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Abstract—Brillouin-based optical fiber sensing has gained con-
siderable attention for the past few years thanks to its ability to
offer distributed sensing. The major limitation of a Brillouin-based
optical fiber sensor is its complexity because a time-consuming
frequency-sweeping process is needed to obtain a local Brillouin
gain spectrum (BGS) and to calculate the local Brillouin frequency
shift (BFS). Thus, it is only suitable for static or slow-varying mea-
surements. In this article, we propose an approach to achieve truly
distributed and ultra-fast fiber-optic sensing based on an active
and distributed bandpass microwave photonic filter (MPF) through
stimulated Brillouin scattering (SBS). To obtain a truly distributed
BFS, a counter-propagating single-shot pump pulse is launched
into the fiber link and a microwave multi-tone (MMT) signal with
a random initial phase distribution which is phase modulated on
an optical carrier is launched into the fiber link from the other
end. Due to the SBS effect, the —1st order sideband of the phase-
modulated signal will experience Brillouin amplification while the
—+1st order sideband will experience Brillouin attenuation, and
the phase-modulated signal is converted to an intensity-modulated
signal. The entire operation is equivalent to a bandpass MPF. By
detecting the optical signal at a photodetector (PD), a regenerated
MMT signal with its magnitude and phase that are shaped by the
MPF is obtained. By evaluating the regenerated MMT signal, the
Brillouin information corresponding to the temperature or strain
change at a specific location is revealed. The major advantage of
the approach is that time-consuming frequency-sweeping process
is avoided. Truly distributed strain, temperature, and vibration
sensing with a 2 m spatial resolution over 49.5 m distance at a
speed up to 83.3 kHz is experimentally demonstrated.

Index Terms—Microwave photonics, microwave filters, optical
fiber sensors, temperature sensors.

Manuscript received September 18, 2019; revised December 19, 2019 and
February 29, 2020; accepted March 16, 2020. Date of publication March 19,
2020; date of current version July 23, 2020. This work was supported by the
Natural Sciences and Engineering Research Council of Canada. The work of
D. Zhou was supported by the China Scholarship Council under a scholarship.
(Corresponding author: Jianping Yao.)

Dengwang Zhou is with the Microwave Photonics Research Laboratory,
School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, ON KIN6NS5, Canada, and also with the National Key Laboratory of
Science and Technology on Tunable Laser, Harbin Institute of Technology,
Harbin 150001, China (e-mail: dzhou059 @uottawa.ca).

Yongkang Dong is with the National Key Laboratory of Science and Technol-
ogy on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
(e-mail: aldendong @ gmail.com).

Jianping Yao is with the Microwave Photonics Research Laboratory School
of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
ON KI1N 6NS5, Canada (e-mail: jpyao@uottawa.ca).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2020.2982063

, Member, IEEE, Member, OSA,

I. INTRODUCTION

IBER-OPTIC sensors have widely been researched in the

last few decades which can find numerous applications
such as health monitoring of civil infrastructure, geological
hazards prevention and perimeter security protection [1]—[4].
In a distributed fiber-optic sensor, an optical fiber usually plays
two roles: as a light transmission medium and as a distributed
sensing element. Stimulated Brillouin scattering (SBS) [5], a
prominent nonlinear-optical effect, is usually considered as a
superior mechanism employed for optical fiber sensing because
it can provide high accuracy and long-distance sensing [6], [7].
Generally, Brillouin-based optical fiber sensing is realized by
using two counter-propagating optical waves, one as a pump
and the other as a probe. When the frequency offset of the two
optical waves is close to the Brillouin frequency shift (BFS)
vp ~ 11 GHz [8], the energy of the high-frequency pump will
be transferred to the low-frequency probe leading to effective
narrowband amplification. Since the BFS corresponding to the
central frequency of the Brillouin gain (or loss) spectrum (BGS
or BLS) is temperature or strain sensitive, by monitoring the
BFS change, the temperature or strain can be measured. The
major limitation of the approach is that a time-consuming
frequency-sweeping process is required to obtain the BGS or
BLS. To quickly measure the distributed BGS or BLS, several
Brillouin-based approaches have been proposed in which the
measurements are done based on the SBS interaction in the
optical correlation domain [9]-[12] and the optical time domain
[13]-[20].

For the optical correlation-domain approach, two frequency
or phase periodically modulated optical waves are counter-
propagating from the two ends of a sensing fiber, which is
referred to as an analysis scheme. A series of discrete correlation
peaks are generated at the locations where the SBS occurs, and
the locations of these peaks can be swept by controlling the
time delay difference or the modulation frequency between two
frequency-modulated optical waves for truly distributed sensing
[9]. By sweeping the center frequency difference between the
two frequency-modulated optical waves, the corresponding BGS
can be obtained. An analysis scheme was implemented to detect
a 200-Hz point vibration with a spatial resolution of 10 cm and
a sampling rate of 1 kHz [10]. Dynamic strain measurements at
arbitrary five points were obtained simultaneously at a sampling
rate of 5,000 Hz with random accessibility by using a voltage-
controlled oscillator to sweep the BGS and a higher-speed
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lock-in amplifier to acquire the data [11]. Then, a truly dis-
tributed vibration measurement along a 100-m optical fiber was
realized with a sampling rate of 20 Hz via differential frequency-
modulating pump wave and probe wave to repeatedly sweep
the peak location [12]. However, for these schemes, the truly
distributed dynamic measurements were realized by both the
frequency-sweeping and the position scanning process, which
is again time-consuming and severely limits the sensing speed.

For the optical time-domain approach, Brillouin optical time-
domain analysis (BOTDA) is widely reported. Typically, a dis-
tributed Brillouin signal can be obtained with a pulsed-pump
and a counter-propagated continuous single-tone probe wave,
and the position information can be easily identified through the
round-trip time of the pump pulse which can avoid the position
scanning process. Then, the distributed BGS can be achieved by
sweeping the frequency difference between the pump pulse and
the probe wave. To increase the sampling rate, techniques such
as optical frequency-agile (OFA) technique [13], slope-assisted
(SA) method [14], [15], orthogonal frequency-division multi-
plexing (OFDM) modulation [16], [17], [21] as well as digital
optical frequency comb (DOFC) modulation [18], [19], and
optical chirp chain (OCC) modulation [20] have been proposed
and demonstrated. In the OFA technique, a combination of a
500 MHz arbitrary waveform generator (AWG) and a microwave
vector signal generator was employed to generate an electrical
frequency-agile signal resulting in fast switching of the optical
frequency [13]. A distributed measurement of vibration with
a frequency of 100 Hz along a 100-m fiber was achieved at a
10-kHz sampling rate, which was reported in reference [13].
However, the maximum sampling rate of this technique is still
limited by the frequency-sweeping process. In the SA technique
[14], the distributed BFS can be directly demodulated via the
intensity of the Brillouin signal by setting the frequency of the
probe wave at the middle of the slope of the BGS, which does not
need the frequency-sweeping process. Without averaging, the
maximum sampling rate of this technique is basically limited by
the round-trip time of pump pulse with respect to the length of the
sensing fiber, but the dynamic range is close to the linewidth of
the BGS about 35 MHz (~700 p<) [14]. To extend the dynamic
range, an improved SA-BOTDA was implemented via the OFA
technique to generate the frequency-agile probe segments cor-
responding to multiple slopes, which can increase the dynamic
range up to 241 MHz (~5000 pe) but sacrifice the sampling rate
as it is inversely proportional to the number of the slopes in this
approach [15]. In the OFDM method, an OFDM signal was used
to generate a dual-polarization probe wave so that the polariza-
tion fading in a single-mode fiber can be eliminated leading to
a long-distance measurement without the need for averaging.
Then, a BGS can be obtained by just launching a single-shot
pump pulse into the sensing fiber to interact with a complete
broadband OFDM symbol, and the symbol period is inversely
proportional to the subcarrier frequency spacing so as to recover
the OFDM information symbol without intercarrier interference
(ICD) [16], [21]. Furthermore, the BGS distribution can be ob-
tained for a broadband OFDM probe wave that contains a large
number of OFDM symbols in series. Although the maximum
sampling rate of this technique is only limited by the fiber length,
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the spatial resolution is limited by the symbol period of the
OFDM symbol, corresponding to tens of meters [16], [17] which
is too wide to meet the requirement for practical applications. In
the OCC method, an electrical broadband frequency-agile signal
whose duration is compressed to 20 ns was used to modulate
the probe wave into a short optical chirp segment in which a
BGS can be revealed by also counter-propagating a single-shot
pump pulse. Then, the BGS distribution can be realized for an
optical chirp chain probe wave that cascaded by several short
optical chirp segments by a head-to-tail cohesion. A sampling
rate up to MHz and a spatial resolution of 2 m had been exper-
imentally demonstrated [20]. However, the BGS distribution in
both the OFDM-based technique and the OCC-based technique
are arranged symbol-by-symbol (or segment by segment), only
quasi-distribution measurement is possible and the Brillouin in-
formation between two symbols cannot be demodulated. To sum
up, the state-of-the-art approaches mentioned above have some
trade-offs for truly distributed sensing, including measurement
speed, dynamic range, and spatial resolution.

In this paper, we propose a novel microwave photonic fiber-
optic sensor based on a distributed bandpass microwave photonic
filter (MPF [22]-[24]) to achieve truly distributed and ultra-fast
measurements with a wide dynamic range and a high spatial
resolution. A continuous-wave probe wave in the sensing fiber
is phase-modulated by a microwave multi-tone (MMT) signal
to generate an optical carrier and +1st order sidebands. For a
phase modulated signal if detected directly by a photodetector
(PD), since the beating between the optical carrier and the
+Ist order sideband and the beating between the optical carrier
and the —1st order sideband have a 7 phase difference, the
two beat signals will fully cancel, and no microwave signal is
detected. Due to the SBS effect, however, the —1st order side-
band of the phase-modulated signal will experience Brillouin
amplification while the +1st order sideband will experience
Brillouin attenuation, the phase-modulated signal is converted
to an intensity-modulated signal [25]. The entire operation is
equivalent to a bandpass MPF. By detecting the optical signal
at a PD, a regenerated MMT signal with its magnitude and
phase that are shaped by the MPF is obtained. By evaluating
the MMT signal, the Brillouin information corresponding to the
temperature or strain change along the sensing fiber is revealed.
Without averaging, the sampling rate of the proposed sensor
is only limited by the round-trip time of the pump pulse with
respect to the length of the sensing fiber, and the dynamic range
can be easily tuned by changing the bandwidth of the MMT
signal. To test the performance of the proposed sensor, an experi-
ment for static temperature, strain, and vibration measurement is
performed. The results show that high spatial resolution sensing
of 2 m over 49.5 m distance at a maximum sampling rate of
83.3 kHz is achieved.

II. PRINCIPLE
A. Operation Principle

The proposed sensor is implemented based on an active and
distributed bandpass MPF. As shown in Fig. 1(a), both a pulsed-
pump and a continuous probe wave are counter-propagated
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Fig. 1. Operation principle of the proposed sensor. (a) The time relationship

between the pump pulse and the continuous probe wave; (b) The frequency
relationship between the pump pulse and the phase-modulated probe wave.
BGS: Brillouin gain spectrum; BLS: Brillouin loss spectrum; PMF: polarization
maintaining fiber.

into a Panda type polarization-maintaining fiber (PMF) used
as the sensing fiber to avoid the polarization-dependent fad-
ing. The two waves can interact with each other through an
acoustic wave due to the SBS effect when their frequency
difference is close to the BFS of the PMF. Unlike a conventional
BOTDA system with a single-tone probe wave and the OFDM
technique using discrete symbols, a continuous and broadband
MMT signal with multiple tones is used. The MMT signal
is modulated on the probe wave by phase modulation with a
small modulation index, to generate an optical carrier and +1st
order sidebands. By detecting the phase-modulated probe wave
without the pump pulse, no microwave is recovered due to the
cancellation of the two-beat signals. As shown in Fig. 1(b),
with a pump pulse that has a frequency equal to that of the
optical carrier, the upper sideband of the phase-modulated probe
wave is attenuated and the lower sideband is amplified, so that
phase-modulation to intensity-modulation conversion for the
probe wave is realized. As a result, a regenerated MMT signal
containing the local environmental information is obtained by
detecting the probe wave. The entire operation is equivalent to
an active and distributed bandpass MPF whose local passband
is dependent on the local BGS and the power spectrum of the
transmitting pump pulse. By making a time-frequency analysis
of the regenerated MMT signal, the distribution of the BGS
and its BFS can be demodulated. The maximum sampling rate
of the proposed sensor is only limited by the repetition rate of
the single-shot pump pulse corresponding to the length of the
PMF.
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An MMT signal with a random initial phase distribution is
generated by an AWG. Random initial phase distribution is
needed to lower the peak to average power ratio (PAPR) and
a more random time-frequency relation. Mathematically, the
MMT signal is given

N
YMMT (t) = Z V() sin (27Tfit + (Pi)
=1

(1a)

; = random {0, 27} (1b)

where f; = fo + (i — 1)Af is the frequency of the i*" tone and
Af is the frequency interval between two adjacent tones, ¢; is
the initial phase of the it" tone, Vi and N are amplitude and
tone number of the MMT signal, respectively. Then, the MMT
signal is applied to a phase modulator (PM) to phase-modulate
the continuous probe wave. The phase-modulated probe wave is
given by

N
Epn(t) = Ep exp | j27vot + Zj’y sin(27 fit 4+ ;)
i=1
N

= By exp (j2mv,t) H exp [y sin(27 fit + ©;)]
i=1

N 00
= FEy exp (j2’/TVCt) H Z Im (7)

1=1m=-—o00
(2)

where Ej and v, are the amplitude of the electric field and the
frequency of the optical carrier, respectively; j = v/—1; J,, (7)
is the m™ order Bessel function of the first kind, v = 7V /V;
is the modulation index, and Vis the half-wave voltage of the
PM.

For a small modulation index, the 2nd order sideband and
the higher-order sidebands are small and can be ignored. As the
modulation index increases, the 2nd order and the higher-order
sidebands will be excited, resulting in a severe RF noise, which
can be eliminated by a digital passband filter. Therefore, we
just consider an optical carrier and +-1st order sidebands (i.e.,
m = 0, £1). Then, Eq. (2) is simplified as

X exp [jm (27 fit + ¢i)]

Epn(t) = EOJéV (7) exp (j27vet)

N
— EoJy (7)Y exp [j2m (ve — fit) — jipi]
i=1

N
+ EoJi (7)Y exp[j2m (ve + fit) + il ()

=1

Since the beat signals generated by the optical carrier and
the +1st sidebands are equal in magnitude but out of phase,
no microwave signal is detected at a PD. When both the pump
pulse and the phase-modulated probe wave are launched into the
PMEF, the phase cancellation condition is no longer maintained
due to the Brillouin amplification for the —1st order sideband
and the Brillouin attenuation for the +1st order sideband. Then,
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the output is given by

E'pym(t) = EOJéV (7) exp (j27v,t)

N
— EoJi () ZHBGS (fi, 2) exp [27 (ve — fit) — jpi
1=1
N
+ EoJy (7)Y Has (fi2) exp [27 (ve + fit) + jpi]

i=1
“)

where the Hpgs(fi, z) and Hprs(f;, z) are the complex BGS
and the complex BLS at position z, respectively, which are given

+goAvp } (5)
Avp +2j [fi — vB (2)]

where + and — correspond to the complex BGS and BLS,
respectively; go is the peak gain, vp(z) is the local BFS of the
PMEF, and Avgp is the linewidth of the BGS. Then, (5) can be
approximated by [26]

Hpcs-Bus (fi,2) = (1 £ Gsps (fi, 2)) exp (£jesss (fis 2))
(6)

where Ggsps(fi,2) and ¢gps(fi,z) are the BGS and the
Brillouin phase-shift spectrum (BPS), respectively, which are
given by

Hpas-BLs (fi; 2) = exp {

gOAV2B
i = !
Gsgs (fi; 2) AV 4+ 4lfi —vp (2)) "
esps (fi,2) = — 290Avp [fi —vB (2)] (7b)

Avg +4(fi —vp (2))?

When the phase-modulated optical probe wave is received
at a high-speed PD, an MMT signal is regenerated, which is
given by

N
yr (t) < Rp Z Gsgs (fi, z) cos (2 fit + ;i — psps) (8)

i=1

where Ry is the responsivity of the PD.

B. Transfer Function of the Active Bandpass MPF

As the pump pulse is propagating over the sensing fiber, the
transfer function of the MPF at position z can be expressed as

|H (f’H Z)| X GSBS (fzv Z) * PPump_pulse (f’L) (9)

where Ppump_puise(fi, 2)is the power spectrum of the pump
pulse, and * is the convolution operator.

C. Demodulation Process

Different from the OFDM technique which needs a complex
demodulation process such as synchronization, fast Fourier
transform (FFT), and channel estimation [16], the time-
frequency analysis of the regenerated MMT in our proposed
sensor will be calculated simply by a short-time Fourier
transform (STFT). Finally, a reconstructed BGS is obtained,
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given by
G/SBS (fza Z) = GSBS (fia Z) * PPumpfpulse (fz) * Pwindow (fz)
(10)

where Pindow(fi)is the spectrum of a time window for the
STFT.

The center frequency of the reconstructed BGS corresponding
to the BFS of the local PMF is a function of the strain and
temperature [1],

vp (2) =vpo (2) + C-Ae (2) + CTAT (2) (11)

where vpo(z), Ae(z)and AT'(z)are the initial BFS, the strain
change and the temperature change at position z, respectively.
C. and C'p are the strain and temperature coefficients of the
sensing fiber, respectively.

The measurement speed of the proposed sensor is given by

1

fframe - (12)

Troundftrip Naverge

where T\ ound_trip 15 the round-trip flight time over the sens-
ing fiber for the pump pulse, which is given by Tiound trip =
2nerpL /¢, negt s the effective refractive index of the sensing
fiber core, L is the length of the sensing fiber, and c is the speed
of light in vacuum. Nyerge is the number of times of averaging.
Without averaging, the distributed BGS along the sensing fiber
can be obtained by injecting a single-shot pump pulse so that
the maximum measurement speed of the proposed distributed
sensor is only limited by the fiber length, making the sensor
ultra-fast.

D. Spatial Resolution

Different from an OFDM probe wave or an OCC probe wave
which is formed by cascading some symbols, thus it is only able
to demodulate one BGS per symbol. For the proposed approach,
however, the input MMT signal consisting of multiple sinusoidal
waves with a randomized initial phase distribution is continuous
in time, thus the time window for calculating the STFT can be
moved forward continuously, i.e., truly distributed measurement
is possible. The spatial resolution of the proposed microwave
photonic fiber-optic sensor is given by

As— cAty
2neff

CAtwindow

st (13)
where At is the width of the pump pulse, Atyindow is the time
window of the STFT. The first term in the right-hand side is
the spatial coverage of the pump pulse, and the second term in
the right-hand side is the spatial coverage of the time window
of the STFT. The interval of the demodulated spatial point is
determined by the parameters of the STFT algorithm.

III. EXPERIMENTAL SETUP

Fig. 2 depicts the schematic diagram of the microwave pho-
tonic fiber-optic sensor. A continuous-wave (CW) laser diode
(LD) operating at 1550.054 nm with an output power of 15 dBm
is employed as a light source. The output light is split into
two branches by a 50:50 optical coupler (OC), with the light
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Fig.2. (a) Schematic diagram of the proposed microwave photonic fiber-optic
sensor. (b) A picture showing the experimental setup. Insert in (b) shows temper-
ature measurement setup. LD, laser diode; PC, polarization controller; PM, phase
modulator; EOM, electro-optic modulator; AWG, arbitrary waveform generator;
EDFA, erbium-doped fiber amplifier; OI, optical isolator; FUT, fiber under test;
C, optical circulator; PD, photodetector; DSO, digital storage oscilloscope; DSP,
digital signal processing; EA, electrical amplifier; EM, electro-motor; FB, fixed
base; TB, tunable base.

in the upper branch being used to generate the optical pump
pulse while that in the lower-branch being used to generate the
phase-modulated probe wave.

In the upper branch, the CW light wave is converted to
an optical pulse by an electro-optic modulator (EOM) driven
by a 10-ns electrical pulse generated by an AWG (Keysight
MS8195A). Then, the optical pulse is amplified up to 34 dBm
by an erbium-doped fiber amplifier (EDFA) and used as the
pump pulse. The light wave with a power of 1.70 dBm in the
lower branch is modulated by an MMT signal, also generated
by the AWG at a PM. Both the pump pulse and the phase-
modulated probe wave are counter-propagating in a ~49.5-m
PMF. The polarization of the light waves is all aligned along
the x-polarization axis of the optical devices. Note that both
the electrical pump pulse and the MMT signal output from the
AWG are synchronized by a synchronization module (Keysight,
MSI197A).

The phase-modulated probe wave is transmitted via an optical
circulator to a PD (OEQuest, LR-12-A-M, 0.01-15 GHz). The
regenerated MMT signal from the PD is acquired by a digital
storage oscilloscope (Keysight DSO-Z 504A) with a bandwidth
of 63 GHz and a sampling rate of 160 GSa/s. Then, the MMT
signal is offline-processed by a computer.

Based on (1), a waveform consisting of 51 sinusoidal mi-
crowave signals with the frequencies ranging from 10.700 to
11.200 GHz is edited and stored into the memory of the AWG.
The output of the AWG is used as the MMT signal, as shown in
Fig. 3(a). Then, the MMT signal is used to phase-modulate the
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Fig.3. (a) The waveform and (b) the short-time Fourier transform of the input
MMT signal with (c) a randomized initial phase distribution and (d) its electrical
power spectrum.

probe wave. As shown in Fig. 3(b), the power spectral density
distribution of the short-time Fourier transform is random and
uneven because the initial phase of each tone of the MMT signal
is randomized, see the distribution in Fig. 3(c). A relatively low
PAPR of 9.46 dB is obtained, and, ideally, it will be lower as
the tone number increases. As can be seen from the electrical
power spectrum in Fig. 3(d), the frequency span of the MMT
signal is from 10.700 to 11.200 GHz with a frequency interval
of 10 MHz.

The optical power spectrum of the phase-modulated probe
wave is measured by an optical spectrum analyzer (OSA, Ando
AQG6317B) as shown in Fig. 4. Compared to the optical carrier
(blue line) without phase modulation, optical sidebands are
generated. The 2nd-order sidebands are 8.8 dB lower than the 1st
order sidebands and the higher-order sidebands are much lower
than the 1st order sidebands. To eliminate the RF noise generated
by the 2nd-order and higher-order sidebands, the regenerated
MMT signal is processed by a digital passband filter in the
demodulation process for BGS acquisition.

IV. EXPERIMENTAL RESULTS
A. Static Measurement of the Proposed Fiber-Optic Sensor

We evaluate the operation of the proposed fiber-optic sensor
for static strain measurement. To measure the strain, a section of
2 m of the PMF is stretched by applying different levels of strain.
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Fig. 4. The power spectrum of the phase-modulated optical probe wave.
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Fig. 5. The regenerated MMT signals corresponding to no strain (black line)

and a strain of 2250 pe (red line). Inset is a zoom-in view of the signals in the
blue box.

The width of the pump pulse is set at 10 ns, which is small to
ensure a high spatial resolution. The regenerated MMT signals
are measured with 512 times averaging, and then it is filtered by
adigital filter with a passband from 10.0to 11.8 GHz, to increase
the signal-to-noise ratio (SNR). Two regenerated MMT signals
corresponding to no strain and a strain of 2250 pe are shown
in Fig. 5. Since the magnitude and the phase of the regenerated
MMT signal are shaped by the complex BGS, the waveform
of the regenerated MMT signal with a slightly lower PAPR of
9.24 dB is different from that in Fig. 3(b). It is clearly shown that
the MMT signal is amplified from O ns to 495 ns corresponding
to 49.5 m of the PMF. The two waveforms are overlapped
except a portion in a blue box (a zoom-in view in the insert)
corresponding to the PMF from 37 to 39 m where the fiber is
stretched.

The regenerated MMT signals are demodulated to reconstruct
the BGS by STFT with a time window of 10 ns. Based on Eq.
(13), the spatial resolution of the proposed sensor is calculated
to be 2 m. Two BGS distributions for the two cases of no strain
and a strain of 2250 pe are displayed in Fig. 6(a) and (c),
respectively. The power fluctuation of the BGS along the PMF is
induced by the non-uniform envelopes of the regenerated MMT
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BFS distribution.

signals. Then, the normalized BGS distributions are illustrated
in Fig. 6(b) and (d). The stretched section is identified between
the two white lines where the BGS is clearly up-shifted as the
strain increases. It can be concluded that both the magnitude
and the frequency span of the MMT signals are reshaped by the
active Brillouin-based MPF when the strain applied to the PMF
changes.

Subsequently, the BGSs are fitted based on a Lorentzian-curve
function to obtain its center frequencies (i.e., the BFS). The
BFS distributions are shown in Fig. 7(a), in which the BFSs at
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the stretched section are laterally shifted as the strain increases.
To eliminate BFS fluctuations, the distributions of the BFSs are
computed by subtracting the initial BFS distribution (0 y€) from
all the BFS distributions, which are shown in Fig. 7(b).

To observe the dependence of the BGS and the applied
strain, the BGS with a 16-points averaging around the position
38.11 m are plotted in Fig. 8(a). It is clearly shown that the
BGSs are right-shifted as the strain increase from 0 to 2250
pe. Then, the dependence of the BFS change on the strain
change is shown in Fig. 8(b). By linear fitting, a strain coefficient
C. = 0.0565 MHz/ i€ and a high correlation coefficient (R?) of
0.9915 are obtained.

We also evaluate the static measurement of the proposed fiber-
optic sensor for temperature sensing. To do so, the section of 2-m
fiber without stretching is embedded in water in a water bath
(shown in the inset of Fig. 2). The regenerated MMT signals for
atemperature at 26 °C (black line) and 93 °C (red line) are shown
in Fig. 9. The waveforms in the inset are apparently shifted as
the temperature is increased.

Then, the regenerated MMT signals are demodulated by
STFT, and the BGS distributions for the temperatures at 26 °C
and 93 °C are shown in Fig. 10(a)) and (c), respectively. Their
normalized BGS distributions are illustrated in Fig. 10(b) and
(d). The BGS between the two white lines (i.e., the heated
section) is up-shifted as the temperature is increased from 26 °C
to 93 °C.
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Subsequently, the BGSs are fitted based on a Lorentzian-curve
function to calculate the BFSs, as shown in Fig. 11(a), in which
the BFSs at the heated section are up-shifted. To eliminate the
unwanted fluctuation over the BFS distribution, the distributions
of the BFS change with a much flat background are calculated
by subtracting the initial BFS curve (29 °C) from all the BFS
distributions, and they are shown in Fig. 11(b). Then, to further
improve the SNR of the BGS, 16 BGS measurements near
38.11 m are averaged, and the averaged BGSs are plotted in
Fig. 12(a), which shows a right shift as the temperature increases
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from 29 °C to 93 °C. The BFS changes over the temperature
changes are linearly fitted in Fig. 12(b) resulting in a temperature
coefficient C = 1.4739 MHz/°C and a correlation coefficient
(R?) of 0.9966.

B. Vibration Measurement

To test the ability of the proposed sensor for ultra-fast mea-
surements, an electrical motor (EM) is employed to apply a
periodic mechanical vibration to the 2-m section of the PMF.
Without averaging, the regenerated MMT signals are measured
at a sampling rate of 83.3 kHz. It should be pointed out that the
maximum sampling rate of this sensor can reach up to 2 MHz
which is inversely proportional to the round-trip time of the
PMF in theory, but it is limited by the repetition rate of the
pump pulse output from the AWG in the experiment. As shown
in Fig. 13(a), the time evolution of the BGS at one point within
the vibration position is demodulated. It is clearly seen that the
whole BGS is periodically shifted along the vibration time. The
mechanical vibration waveform, i.e., the strain curve (green)
is illustrated in Fig. 13(b), which has a vibration frequency of
33 Hz. Then, the demodulated BFS of the BGS and the strain
curve are post-processed by a denoising method of wavelet sym4
with level 7, achieving an SNR improvement of 27 dB, which
corresponds to the white line in Fig. 13(a) and the red line in
Fig. 13(b).
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V. CONCLUSION AND DISCUSSION

In this work, a microwave photonic fiber-optic sensor has
been proposed based on the distributed bandpass MPF to obtain
truly distributed and ultra-fast measurement. An MMT signal
was modulated on the probe wave and it can be filtered out
by a counter-propagating active Brillouin-based MPF with its
passband being the convolution between the local BGS of the
sensing fiber and the power spectrum of the pump pulse, leading
to a regenerated MMT signal. Without averaging, the single
measurement can be completed by injecting one single-shot
pump pulse so that the sampling rate is only limited by the
sensing fiber length. The Brillouin information containing the
local temperature or strain is down-converted from the optical
domain to the microwave domain, and it can be demodulated
by time-frequency analyzing the regenerated MMT signal with
STFT. The dynamic range of the proposed sensor can be en-
larged by increasing the bandwidth of the input MMT signal.
Since the MMT signal consists of multiple single-tone signals
with a random initial phase distribution, truly distributed strain
and temperature measurements were realized at a high spatial
resolution of 2 m which is an order of magnitude higher than
that based on the OFDM scheme [17]. Finally, a periodical
mechanical vibration with a vibration frequency of 33 Hz is
measured at a high sampling rate of 83.3 kHz, with its strain
curve being effectively denoised by wavelet sym4. Furthermore,
some denoising methods such as image restoration [27] and
video-BM3D algorithm [28] can also be used to improve the
SNR for ultra-fast vibration measurements.

It should be pointed out that a trade-off between the time (or
spatial) resolution and the frequency resolution (measurement
errors) exists when using the STFT demodulation process. As
shown in Fig. 14, the root mean squared error (RMSE) of the de-
modulated BFS for static strain measurements can be decreased
as the time window of the STFT algorithm is increased. When
the time window of the STFT algorithm is 10 ns (corresponding
to a high spatial resolution of 2 m), a large RMSE of 22.9 MHz
is resulted. When the time window of the STFT algorithm is
increased to 200 ns (corresponding to a high spatial resolution
of 21 m), a small RMSE of 1.5 MHz is achieved, which is
comparable with an ordinary or a coherent BOTDA system and
the optical frequency comb schemes such as the OFDM scheme
[17] and the DOFC scheme [18], [19]. In the future work, by
using a frequency-agile demodulation approach [29] instead
of the STFT algorithm, a higher spatial resolution and higher
frequency resolution measurements may be obtained. Further-
more, if the MMT signal has a narrower frequency interval and
a more uniform initial phase distribution, the non-uniformity of
the envelope of the regenerated MMT signal can be effectively
mitigated and the unwanted BFS fluctuation could be reduced.

A comparative analysis with existing schemes is shown
in Table I. For the regular Brillouin time-domain analysis
(BOTDA), coherent BOTDA, and OFA-based BOTDA, multiple
pump pulses and the corresponding probe frequency segments
are injected into the sensing fiber to complete the frequency
sweeping process, which is time-consuming. However, the
frequency sweeping process can be realized by launching a
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TABLE I
COMPARATIVE ANALYSIS OF THE EXISTING SCHEMES

Frequency Pump pulse Dynamic Limitation of the spatial Truly
Schemes . . . s
switch time number range resolution distribution
Ordinary BOTDA [1] ~ms ~50 ~100 MHz Pulse width (1 m) Yes
Coherent BOTDA [30] ~ms 51 200 MHz Pulse width (3 m) Yes
OFA-based BOTDA [13] ~ns 100 200 MHz Pulse width (1.3 m) Yes
Single-slope-assisted 0 1 ~35 MHz Pulse width (3 m) Yes
BOTDA [14]
Multi-slope-assisted ~ns ~5 330 MHz Pulse width (1 m) Yes
BOTDA [15]
OFDM-BOTDA [17] 0 1 1250 MHz ~ Symbol period (20.48 m) No
OCC-BOTDA [20] ~ns 1 400 MHz Chirp duration (2 m) No
The proposed BOTDA 0 1 500 MHz Pulse width and time Yes
window (2 m)
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