme inside which we used the OpenCV
2.4 SVD function. We then integrated the same OpenCV
2.4 function under our PROSAC implementation. We also
tested the DEGSVD function from the LAPACK package.
We also tested a publicly available but non-optimized
Gaussian elimination implementation 2. Finally, the last
bar shown in Fig. 6 is the one obtained by our proposed
optimized PROSAC Gaussian elimination scheme. For a
device equipped with a 2.26 GHz CPU, a 30fps detec-
tion rate corresponds to a maximum number of about
75 millions of cycles. Note that all these algorithms have
a complexity of O(KN), with K being the number of
iterations and N being the number of points. Our linear
gain in computational efficiency can be attributed to our
speed of iterations that is the main bottleneck in most
methods.

We have also compared the speed of our homography
estimation with available results as reported in [22]. On
the basis of our results, the run-time for homography esti-
mation is on the order of 5 milliseconds for the approach
used in [22], while our optimized framework performs
nearly 25x faster on average. Figure 7 illustrates the
corresponding per-frame numbers for putative matches,

2 Available online at https://github.com/camilosw/
ofxVideoMapping

https://github.com/camilosw/ofxVideoMapping
https://github.com/camilosw/ofxVideoMapping
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Fig. 2: Recognition rate
for each test sequence, re-
ported as the percentages
of frames with maximal po-
sitional error less than 10
pixels.
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Fig. 3: Maximum posi-
tional error of the four se-
quences reported every 5
frames.
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of images corresponding
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some failure cases.
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Target OpenCV method GE method

Non-
Refined

Refined Non-
refined

Refined

Food 0.00729 0.00284 0.51133 0.00289
Map 0.00110 0.00248 0.19794 0.00251

Table 4: Frobenius norm of the difference between esti-
mated homography and hyper-accurate homography as
in [23].

(a) Food

(b) Map

Fig. 5: Two image sets used for accuracy evaluation as
in [23].

inliers ratio and processing time. In Fig. 8, several esti-
mates of homography are depicted for the sequence of
images used in this experiment.

4.2.2 Performance Results of the Model Verification

To compare the performance of the verification stage,
we repeated the previous tests for different verification
methods (see Table 5). The GE approach that obtained
the best performance in the previous test was also used
in this new test. The results of the first and the third
columns show that the number of verifications per model
(VPM) is considerably decreased from the standard ap-
proach to the verification approach based on T1,1. But
because the number of generated models is slightly larger
than in the case of the standard verification approach, the
USAC framework with T1,1 does not achieve significant
speed gain. The same reasoning applies to PROSAC with
the standard and T1,1 verifications. The only difference is
that our highly optimized PROSAC framework performs
2-4 times faster than the USAC framework. The last two
columns of the table demonstrate that the verification
based on SPRT speeds up the process by a factor of 5 to
10 compared with the standard verification approach. Ad-
ditionally, SPRT returns more inliers in a smaller number
of hypotheses compared with the T1,1 test.
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Fig. 6: Per-frame average instruction fetch count for each
H-estimator.

4.2.3 Influence of Termination Criteria

As we pointed out earlier, the stopping condition for the
iterative hypothesize-and-verify scheme has a significant
effect on the computational speed of the process. The
fitness of the sought model also depends on the stopping
condition. According to the semi-random sampling strat-
egy of the PROSAC scheme, we altered the maximality
termination criterion by imposing a non-randomness con-
straint that yields a faster convergence. To carry out a
thorough evaluation, we compared our proposed method
with an intuitive termination condition proposed in [31].
This condition determines if the ratio between good in-
liers (within 2px) to close inliers (within 15px) is above a
predefined threshold (set to 0.65-0.75). The correspond-
ing results are tabulated in Table 6. It can be seen that
the number of samples drawn in column 1 with the max-
imality constraint is significantly larger than of the ratio
and non-randomness constraints (column 2-5).

As a consequence, execution times for the ratio and
non-randomness constraints have been speeded up by a
factor ranging between 3x-30x. Comparing the results
of column 2 and 3 with column 1, indicates that a ter-
mination criteria based on the ratio test require much
fewer samples to be drawn. However, the number of
generated models are still noticeably larger than the non-
randomness approaches. This is due to the fact that,
there is no statistical analysis behind the ratio test re-
garding the quality of models. Indeed, the aim of adding
ratio tests to Table 6 is to provide another early ter-
mination criterion as a reference to better evaluate the
non-randomness constraint. It can also be concluded that
the criterion based on χ2 approximation performs quan-
titatively similarly to the non-randomness one.
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USAC
STD Verif

PROSAC
STD Verif

USAC T1,1 PROSAC T1,1 USAC SPRT
PROSAC
SPRT

A: ε = 0.46,
N = 2540

I 1015.7± 10.0 957.5± 10.4 986.7± 11.2 973.9± 12.1 1017.2± 10.1 969.6± 10.2
K 8.8± 0.2 8.5± 0.2 14.2± 0.4 15.3± 0.4 9.1± 0.2 8.4± 0.2
K rej 0.0± 0.0 0.0± 0.0 0.1± 0.0 0.1± 0.0 0.0± 0.0 0.0± 0.0
models 8.8± 0.2 8.5± 0.2 14.1± 0.4 15.2± 0.4 9.1± 0.2 8.4± 0.2
VPM 2540± 0 2540± 0 488.3± 15.5 371.9± 9.0 869.3± 16.1 1193.5± 14.8
error 2.23 2.63 2.31 1.13± 0.0 2.22 2.27
time(ms) 0.70 0.117412 0.232 0.070258 0.3477 0.08103

B: ε = 0.15, N = 514 I 58.1± 0.5 72.8± 0.1 47.1± 1.0 39.0± 1.5 61.5± 0.9 64.3± 0.4
K 11.1± 0.1 69.74± 13.1 348.0± 31.4 411.2± 42.4 165.7± 23.0 13.6± 0.4
K rej 1.5± 0.0 44.824± 11.2 276.0± 26.9 361.1± 36.5 128.0± 19.7 3.0± 0.1
models 8.3± 0.2 24.916± 1.9 70.5± 4.5 97.1± 5.9 36.4± 3.3 10.6± 0.3
VPM 514± 0 514± 0 44.2± 2.3 51.1± 1.4 100.4± 3.6 294.3± 3.6
error 2.45 2.50 2.80 3.87 2.35 2.4
time(ms) 0.12 0.05374 0.073427 0.080152 0.07323 0.025110

C: ε = 0.23,
N = 1317

I 205.9± 1.3 204.5± 1.2 192.1± 2.0 206.9± 1.5 210.9± 1.3 202.9± 1.4
K 4.9± 0.1 4.6± 0.1 20.4± 1.3 30.7± 4.5 6.3± 0.2 5.0± 0.1
K rej 0.3± 0.0 2.3± 0.1 2.2± 0.5 9.6± 2.4 0.4± 0.1 2.3± 0.1
models 2.7± 0.1 2.4± 0.1 15.4± 0.8 21.1± 2.1 3.9± 0.2 2.7± 0.1
VPM 1317 1317± 0 295.9± 14.6 300.8± 14.4 694.9± 16.8 1215.7± 7.8
error 1.41 1.30 1.53 1.57 1.42 1.35
time(ms) 0.12 0.03927 0.070015 0.038238 0.07363 0.034061

D: ε = 0.34, N = 495 I 138.0± 1.0 138.1± 1.1 142.5± 1.4 136.7± 1.2 139.6± 1.1 136.7± 1.2
K 5.8± 0.1 5.7± 0.1 10.1± 0.3 5.5± 0.1 5.8± 0.1 5.5± 0.1
K rej 2.0± 0.1 2.7± 0.0 2.7± 0.1 2.7± 0.0 2.0± 0.0 2.7± 0.0
models 3.0± 0.1 2.9± 0.1 6.5± 0.2 2.8± 0.1 3.0± 0.1 2.8± 0.1
VPM 495 495± 0 159.9± 5.7 482.4± 1.5 342.1± 5.9 482.4± 1.5
error 5.72 5.74 5.40 5.87 5.70 5.87
time(ms) 0.05 0.01957 0.030765 0.016903 0.04241 0.016903

Table 5: Performance result of Homography estimation for different verification methods.

PROSAC
Maximality

PROSAC
Ratio= 0.65

PROSAC
Ratio= 0.75

PROSAC
Non-

randomness
PROSAC χ2

A: ε = 0.46,
N = 2540

I 1326.4± 2.4 1241.7± 3.5 1314.6± 2.3 969.6± 10.2 967.2± 10.4
K 62.7± 0.6 17.7± 0.7 36.8± 1.3 8.4± 0.2 8.7± 0.2
K rej 0.9± 0.0 0.1± 0.0 0.5± 0.0 0.0± 0.0 0.0± 0.0
models 61.8± 0.5 17.6± 0.7 37.2± 1.3 8.4± 0.2 8.7± 0.2
VPM 741.7± 5.6 1138.5± 14.3 970.2± 13.9 1193.5± 14.8 1192.7± 14.5
error 2.06 2.11 2.00 2.27 2.66
time(ms) 0.16379 0.09050 0.13150 0.08103 0.05638

B: ε = 0.15, N = 514 I 74.1± 0.2 65.4± 0.3 70.4± 0.2 64.3± 0.4 72.5± 0.2
K 2000± 0 21.8± 5.6 42.7± 9.8 13.6± 0.4 107.2± 17.8
K rej 1698.93± 0.7 10.3± 4.8 25.5± 8.3 3.0± 0.1 77.0± 15.2
models 301.1± 0.7 12.4± 0.9 18.3± 1.5 10.6± 0.3 30.3± 2.6
VPM 49.7± 0.2 289.4 281.1± 3.5 294.3± 3.6 267.0± 3.6
error 1.94 2.38 2.29 2.4 3.11
time(ms) 0.2250 0.02552 0.03190 0.025110 0.036557

C: ε = 0.23,
N = 1317

I 296.1± 0.4 272.9± 0.6 295.4± 0.4 202.9± 1.4 202.6± 1.1
K 1773.7± 5.6 54.7± 6.3 708.5± 34.8 5.0± 0.1 4.6± 0.1
K rej 1049.7± 3.8 19.1± 3.6 393.7± 21.4 2.3± 0.1 2.1± 0.1
models 723.9± 2.1 36.6± 2.8 315.6± 13.4 2.7± 0.1 2.4± 0.1
VPM 119.6± 0.5 890.7± 12.6 381.4± 10.8 1215.7± 7.8 1244.9± 6.5
error 1.40 1.51 1.40 1.35 1.28
time(ms) 0.4878 0.093214 0.32967 0.034061 0.018477

D: ε = 0.34, N = 495 I 179.7± 0.0 149.5± 0.8 160.1± 0.6 138.4± 1.1 138.4± 1.1
K 263.8± 0.1 5.3± 0.1 6.8± 0.2 5.5± 0.1 5.5± 0.1
K rej 140.2± 0.3 2.8± 0.1 3.1± 0.1 2.7± 0.0 2.7± 0.0
models 123.6± 0.3 3.5± 0.1 4.6± 0.1 2.7± 0.1 2.7± 0.1
VPM 259.2± 0.8 477.2± 1.7 460.2± 2.4 484.3± 1.4 483.9± 1.4
error 3.58 5.50 5.10 5.89 5.9
time(ms) 0.1343 0.015431 0.017222 0.76780 0.011761

Table 6: Performance result of Homography estimation for different stopping criteria.
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Fig. 7: Shows number of extracted matches, inliers ratio (Total inliers vs. total matches) and homography estimation
time (ms) for each frame related to Fig. 8 experiment. Interested readers should refer to [22] for comparisons.

Fig. 8: Result of homography estimates (shown in red)
for the sequence of images used in [22].

(a) Map (b) Book (c) Adv (d) Football

Fig. 9: Homography estimation for one frame of each of
our test videos.

4.2.4 Non-randomness vs. Chi-squared Approximation

We have demonstrated in Table 6 the effect of different
stopping conditions for still images. However, in the case
of target recognition in a live video, the difference between
computational timing of the non-randomness and Chi-
squared approaches becomes more significant.

Therefore, we repeated the homography estimation
test for one of the test sequences of Fig. 9. Table 7 shows,
for each algorithm of Sect. 4.2.3, the number of inliers,
the number of generated models, maximum positional
error (in pixels) and the run-time (all reported on aver-
age). Except for the ratio test, a very similar accuracy is
obtained for the rest of algorithms. Despite the significant
reduction in the number of hypothesized models for the
non-randomness algorithm, this one exhibits a higher ex-
ecution time. This additional computational cost can be
explained by the recursive process needed for computing
binomial probabilities and optimal value of n∗ (the mini-
mum subset size satisfying Eq. (8)). This demonstrates
the impact of the Chi-squared approximation that saves
compute time by calculating n∗ only once, prior to the
PROSAC loop.

Figure 10 illustrates the maximal positional error
associated with each frame as a measure of accuracy for
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Fig. 10: Maximal positional error(px) for the homography estimation with different stopping criteria.

Maximality
Non-

randomness
χ2 Ratio test

Inliers 43.56 38.6 39.3 31.2
Models 160.8 70.4 72.2 111.5
Recognition(%) 46.2 34.91 34.81 21.03
Error(pixel) 10.50 11.92 10.81 14.61
Time(ms) 0.1064 0.1573 0.0648 0.0814

Table 7: Performance results of the four sequences with
different stopping criteria.

each algorithm. Although, a very similar range of errors is
obtained, the non-randomness and χ2 approaches exhibit
better performances by reducing the peaks induced by
the maximality and ratio test approaches. This closely
corresponds to the standard deviation values reported in
Table 7.

For different stopping criteria, we also evaluated per-
frame execution time that is illustrated in Fig. 11. The
first plot shows the computational timings for all afore-
mentioned algorithms. It is evident from the second and
the third plots that the χ2 algorithm performs faster
than the maximality and non-randomness algorithms. It
can also be seen from the results that except for the
non-randomness algorithm, other stopping conditions do
not bring noticeable overhead to the PROSAC loop.

5 Conclusion

In this paper, we proposed a fast framework for robust
homography estimation that can efficiently run under
resource-constrained platforms. This framework profits
from the non-uniform sampling approach of PROSAC
and approximates the non-randomness stopping criterion
using the χ2 statistical test. The verification stage em-
ploys the Sequential Probability Ratio Test to improve
the overall performance. Since the estimation step is re-
peated many times in the hypothesize-and-verify scheme,
we presented an algebraic solution for plane-to-plane ho-
mography estimation relying on the well-known Gaussian
elimination algorithm. We showed through experiments
that this simplified approach significantly reduces the
computational load for a real-time implementation, with

an accuracy comparable to the one obtained by the more
conventional SVD solution.

As a consequence of this work, individual recent devel-
opments made by different researchers are here considered
together. Several adaptations to the existing algorithms
are undertaken, yielding a unified framework for robust
pose estimation. Out of consideration for the process-
ing capabilities of modern CPUs, methods that can be
optimized for throughput with SIMD vector instruction
sets were strongly preferred. Although we do make use
of SIMD vectorization, this is entirely optional; Our im-
plemented optimization strategies are mostly algorithmic
and are well-aligned with the computing capacity of all
modern CPUs. The highly-optimized framework that we
have presented leverages state-of-the-art algorithms and
could be extended to an even broader range of fitting
problems. The framework is now part of OpenCV 3.0,
under the cv::findHomography function, method flag
RHO.
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21. I.F. Mondragòn, P. Campoy, C. Martinez, and M.A.
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Appendix A Homography Estimation using
Gaussian Elimination

This appendix shows precisely the row operations we use
to reduce to reduced-row-echelon form the matrix shown
in Eq. 4. The Gaussian Elimination is done in two parts;
In the first, identical row operations are applied to the
top and bottom halves of the matrix, while in the second,
row operations are applied to the whole matrix.

x0 y0 1 0 0 0 −x0X0 −y0X0 X0

x1 y1 1 0 0 0 −x1X1 −y1X1 X1

x2 y2 1 0 0 0 −x2X2 −y2X2 X2

x3 y3 1 0 0 0 −x3X3 −y3X3 X3

0 0 0 x0 y0 1 −x0Y0 −y0Y0 Y0
0 0 0 x1 y1 1 −x1Y1 −y1Y1 Y1
0 0 0 x2 y2 1 −x2Y2 −y2Y2 Y2
0 0 0 x3 y3 1 −x3Y3 −y3Y3 Y3


Starting from the above, we subtract rows 2 and

6 from the rows 0, 1, 3 and 4, 5, 7 respectively, thus
eliminating almost all 1’s in column 2 and 5. Since we
choose not to scale the rows containing said 1’s, they
will remain unaffected throughout the remainder of the
computation and therefore no storage needs to be reserved
for them.

∼



x0 − x2 y0 − y2 0 0 0 0 x2X2 − x0X0 y2X2 − y0X0 X0 −X2

x1 − x2 y1 − y2 0 0 0 0 x2X2 − x1X1 y2X2 − y1X1 X1 −X2

x2 y2 1 0 0 0 −x2X2 −y2X2 X2

x3 − x2 y3 − y2 0 0 0 0 x2X2 − x3X3 y2X2 − y3X3 X3 −X2

0 0 0 x0 − x2 y0 − y2 0 x2Y2 − x0Y0 y2Y2 − y0Y0 Y0 − Y2
0 0 0 x1 − x2 y1 − y2 0 x2Y2 − x1Y1 y2Y2 − y1Y1 Y1 − Y2
0 0 0 x2 y2 1 −x2Y2 −y2Y2 Y2
0 0 0 x3 − x2 y3 − y2 0 x2Y2 − x3Y3 y2Y2 − y3Y3 Y3 − Y2


We note here that at this stage, of the 72 potential

floating-point values in the matrix, only 32 (excluding the
two remaining 1’s) are distinct and non-zero. This neatly
fits in half of a vector register file with 16 4-lane registers,
a common configuration in most modern architectures.

For brevity, after this point only the row operations
are given. They were designed to delay the use of recipro-
cals as long as possible. And the first part is duplicated
on both top and bottom half.

First we eliminate column 0 of rows 1 and 3:

R1 = r0,x ∗R1 − r1,x ∗R0, idem on R5

R3 = r0,x ∗R3 − r3,x ∗R0, idem on R7

We eliminate column 1 of rows 0 and 3.

R0 = r1,y ∗R0 − r0,y ∗R1, idem on R4

R3 = r1,y ∗R3 − r3,y ∗R1, idem on R7

We eliminate columns 0 and 1 of row 2.

R0 =
1

r0,x
∗R0, idem on R4

R1 =
1

r1,y
∗R1, idem on R5

R2 = R2 − (r2,x ∗R0 + r2,y ∗R1), idem on R6

Columns 0-5 of rows 3 and 7 are zero, and the matrix
now resembles this:



1 0 a06 a07 a08
. . . a16 a17 a18

1 0 a26 a27 a28
0 0 a36 a37 a38
0 1 a46 a47 a48

. . . a56 a57 a58
1 a66 a67 a68

0 0 a76 a77 a78


, which concludes the first part. We now cease treat-

ing the matrix as two independent 4× 9 halves and now
consider the rightmost three columns as one 8× 3 matrix
for the second part. We use the barren rows 3 and 7 to
eliminate columns 6 and 7, thus:

First, we normalize row 7.

R7 =
1

r76
∗R7

We eliminate column 6 of rows 0-6.

R0 = R0 − r06 ∗R7 R1 = R1 − r16 ∗R7

R2 = R2 − r26 ∗R7 R3 = R3 − r36 ∗R7

R4 = R4 − r46 ∗R7 R5 = R5 − r56 ∗R7

R6 = R6 − r66 ∗R7

We normalize row 3.

R3 = 1
r37
∗R3

We eliminate column 7 of rows 0-2 and 4-6.

R0 = R0 − r07 ∗R3 R1 = R1 − r17 ∗R3

R2 = R2 − r27 ∗R3 R4 = R4 − r47 ∗R3

R5 = R5 − r57 ∗R3 R6 = R6 − r67 ∗R3

This leaves the last column of the matrix, which con-
tains the homography, normalized to h22 = 1 :

∼



1 h00
. . . h01

1 0 h02
0 0 1 h21
0 1 h10

. . . h11
1 h12

0 0 1 h20


→

h00 h01 h02
h10 h11 h12
h20 h21 1



This concludes the second part.
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