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Reconfigurable Optical Signal 
Processing Based on a Distributed 
Feedback Semiconductor Optical 
Amplifier
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All-optical signal processing has been considered a solution to overcome the bandwidth and speed 
limitations imposed by conventional electronic-based systems. Over the last few years, an impressive 
range of all-optical signal processors have been proposed, but few of them come with reconfigurability, 
a feature highly needed for practical signal processing applications. Here we propose and 
experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed 
feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog 
optical signal processor can be reconfigured to perform signal processing functions including ordinary 
differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by 
controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-
optical signal processing and computing.

All-optical circuits for signal processing and computing have attracted great attention in the past years since they 
could overcome the bandwidth and speed limitations imposed by conventional electronic-based systems1–8. A 
promising approach to the implementation of ultrafast all-optical circuit is to emulate the developments in the 
electronic domain9,10. Following the electronic component design strategies, many equivalent photonic signal 
processors, such as temporal differentiators11–14, temporal integrators15–18, Hilbert transformers19–21 and ordinary 
differential equation (ODE) solvers22–28, have been proposed and demonstrated. Two very relevant examples of 
these fundamental devices are temporal differentiators and ODE solvers. Temporal differentiators can be used 
to perform real-time differentiation of an optical signal in the optical domain and have been applied to ultrafast 
signal generation and pulse characterizations29,30. ODE solvers play an irreplaceable role in virtually any field of 
science or engineering, such as automatic control and temperature diffusion processes31.

Meanwhile, active optical filtering is widely applied in wavelength multiplexed communication and switch-
ing systems since it combines the functions of optical amplifiers and channel filters. An active optical filter can 
be realized using a semiconductor laser with a bias current slightly below its lasing threshold. When a distrib-
uted feedback (DFB) semiconductor laser is driven below its lasing threshold, it behaves as a DFB semicon-
ductor optical amplifier (DFB-SOA)32. For signal processing, some approaches based on a DFB-SOA have been 
proposed in the past few years. An optical demultiplexer employing a DFB-SOA with a spectrum selectivity of 
9 GHz and an extinction ratio greater than 11 dB was reported33. Moreover, a single passband microwave pho-
tonic filter (MPF) based on a DFB-SOA was also demonstrated. By adjusting the driven current, a wide tunable 
center frequency varying from 11–41 GHz was achieved34. Very recently, an optical temporal integrator using 
a DFB-SOA was investigated by simulations. The influences of the system parameters on its energy transmit-
tance and integration error were analyzed35. However, those processors are usually designed to perform a spe-
cific function without reconfigurability, which represent a fundamental hurdle for the applications in practical 
signal-processing engines. To tackle this bottleneck, a programmable photonic signal processor chip for radio 

1Institute of Semiconductors, Chinese Academy of Sciences, No. 35, Tsinghua East Road, Beijing, 100083, China. 
2Microwave Photonics Research Laboratory, School of Information Technology and Engineering, University of 
Ottawa, 800 King Edward Avenue, ON K1N 6N5, Canada. 3Institut National de la Recherche Scientifique - Énergie, 
Matériaux et Télécommunications (INRS-EMT), Varennes, Québec, J3X 1S2 Canada. *These authors contributed 
equally to this work. Correspondence and requests for materials should be addressed to M. L. (email: ml@semi.
ac.cn) or N. Z. (email: nhzhu@semi.ac.cn)

Received: 30 October 2015

accepted: 18 December 2015

Published: 27 January 2016

OPEN

mailto:ml@semi.ac.cn
mailto:ml@semi.ac.cn
mailto:nhzhu@semi.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:19985 | DOI: 10.1038/srep19985

frequency (RF) application was proposed36. By using a grid of tunable Mach-Zehnder couplers interconnected in 
a two-dimensional mesh network topology, RF filtering with programmable characters can be achieved.

In this paper, we propose and experimentally demonstrate an analog optical signal processor based on a 
phase-shifted DFB-SOA, to perform two functions including ODE solving and temporal intensity differentiation. 
When the phase-shifted DFB-SOA is operating below lasing threshold, it could act as a first-order ODE solver 
with a tunable constant coefficient by tuning the injection current. While the phase-shifted DFB-SOA is oper-
ating above the threshold and is operating jointly with an optical filter, it could behave as a temporal intensity 
differentiator. The proposed signal processor is experimentally evaluated. The experimental results show that the 
output waveforms are in a good agreement with those from an ideal ODE solver and a temporal differentiator. 
In addition, the processing errors of our proposed optical signal processor are also analyzed. To the best of our 
knowledge, it is the first time that a signal processor that is reconfigurable to operate as a temporal intensity dif-
ferentiator and an ODE solver based on a phase-shifted DFB-SOA.

The schematic diagram of the phase-shifted DFB-SOA is shown in Fig. 1(a). As can be seen, two concatenated 
identical uniform Bragg gratings with a central π-phase-shift between them are built on top of the active layer of 
the DFB-SOA. Both the front and rear facets of the phase-shifted DFB-SOA are coated with anti-reflection (AR) 
films and thus the input optical signal can pass through the device. An external current is injected into the 
phase-shifted DFB-SOA to adjust the gain of the active layer. The corresponding physical image of the packaged 
phase-shifted DFB-SOA is shown in Fig. 1(b). A temperature control module is fabricated under the DFB-SOA to 
assure a stable operation of the device.

Photonic ODE solver
First, the proposed phase-shifted DFB-SOA based analog optical signal processor is configured as a photonic 
ODE solver, as shown in Fig. 2(a). The injection current is below the lasing threshold. An input optical signal with 
a central wavelength identical to the resonant wavelength of the phase-shifted DFB-SOA is launched into the 
DFB-SOA through the front facet and then outputted from the DFB-SOA through the rear facet. By adjusting the 
injection current, the constant coefficient of the ODE can be tuned.

Mathematically, a first-order linear ODE can be expressed as

( )
+ ( ) = ( ) ( )

dy t
dt

ky t x t 1

where ( )x t  is the input signal, ( )y t  is the output signal, and k is the constant coefficient. The transfer function of 
the first-order linear ODE can be numerically obtained by applying Fourier transform to Eq. (1),
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Figure 1. The phase-shifted DFB-SOA. (a) Schematic diagram and (b) the physical image of the packaged 
phase-shifted DFB-SOA.

Figure 2. Schematic diagram of the analog optical signal processor. (a) The proposed analog optical 
signal processor is configured as a photonic ODE solver. (b) The proposed analog optical signal processor is 
configured as a photonic temporal intensity differentiator.
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where = −j 1 and ω is the optical angular frequency. Therefore, an optical device with a transfer function given 
by Eq. (2) can be used to solve the first-order linear ODE. According to the transfer matrix method and the 
coupled-mode theory, the transfer function of a Bragg grating with a π phase-shift at the center of the grating is 
given by35

ω
κ γ γ γ σ γ γ

( ) = =
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where κ is the coupling coefficient, l is the length of the Bragg grating and γ κ σ= −2 2. σ denotes the complex 
detuning which is given by
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where neff  is the effective refractive index, c is the velocity of light in vacuum, Λ is the grating period, α is the line-
width enhancement factor of the active layer, = Γ ( / − )g aN I I 10 0  is the power gain coefficient in unsaturated 
condition, Γ is the confinement factor, a is the differential gain, N 0 is the carrier density at transmission, I  is the 
injection current of the phase-shifted DFB-SOA, I0 is the current required to reach transparency, and αint is the 
internal loss coefficient. When the angular frequency of the input optical signal is very close to the resonant fre-
quency ω0 of the phase-shifted DFB-SOA, the transfer function given by Eq. (3) can be rewritten as

ω
ω ω ω ω
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T T
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It can be seen from Eq. (5) that the transfer function of the phase-shifted DFB-SOA has an identical form as 
that in Eq. (2). Therefore, the phase-shifted DFB-SOA can be used to implement a photonic ODE solver. Since the 
constant coefficient ω ω= ( )/ ′ ( )′k T T22 0 22 0  is related to the power gain coefficient g  of the active layer, which is 
dependent on the injection current I , thus the proposed signal processor can solve a first-order linear ODE with 
a tunable constant coefficient by simply controlling the injection current.

Photonic temporal intensity differentiator
Then, the proposed phase-shifted DFB-SOA based analog optical signal processor is configured as a photonic 
temporal intensity differentiator, as shown in Fig. 2(b). The phase-shifted DFB-SOA is biased to operate at the 
lasing mode, and it is connected with an optical filter (OF). The fundamental principle to achieve temporal inten-
sity differentiation is to use the cross-phase modulation (XPM) in the phase-shifted DFB-SOA to generate a 
phase-modulated signal and then use the optical filter to perform frequency discrimination.

The phase changes of the lasing wavelength λL can be written as the sum of phase shifts introduced by carrier 
density modulation and carrier heating (CH) effects, given by37

φ φ φ α α ε( ) = ( ) + ( ) = − Γ + Γ ( ) ( )t t t g g P t1
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where αN , αCH  and εCH  are material-related constants. The frequency deviation ∆f  imparted on λL can be 
expressed as the first order temporal differentiation of the phase φ( )t

π
φ
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1
2 7

When an OF with a linear power transmission spectrum around λL is connected with the phase-shifted 
DFB-SOA, the frequency deviation of λL will be converted into intensity modulation at the output of the OF. 
Assuming that the transfer function of the OF is ( ) = ⋅ +H f A f B, the output optical intensity can be described 
as

( ) = ( + ∆ ) ⋅ ( )P t H f f P 8out L L

where f L and PL are the frequency and optical power at λL, respectively. When the cross-gain modulation (XGM) 
effect is weak, the parameters g  and PL can be considered constants. Accordingly, combining Eqs. (6), (7) and (8), 
the optical intensity at the output of the OF can be expressed as

( ) = ⋅ + ( )P t C dP
dt

C 9out
in

1 2

where α ε π= Γ /C A g P 4CH CH L1 , and = +C A f P BPL L L2 . It can be clearly seen from Eq. (9) that a first-order 
temporal derivative of the input optical signal ( )P tin  is obtained at the output of the OF. Therefore, the 
phase-shifted DFB-SOA cascaded with an OF can perform first-order temporal differentiation of the optical 
intensity of an input optical signal.

Results
Photonic ODE solver. We firstly test the operation of the proposed phase-shifted DFB-SOA-based analog 
optical signal processor reconfigured as a photonic ODE solver. The experimental setup is shown in Fig. 3. It 
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consists of a tunable laser source (TLS), a polarization controller (PC), a Mach-Zehnder modulator (MZM), 
an arbitrary waveform generator (AWG), a phase-shifted DFB-SOA, two erbium-doped optical fiber amplifiers 
(EDFAs), a photodetector (PD) and an oscilloscope (OSC). A continuous-wave (CW) light from the TLS with 
central wavelength tuned to match the resonant wavelength of the phase-shifted DFB-SOA is sent to the MZM via 
the PC. The polarization state of the light wave is adjusted by the PC to minimize the polarization-dependent loss. 
The CW light is then sent to the MZM which is driven by an electrical pulse from the AWG. At the output of the 
MZM, the modulated optical signal is directed to the phase-shifted DFB-SOA. A tunable DC source is employed 
to generate a tunable current to inject into the phase-shifted DFB-SOA. The EDFAs are utilized to amplify the 
optical signal to compensate for the insertion losses of the MZM and the phase-shifted DFB-SOA. The optical 
signal at the output of the phase-shifted DFB-SOA is detected at the PD and monitored by the OSC.

The measured transmission spectra with different injection currents are shown in Fig. 4. The threshold current 
of the phase-shifted DFB-SOA is about 23.1 mA with a Q-factor calculated to be about . ×1 02 105. The large 
insertion loss is mainly resulted from the coupling loss in packaging and propagation loss in active region. It can 
be seen that as the injection current increases, the transmission spectrum becomes narrow and sharp, resulting 
the increase of the Q-factor, and the resonant wavelength also shifts toward a shorter wavelength side. This is due 
to the refractive index change in the active layer due to carrier injection. When the injection current to the 
phase-shifted DFB-SOA is 22.6 mA, the 3-dB bandwidth is about 0.026 nm with a resonant wavelength of 
1544.646 nm. When the injection current is changed to be 23.1 mA, the 3-dB bandwidth becomes 0.015 nm with 
a resonant wavelength of 1544.628 nm. The change in the transmission spectra under various injection currents 
makes the first-order linear ODE solver to operate with a tunable constant coefficient. Moreover, the operating 
bandwidth of the ODE solver is determined by the frequency difference between the two minimum points of the 
transmission spectrum, which is measured to be around 95.75 GHz.

In our experiment, Gaussian pulse trains with a period of 5 ns are used as the input optical signal. The meas-
ured and fitted input waveforms are shown in Fig. 5. It can be seen that the full width at half maximum (FWHM) 
of the Gaussian pulse is measured to be 62 ps. When the injection current to the phase-shifted DFB-SOA is 
22.95 mA, we get the measured and fitted transmission spectra, which are shown in Fig. 6(a). It is worth noting 
that the corresponding constant coefficient k of 0.008/ps is calculated from the fitted transmission spectrum based 
on the ideal transfer function of the first-order linear ODE, i.e., Eq. (2). The calculated output waveform is 

Figure 3. Experimental setup for the photonic ODE solver. TLS: tunable laser source. PC: polarization 
controller. MZM: Mach-Zehnder modulator. AWG: arbitrary waveform generator. EDFA: erbium-doped optical 
fiber amplifier. PD: photodetector. OSC: oscilloscope.

Figure 4. Measured transmission spectra of the DFB-SOA with different injection currents. The injection 
current to the phase-shifted DFB-SOA ranges from 22.6–23.1 mA. The threshold current is measured to be 
23.1 mA.
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depicted in Fig. 6(d) for comparison with the measured output waveform. One can clearly see that a good agree-
ment between the calculated and the measured output waveforms is reached. When the injection current is 
changed to 23 and 23.05 mA, the transmission spectrums are shifted to a longer wavelength, as illustrated in 
Fig. 6(b,c). The corresponding constant coefficients are calculated to be 0.005/ps and 0.0035/ps, respectively. The 
calculated and measured output waveforms are also shown in Fig. 6(e,f), respectively. In addition, the measured 
output waveforms are broadened with the decreased constant coefficients, which are resulted from the increased 
gain coefficients due to the increased injection currents. For different values of the constant coefficient, it can be 
obviously seen that all the measured output waveforms fit well with the calculated results. Therefore, the capability 
to solve first-order linear ODE with tunable constant coefficient by using a single phase-shifted DFB-SOA is 
verified.

Photonic temporal intensity differentiator. We also test the operation of the proposed phase-shifted 
DFB-SOA-based analog optical signal processor reconfigured as a temporal intensity differentiator with the 
experimental setup, as shown in Fig. 7. An optical signal with a central wavelength of 1544 nm is sent into the 
temporal intensity differentiator. The phase-shifted DFB-SOA is driven by an injection current at 40 mA and thus 
is operating at the lasing mode. The lasing wavelength is measured to be 1544.6 nm, as shown in Fig. 8. An OF 
is cascaded with the phase-shifted DFB-SOA as a frequency discriminator to extract the chirp variation of the 
phase-modulated light wave from the phase-shifted DFB-SOA. As can be seen from Fig. 8, the wavelength offset 
between the center of the OF and phase-shifted DFB-SOA is about 0.16 nm, showing that the lasing wavelength 
of the phase-shifted DFB-SOA is located at the positive slope of the spectrum of the OF. Finally, the differentiated 
optical signal is detected at the PD and monitored by the OSC.

Figure 9 shows the measured pulses at the output of the proposed temporal intensity differentiator for differ-
ent input signals. When a Gaussian-like pulse with a FWHM of 125 ps is launched into the temporal intensity 
differentiator, as shown in Fig. 9(a), a monocycle-like pulse is obtained at the output. For comparison, an ideal 
output pulse (derivative of the input pulse by simulation) is also depicted in Fig. 9(a). It can be seen that a good 
agreement between the experimentally generated pulse and the ideal output pulse is reached. The root mean 
square error (RMSE) is calculated, which is about 16.4%. The other experimentally generated pulses for different 
input signals are shown in Fig. 9(b–d). The RMSEs are calculated to be 14.2%, 5.4% and 10.92%, respectively. Note 
that the output pulses are the temporal derivation of the optical intensity of the input pulses, not the optical field, 
thus the proposed phase-shifted DFB-SOA-based analog optical signal processor can be configured to operate as 
a first-order temporal intensity differentiator.

Discussion
The operation bandwidth of the proposed analog optical signal processor based on a phase-shifted DFB-SOA 
is evaluated. It is done by calculating the processing errors as a function of the full-width bandwidth of the 
input optical pulses. When the processor is configured as a first-order ODE solver under an injection current of 
23.05 mA, the RMSEs are calculated, which are shown in Fig. 10(a). Note that in the calculations, we assume an 
ideal Gaussian input pulse and the RMSEs are calculated as the difference between the temporal intensities of 
the simulated output pulse based on the measured spectrum transfer functions and the ideal output waveform. 
As can be seen, the photonic ODE solver can provide optimal operations with minimum error of 1.74% with 
a full-width bandwidth of 7.04 GHz. The processing error is mainly resulted form the spontaneous emission 
of the phase-shifted DFB-SOA. The photonic ODE solver can work beyond the optimal processing bandwidth 
at the cost of an increased RMSE. When the processor is configured as a temporal intensity differentiator, the 
calculated RMSEs are depicted in Fig. 10(b). One can see that, the minimum operation error is calculated to 
be 5.42% with a full-width bandwidth of 20 GHz. The errors are mainly caused by the cross-gain modulation 
(XGM) effect38 and the nonlinear slope of the OF. By operating the phase-shifted DFB-SOA in small XGM region 
and employing an OF with linear power transmission spectrum, the processing error of the temporal intensity 
differentiator can be largely reduced. In order to assure operation stability of the proposed processor, the stable 

Figure 5. Input waveforms for the photonic ODE solver. A Gaussian pulse with a FWHM of 62 ps is used as 
the input optical signal for the photonic ODE solver. Blue dotted line: fitted input waveform. Green solid line: 
measured input waveform.
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current control unit and temperature control unit are needed. It is worth noting that, since the proposed photonic 
first-order ODE solver based on a phase-shifted DFB-SOA is a linear device, a high-order ODE solver with tun-
able constant coefficient can be achieved by simply cascading multiple phase-shifted DFB-SOAs. In addition, if 
the phase-shifted DFB-SOA is driven very close to the lasing threshold current, it can act as an optical temporal 
integrator. Moreover, besides the intrinsic interest in future ultrafast optical computing and information process-
ing systems, the proposed photonic temporal intensity differentiator also has the potential for wireless application 

Figure 6. Experimental results for the photonic ODE solver. The transmission spectra of the phase-shifted 
DFB-SOA with different injection currents of (a) 22.95 mA, (b) 23 mA, and (c) 23.05 mA. Blue dotted line: 
fitted transmission spectrum. Green solid line: measured transmission spectrum. The corresponding output 
waveforms for the injection currents of (d) 22.95 mA, (e) 23 mA, and (f) 23.05 mA. Blue dotted line: calculated 
output waveforms. Green solid line: measured output waveforms.

Figure 7. Experimental setup for the photonic temporal intensity differentiator. TLS: tunable laser source. 
PC: polarization controller. MZM: Mach-Zehnder modulator. AWG: arbitrary waveform generator. OF: optical 
filter. EDFA: erbium-doped optical fiber amplifier. PD: photodetector. OSC: oscilloscope.

Figure 8. Spectra of the phase-shifted DFB-SOA and the OF. Blue line: Measured spectrum of the phase-
shifted DFB-SOA with injection current of 40 mA. Red line: measured transmission spectrum of the OF.
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in microwave photonic processing for the generation of ultrawideband (UWB) pulses such as UWB monocycle 
and doublet pulses39.

In summary, we have proposed and experimentally demonstrated an analog optical signal processor based 
on a phase-shifted DFB-SOA, to perform functions of ODE solving and temporal intensity differentiation. A 
first-order ODE solver with tunable constant coefficients was achieved. By tuning the injection current to the 
phase-shifted DFB-SOA, the constant coefficient of the first-order ODE is tuned from 0.0035/ps–0.008/ps. A 
temporal intensity differentiator was also realized by cascading an OF with the phase-shifted DFB-SOA that is 
operating in the lasing mode. A good agreement between the experimental results and the calculated output 
waveforms was obtained. In addition, the processing error as a function of bandwidth of the input optical signal 
was also analyzed. Furthermore, thanks to the capacity of integration with other optical components on InP/
InGaAsP platform, the proposed optical signal processor has a high potential to provide simple and effective 
solutions for all-optical signal processing and computing.

Methods
Input waveform. We used a TLS (Agilent 8164B) with linewidth less than 100 kHz as the light source. The 
tuning resolution of the TLS is 0.01 nm, which enables us to precisely align the signal wavelength to the resonant 
wavelength of the phase-shifted DFB-SOA. The CW light is then sent to the MZM which is driven by an electrical 
pulse from the AWG (Tektronix 70001A) with sampling rate of 50 GS/s. The DC bias of the MZM is adjusted to 
below the quadrature point and the amplitude of electrical signal is less than the half-wave voltage of the MZM 
which is measured to be 6 V. In this way, an arbitrary optical signal can be generated at the output of the MZM by 
programming the AWG.

Figure 9. Experimental results for the temporal intensity differentiator. (a–d) are output waveforms for 
different input optical signals. Green solid line: input waveforms. Blue dotted line: ideal output waveforms. Red 
solid line: measured output waveforms.

Figure 10. Device processing error. (a) Calculated RMSEs for the photonic ODE solver with different 
bandwidth of the input signals. (b) Calculated RMSEs for the photonic temporal intensity differentiator with 
different bandwidth of the input signals.
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