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Abstract

A novel interest point detector is presented in this paper.
It uses a wedge model that characterizes corners by their
orientation and angular width. The detector is compared to
two popular corner detectors: Harris and SUSAN. It is also
shown how widely separated views can be matched, by us-
ing the information provided by the detector to approximate
local affine transformations between corners.

1. Introduction

The robust detection of interest points constitutes a fun-
damental step in the characterization and matching of im-
ages. Points of interest usually correspond to patterns of
significant intensity variation in more than one direction.
Many detectors are found in the literature. To evaluate their
performance, different criteria may be considered:
1) Accuracyin localization, or the ability to consistently de-
tect a given image pattern, at the exact same location, in
spite of minor variability in the pattern appearance.
2) Robustness, or insensitivity to noise. Detection on
noisy images can produce false positives, miss some fea-
ture points, or not localize them properly.
3) Sensitivity, that is the ability to detect points of interest
in low contrast conditions. Most often, some parameters de-
termines a tradeoff between sensitivity and robustness.
4) Stability, or the ability to continue to detect the same
features under different geometrical transformations (espe-
cially perspective deformations), and under different con-
ditions of illumination. A good measure of stability is the
repeatability rate (see Subsection 4.2).
5) Controllability, or the number, and sensitivity of the pa-
rameters controlling the behavior of the detector. The effect
of each parameter should be specific and predictable enough
to allow an easy tuning of the detector.
6) Richnessof the information provided. When a detec-
tor returns various characteristics of interest points, and not

just a strength measure, the additional information can be
exploited in the task to follow, such as the normalization of
patterns to be matched (as in Section 5).
7) Variability in the characteristics of detected points. This
ensures that several points of interest are detected, regard-
less of the nature of the image under analysis, and that the
points are distinguishable from each other.

This paper presents a novel approach to interest point de-
tection, which will be evaluated using the quality attributes
presented above. In addition, it is shown how the informa-
tion provided by this detector can improve the reliability of
sparse matching, in the context of widely separated views.

2. Interest Point Detection

Many widely used feature point detectors use image
derivatives to identify high curvature points. The Harris op-
erator [3] which uses the autocorrelation matrix of the first
derivatives, is such a detector. The eigenvalues of this ma-
trix correspond to the gradient magnitudes in the two prin-
cipal directions. Points of interest are then the ones where
both these magnitudes are high.

In other approaches, detection is based on the direct
comparison of intensity values inside small predefined win-
dows. The SUSAN operator [2] fits in this category. It com-
pares the central pixel with its neighbors to define a univalue
segment assimilating nucleus (USAN), i.e. points inside a
circular region having similar brightness. The size and the
symmetrical axis of this nucleus then determine the pres-
ence of a feature point.

Finally, some detectors find image elements matching a
predefined model [4, 5]. Such models represent ideal cor-
ners and detection consists in fitting control parameters to
the underlying image intensity pattern.

3. The Proposed Detector

Our proposed corner detector combines the two later ap-
proaches above, by detecting corner shapes from intensity
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patterns. The goal was to devise a stable detector, suitable
for feature matching across different views. This detector
relies on a simple model of corners, consisting of a wedge
(the corner), having its origin on the center of a circular
neighborhood (the background) as illustrated in Fig. 1. This
idealized corner can be described by two parameters: an an-
gular position (θ), and an angular width (ϕ). This model is
similar to the one used in [4].

Figure 1. The corner model.

To identify corners, each pixel location should be exam-
ined, comparing its surrounding circular neighborhood with
the ideal corner model. We propose to proceed as follow:
1) The circular window’s intensity mean and variance are
computed. The variance must be over a predefined thresh-
old, to limit the sensitivity of the corner finder.
2) The circular area around the potential corner is seg-
mented into background and foreground, as described in
subsection 3.1.
3) The extracted foreground is fitted to the ideal corner
model, by finding the best approximations forϕ andθ (see
subsection 3.2). The corner strength is obtained by compar-
ing the segmented area to the parameterized corner model.

Applying this procedure to all pixels results in a corner
map where each interest point is given a corner strength
value, and two delimiting angles. The final set of corners
is obtained by imposing a threshold on the corner strength
values. This should be preceded by non-maxima suppres-
sion, to avoid corner clusters.

3.1. Segmenting a Point’s Neighborhood

To obtain simple foreground/background segmentations
of circular areas around potential corners, the surrounding
pixels are classified as having an intensity above or below
the mean intensity in that neighborhood. To improve sta-
bility, this is done using a sigmoidal function, rather then a
hard threshold. The group with the fewest pixels becomes
the foreground, and the other group forms the background.
The center pixel must belong to the foreground, in order to
be further considered.

Similarly, the SUSAN corner detector relies on a simple
segmentation. Corners are then identified from the proper-
ties of the segmented areas, but without comparing them to
a preestablished corner model.

3.2. Fitting the Model

The similarity of segmented areas to ideal wedge models
(Wϕ

θ ), is measured as the sum of their absolute differences:

cs(x, y) =
∑

(i,j)∈Cxy

|Wϕ
θ (i, j)−sig(I(x+i, y+j)−I(x, y))|

(1)
WhereCxy is the circular window around the pixel under
consideration.

Someθ andϕ approaching a minimum for this pseudo
Hamming distance can be found using the following
scheme:
1) The circular area around the potential corner is subdi-
vided into small wedges,Wϕmin

n∆θ having a width ofϕmin

and rotated around the circular area by increments of∆θ.
2) Corner coverage is computed for each of these wedges,
as the sum of the segmented value over all its pixels:

cc(x, y) =
∑

(i,j)∈W
ϕmin
n∆θ

sig(I(x + i, y + j)− I(x, y)) (2)

A wedge will be considered to potentially lie on the corner
if its corner coverage is greater than a predetermined thresh-
old value (cmin). So far, the process is similar to the rotated
wedge filtering presented in [11], where it is used to com-
pute intensity mean values, from which one-dimensional
angular derivative are computed.
3)The wedge with the highest coverage is selected, and con-
sidered to belong to the foreground of the corner.
4)From this initial wedge, all adjacent wedges with a cov-
erage greater thancmin are retained. The corner model is
the one formed by the union of all these selected elementary
wedges. The angle spanned by this set of adjacent wedges
must belong to a rangeϕmin < ϕ < ϕmax.

The union of all the wedges selected in the above proce-
dure determinesWϕ

θ (for equation (1)),ϕ being the angle
spanned by the union, andθ being its bisector.

4. Experimental Comparisons

To test the proposed corner detector, experiments that
compare it to SUSAN, Harris were conducted.

4.1. Evaluating Corner Location

The first set of experiments measures therobustnessand
accuracyof each detector. A synthetic image was used,
where the position of each corner (the vertices of geometri-
cal shapes) is known.

Figure 2 shows the feature points found by three different
detectors on this simple test image. Note the variability of
contrast conditions at different corner locations, caused by



Figure 2. Corner detected using (from left
to right), our detector, SUSAN, Harris. The
second row shows detection when Gaussian
noise of variance 50 was added.

the smooth gray level transition of the background. This
allows the appreciation of the respectivesensitivityof the
operators, which have been tuned to obtain the best possible
results.

For each vertex in this image, the closest detected cor-
ner was found, and the distance between the two points was
measured. These measurements were taken for all three de-
tectors and for noisy versions of the same image. Results
are presented in Figure 3, where the graphs show, for dif-
ferent noise levels, the number of points within 1,2,3 or 4
pixels of a detected corner. In Figure 2, the behavior of
the detectors is also shown, in the case where a gaussian
noise of variance 50 was added to the original synthetic im-
age. These experiments show SUSAN to be a more accu-
rate detector. However, as the level of noise is increased,
our wedge-based detector leads to superior results.

4.2. Evaluating Repeatability
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Figure 3. Evaluating the accuracy of different
corner detectors.

The second set of experiments measures thestability of
the different detectors, which is the most important attribute

in many applications. This is done by evaluating the re-
peatability rate [1], i.e. the number of features that are con-
sistently detected in two views of a scene. To do so, we must
be able to determine, for each point in an image, where its
corresponding point is located in another image.

It is well known that images of a planar surface are re-
lated by a homographic transformation. This also holds for
images where the difference in viewpoint corresponds to a
pure rotation. Two image pairs, corresponding to these two
cases, are shown in Figure 4. The homographies between
these images were computed, it then becomes possible to
verify, for each detected interest point in one image, wether
its corresponding point is also detected in the other image.

Figure 4 also shows the computed repeatability rates for
the corner detectors. These repeatability rates were com-
puted for different corner acceptance thresholds. In this
case, SUSAN clearly demonstrates the worst performances.
The two other operators presents a similar behavior.

From this, and the previous experiment, it is seen that
the proposed detector offers a good compromise between
theaccuracyof SUSAN, and thestabilityof Harris.
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Figure 4. Two image pairs, with graphs of their
corresponding repeatability rates

5. Matching Points of Interest

Matching is an important task in computer vision. Fea-
ture point detection is often used to select points for sparse
matching between images. When the change in viewpoint
is small, robust matching can be accomplished through nor-
malized correlation [6]. However, if views are more widely
separated, the simple correlation of windows around inter-
est points is not a meaningful similarity measure, as image
patterns around the points can undergo significant deforma-
tion. Thus, a matching scheme which is invariant to per-
spective deformation induced by changes in viewpoint is



required. The information about corner shapes provided by
our detector will achieve this.

The solution consists in applying a local transformation
between pairs of image patches, before evaluating their sim-
ilarity, as in [8, 7]. A good approximation of perspective
deformation consists in planar affine transformations [9].
These can be represented with 6 DOF,3 × 3 non-singular
matrices that transforms the(x, y) coordinates of an image
patch as follow:
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The patches that are to be matched consist in circular
windows around the points. The translation between them
are known, this leaves 4 DOF, which are estimated from
the parameters of the wedge corner models. First, it is as-
sumed that the difference in scale can be neglected. Then,
the rotation angle is given by the difference in angular po-
sition between the two detected wedges,θ andθ′. Finally,
the non-isotropic component of the affinity is assumed to
apply in the bisector direction of the rotated wedge, with a
ratio given by the angular widths of the two wedges,ϕ : ϕ′.
Matching is then accomplished by correlating the intensity
values found in the vicinity of the corner in the first view,
and the corresponding intensity values in the second view,
as given by the affine transformation. All matches with cor-
relation scores higher than a some threshold are kept.

This approach still produces many false matches. How-
ever, it will produce far fewer than a direct correlation
scheme, in the case of widely separated views. A robust
estimator of two-view geometric transformations can filter
out these false matches [10].

Figure 5 shows a pair of images on which our simple
matching procedure was applied. The resulting candidate
match set contained 300 point pairs, and was used to es-
timate, through a RANSAC scheme, the homography be-
tween the two views. A mosaic was constructed using the
found homography. In contrast, when 300 matches were
obtained by direct normalized correlation, no valid homog-
raphy could be obtained, no matter how many RANSAC
iterations were used.
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