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Abstract—A photonic-assisted fractional Hilbert transformer
with tunable fractional order implemented based on temporal
pulse shaping (TPS) is proposed and experimentally demon-
strated. The proposed fractional Hilbert transformer consists
of a phase modulator and two dispersive elements with comple-
mentary dispersion. The fractional Hilbert transform (FHT) is
realized if a step function is applied to the phase modulator to
introduce a phase jump. The proposed technique is investigated
numerically and experimentally. The results show that a real-time
FHT is achieved with a tunable fractional order by tuning the step
function applied to the phase modulator.

Index Terms—Fractional Hilbert transform (FHT), Fourier
transform, temporal pulse shaping (TPS) system.

I. INTRODUCTION

EMPORAL pulse shaping (TPS) has been widely inves-

tigated in the past few years due to its important appli-
cations in areas such as frequency analysis [1] and arbitrary
waveform generation (AWG) [2]-[5]. The concept of TPS was
originally proposed by Heritage and Weiner [6]. In [1], a TPS
system was employed for the analysis of the spectrum of a mi-
crowave signal. Since the output in the TPS system is in the time
domain, a fast measurement of the spectrum could be imple-
mented using a real-time oscilloscope. The most important ap-
plication of the TPS technique is to achieve AWG [2]-[5]. Since
the output waveform is determined by the modulation signal,
the output waveform to be generated can be programmed in real
time [2], [3]. In addition, the use of a TPS system incorporating
a phase modulator can generate a pulse burst with tunable repe-
tition rate [4]. Recently, we demonstrated that the use of a TPS
system can generate a high-frequency and frequency-chirped
microwave waveform [5].

Due to the wide applications in modern communications and
image processing, the Hilbert transform (HT) is one of the most
useful signal processing functions [7]. The HT can be imple-
mented in the electrical domain using digital electronics. How-
ever, dueto the limited sampling rate of the state-of-the-art digital
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electronics, the speed of an electronic Hilbert transformer is low.
Thanks to the high frequency and large bandwidth provided by
modern optics, the implementation of the HT in the optical do-
main would provide a solution for the processing of a high-fre-
quency and broadband microwave signal. The HT can be imple-
mented in the optical domain based on a phase-shifted fiber Bragg
grating (PS-FBG) [8], with abandwidth as large as a few hundred
of gigahertz. Recently, we proposed to implement fractional HT
(FHT) based on a directly designed FBG using the discrete layer
peeling (DLP) method[9]. Sincethe order of the FHT canbean ar-
bitrary number, it provides large flexibility in signal processing.
The significance of using an FBG designed based on the DLP
method [9] is that the strength of the FBG is high, which would
lead to a significantly increased signal-to-noise ratio (SNR) at
the output of the Hilbert transformer [9]. The major limitation of
the HT using an FBG is the poor programmability. In addition,
the nonflat magnitude response of the FBG will also impact the
performance of the HT.

In this letter, we propose and experimentally demonstrate a
fractional Hilbert transformer with a tunable fractional order. The
technique is achieved by using a TPS system consisting of a phase
modulator (PM) and two dispersive elements (DEs) with com-
plementary dispersion. The FHT is realized if a step function is
applied to the PM to introduce a phase jump to the spectrum of
the microwave signal to be Hilbert transformed. The proposed
technique is investigated numerically and experimentally. The
results show that a real-time FHT can be achieved with a tunable
fractional order by tuning the step function applied to the PM.

II. PRINCIPLE

In order to bring in new degrees of freedom in signal anal-
ysis, the standard HT was generalized by defining a new transfer
function [10]

elw
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where ¢ = P X /2 and P is the fractional order. The new
transform is called FHT. Obviously, the standard HT is a special
case of the FHT when the fractional order equals to 1.

The FHT can be implemented with a tunable fractional
order using a system shown in Fig. 1. A microwave pulse to
be processed is firstly modulated on an optical carrier at a
Mach—Zehnder modulator (MZM). Since the MZM is biased at
the minimum transmission point, the envelope of the modulated
signal z(t) is proportional to the waveform of the microwave
signal m(¢). Then the modulated optical signal is sent to
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Fig. 1. Schematic of the TPS-based FHT system. TLS: Tunable laser source.

IM: Intensity modulator. MPG: Microwave pulse generator. SMF: Single-mode
fiber. PM: Phase modulator. PG: Pattern generator. DCF: Dispersion-compen-
sating fiber. PD: Photodetector.

a TPS-based fractional Hilbert transformer. The fractional
Hilbert transformer consists of a phase modulator and two
dispersive elements with complementary dispersion, which are
a single-mode fiber (SMF) and a dispersion-compensating fiber
(DCF). A step function is applied to the phase modulator to
introduce a phase jump.

Mathematically, the impulse responses of the two dispersive
fibers are given by h_4(t) = exp(Fjnt?/®), where @ is the
group velocity dispersion (GVD).

Let x(¢) and b(%) be the complex envelopes of the signal at
the input and the output of the SMF, respectively. Then

b(t) = (t) = h g (1)
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If the time duration of z:(t) is sufficiently small or the GVD is
sufficiently large to satisfy |At2/ (I)| <& 1, where At is the time
duration of the input pulse. Equation (2) can be approximated
by

N t2
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b(t) ~ exp < % :

where X (w) is the Fourier transform (FT) of z(t).
—Va, t<O0
Vo, t>07
constant voltage, is applied to the PM, the modulated signal at
the output of the PM is given by

r(t) = b(t) - exp (Jﬂ%t)>

If a step function a(t) = where V, is a

jt? .
=exp |~ {(X{w)expljo(w)]om2ze (4)
where V. is the half-was voltage of the PM and
) ‘ m(Vo/Ve), w>0
Plw)lomzpe = { T(Va/Ve),  w<0 )

is the phase jump. The modulated signal is then sent to the
second dispersive element. At the output of the fractional
Hilbert transformer we have

y(t) = r(t) « h_4(t)
= dexp <%) I HX (w) .exp[jap(w)]}|w:72%f
(©)

where 3! denotes the operation of the inverse FT.
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Fig. 2. Numerical results for ideal FHT and TPS-based FHT. (a) Ideal FHT
with a fractional order of 0.5. The TPS-based FHT with a fractional order of 0.5
and a rise time of (b) 20 ps, (c) 80 ps, (d) 200 ps, and (e) 800 ps. (f) Ideal FHT
with a fractional order of 1. The TPS-based FHT with a fractional order of 1
and a rise time of (g) 20 ps, (h) 80 ps, (i) 200 ps, and (j) 800 ps.

Again, if |A#?/®| < 1, (6) can be approximated as

y(t) ~ &3 X (w) ~explip(w)]}Hoz - 2p
= o3 {X(w) - Heam(w)}o=— 2z (7

As can be seen the output waveform is a Hilbert transformed
version of the input waveform. By simply tuning the amplitude
of the step function applied to the PM, we can easily adjust the
fractional order of the fractional Hilbert transformer.

If the 3-dB bandwidth of the input signal x(¢) is Aw, then
the temporal width of the pulse b(#) at the output of the SMF is
Aw - ® /27 [11]. Practically, the step function a(t) generated by
a pattern generator does not have an ideal jump at¢ = 0, and
a nonzero rise time must be considered. To make the impact
negligible, the rise time of the step function compared with the
temporal width of the stretched pulse () should be sufficiently
small, 7, € Aw - P /27, where 7, is the rise time of the step
function. For example, if a dispersive medium with a value of
GVD of 10000 ps? is used and the rise time of the step function
is 20 ps, the bandwidth of the pulse to be transformed should be
at least 20 GHz with 10 considered as a factor for being large
enough. In other words, a transform-limited Gaussian-like pulse
with temporal width up to 22 ps can be accurately Hilbert trans-
formed when the rise time is 20 ps. Considering that 20 ps is
the shortest rise time that an electronic device can provide, if
we want to extend the time duration of the pulse under pro-
cessing, we may need to increase the GVD of the DEs to keep
|At?/®| < 1 valid. In such a case, longer SMF and DCF are
needed. However, if the SMF and DCF are too long, other ef-
fects such as the third order dispersion (TOD) must be taken into
consideration.

To further investigate the impact of the rise time on the perfor-
mance of the proposed system, a simulation is performed. In the
simulation, a 550-fs Gaussian pulse is applied to the fractional
Hilbert transformer, with the rise time increased from 20 ps,
the shortest rise time of an electronic device can reach as far
as we know, to 800 ps, and the output waveforms are shown
in Fig. 2. It can be seen the output waveforms become more
distorted compared with the ideal waveforms with the increase
of the rise time. To quantitatively evaluate the errors due to the
nonzero rise time, we calculate the normalized root mean square
errors (NRMSEs). For P = 0.5, the NRMSE is smaller than 2%
for the rise times from 20 to 800 ps. For P = 1, the NRMSE is
within 12%.
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Fig. 3. Experimental results for the fractional orders of (a) 0.41, (b) 0.52, and
(c) 0.71. The experimental results are compared with the simulation results in
(d), (e), and (f). A zoom-in view of the central portion is given as an inset.

In the above analysis, only the GVD is considered. The im-
pact of higher-order dispersion, mainly the TOD, is also eval-
uated. Based on our calculations, if the GVD and the TOD are
both matched, the NRMSE due to the TOD is within 1%. When
there is a mismatch in TOD, then the NRMSE will increase.
For example, for a mismatch of 5% in TOD, the total NRMSE
is within 13% for P = 1.

III. EXPERIMENT

A proof-of-concept experiment is then carried out based on
the setup shown in Fig. 1. Since a microwave pulse with a 3-dB
bandwidth greater than 12.5 GHz is hard to generate, in the ex-
periment an optical pulse from a mode-locked laser (MLL) is
directly employed and is applied as an input to the fractional
Hilbert transformer. The 3-dB temporal width of the pulse from
the MLL is 550 fs. A 36.91-km SMF (SMF1) with a value of
dispersion of —4872 ps? is employed to stretch the pulse from
the MLL, and the stretched pulse is sent to a PM. The PM has a
half-wave voltage of 10.9 V and the 3-dB temporal pulse width
of'the stretched pulse is 4.9 ns. A DCF with a value of dispersion
of 4872 ps? is connected after the PM. A step function gener-
ated by an arbitrary waveform generator (Tektronix AWG7102)
and amplified by a microwave amplifier is applied to the PM via
the RF port. A Hilbert transformed pulse is thus obtained at the
output of the DCF.

Since the pulse at the output of the DCF has a temporal width
of only several picoseconds, which is too fast to be detected
by a photodetector (PD). To monitor the output pulse, another
6.74-km SMF (SMF2) with a value of dispersion of —890 ps?
is used to stretch the output pulse, to make it wide enough to
be detected by the PD. In addition, the transformed pulse would
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also be distorted during the stretching process. The distortion is
also considered in the simulation shown in Fig. 3.

The experimental results for the FHT with different fractional
orders 0f 0.41, 0.52 and 0.71 are shown in Fig. 3. Simulation re-
sults by taking into consideration of the additional 6.74-km SMF
are also shown as a comparison. The experimental results agree
well with the results by the simulations. Note that a 20-GHz
electrooptic PM with an ultralow half-wave voltage of 3 V at
1 GHz is commercially available. If such a PM is employed, a
FHT with a fractional order from 0 to 2 can be easily achieved.

The rise time of the step functions for the three different frac-
tional orders is 63.3 ps, which is small and has negligible impact
on the FHT. The NRMSE:s of the three experimentally obtained
pulses in Fig. 3(a), (b) and (c) are 4.24%, 3.98% and 3.87%, re-
spectively.

IV. CONCLUSION

The implementation of a photonic-assisted microwave pulse
fractional Hilbert transformer with tunable fractional order
based on TPS was proposed and experimentally demonstrated.
The FHT was realized by introducing a phase jump to the spec-
trum of the input pulse via phase modulation and the tunability
of the fractional order was achieved by changing the amplitude
of the step function applied to the PM. The key advantage of
this technique is its flexibility in changing the fractional order,
which may find applications where a Hilbert transform with a
tunable order is needed.
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