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Abstract—Microwave photonic interrogation of a high-speed
and high-resolution refractive index (RI) sensor based on a tilted
fiber Bragg grating with surface plasmon resonance (TFBG-SPR)
is proposed and experimentally demonstrated. Instead of demodu-
lating the wavelength shift or intensity change of a TFBG-SPR spec-
trum in the optical domain, we convert the TFBG-SPR spectrum
to the time domain based on spectral shaping (SS) and wavelength-
to-time (WTT) mapping and use a digital signal processor (DSP)
to extract the RI information at a high speed and high resolution.
In the experiment, when an Au-coated TFBG is immersed in a
solution, the TFBG-SPR spectrum will produce a dip. When the
RI changes, the location of the dip in the TFBG-SPR spectrum
will shift, which is a function of the RI. By passing a broadband
frequency-chirped optical pulse generated by a frequency swept
laser source to the TFBG-SPR and detecting the optical pulse
at the output of the TFBG-SPR at a photodetector (PD), due to
SS-WTT mapping, a temporal waveform with its shape identical
to the optical spectrum is produced. A DSP is then used to extract
the SPR envelope information from the temporal waveform. By
monitoring the changes of the SPR envelope, the RI information is
interrogated with a high resolution of 1.123 x 10~ RIU at a high
speed over 20 kHz.

Index Terms—Microwave photonics, refractive index
measurement, surface plasmon resonance, tilted fiber Bragg
grating.
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1. INTRODUCTION

TILTED fiber Bragg grating (TFBG) is a special fiber

grating that has a comb like spectrum which shares all
the advantages of a regular fiber Bragg grating including com-
pact size, low cost, immunity to electromagnetic interference
and high tolerance to harsh environment. TFBGs have been
widely employed for applications such as mechanical sensing
[1], [2], biomedical sensing and chirped microwave waveform
generation [3]. For most of the biomedical sensing applications,
the refractive index (RI) of a solution is a key parameter to
characterize a bio-sample under test [4]-[6]. Usually, the RI
change in a bio-sample is very small and a sensor based on
a regular TFBG will not provide sufficiently high sensitivity
to monitor the change. To improve the RI sensitivity, intro-
ducing a surface plasmon resonance (SPR) to a regular TFBG
has been studied [7]-[10]. Recently, numerous biomedical and
electrochemical sensing applications, such as the detection of
urinary protein variations [11], the detection of density alteration
in cells [12], the measurement of glucose concentrations [13],
and the detection of the state of charge of supercapacitors for
renewable energy storage [14] based on a TFBG-SPR have been
proposed and experimentally demonstrated. To excite the SPR
effect in a regular TFBG, a nanoscale Au-coating is planted on
the surface of the regular TFBG. When an Au-coated TFBG
is immersed in a solution under test, a dip will be produced
in the spectrum. As the ambient RI changes, the location of
the dip in the TFBG-SPR spectrum will be a function of the
RI. By monitoring the change of the TFBG-SPR spectrum, the
sensing information can be demodulated. For most TFBG-SPR
sensing demodulation methods, an optical spectrum analyzer
(OSA) is used to monitor the change of the TFBG-SPR spec-
trum. However, it is very complicated to monitor the spectrum
change of a TFBG-SPR in the optical domain, since the cladding
mode where the SPR is located has to be tracked first, and then
the intensity change of the adjacent cladding mode is marked
to demodulate the RI change. If the SPR switches to a new
cladding mode, the new cladding mode should be identified
and tracked, which means a continuous demodulation in a large
range of the RI change cannot be achieved by simply marking
a specific cladding mode. Moreover, an OSA usually has a very
low wavelength resolution and slow scanning speed. When a
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rapid and small RI change caused by biomedical reactions such
as molecular adhesion [15], [16] is to be measured, the use of
an OSA will not have the ability to detect the change. Till now,
no effective demodulation methods have been demonstrated for
a sensor employing a TFBG-SPR.

Microwave photonics (MWP) [17] is a technique to process
microwave signals directly in the optical domain at a high
speed and high resolution. In addition to the applications in
optical communications [18] and radar systems [19], microwave
photonics has a high potential for applications in high speed and
high accuracy sensing [20], [21]. To avoid using the wavelength
marking technique or the intensity measuring technique which
is complicated and has low accuracy and poor resolution, the
sensing information can be demodulated in the time domain.

In this paper, we report the use of a microwave photonic
technique based on spectral shaping and wavelength-to-time
(SS-WTT) mapping [22], [23] to convert the spectrum of a
TFBG-SPR to the time domain, to increase the speed and
resolution of a TFBG-SPR sensor. In a SS-WTT mapping sys-
tem, the spectrum of a broadband light source is shaped by an
optical filter (spectral shaping or SS) and the shaped spectrum is
converted to the time domain in a dispersive element to achieve
wavelength-to-time (WTT) mapping. If the dispersive element
has linear dispersion, the WTT mapped time-domain signal will
have the same shape as the shaped spectrum. The SS-WTT
mapping technique has been reported for applications such as
high-speed analog-to-digital conversion [24] and microwave
waveform generation [22], [23]. However, no reports have been
published for TFBG-SPR sensing. In the proposed sensing
system, a high-speed frequency swept laser source is used to
generate a high-speed and broadband frequency-chirped optical
pulse whichis applied to an Au-coated TFBG. Through SS-WTT
mapping, the sensing information encoded in the optical domain
is converted to the time domain. By detecting the optical pulse
from the Au-coated TFBG at a photodetector (PD), a temporal
waveform with its shape identical to the shaped optical spectrum
is generated. Specifically, when the ambient RI is changed, a
dip in the envelope of the temporal waveform detected at the
output of the PD will shift due to the TFBG-SPR spectrum
change. By using a digital signal processor (DSP), the sensing
information can be extracted at a high speed and high resolution.
More importantly, by using the SS-WTT mapping technique,
the sensing information can be continuously demodulated. The
proposed RI sensor is experimentally demonstrated. The RI
sensing resolution and sensitivity are 1.123 x 107° refractive
index unit (RIU) and 142.496 us/RIU, respectively, and the
sensing speed is as high as 23.496 kHz.

II. PRINCIPLE

The optical spectrum of a regular TFBG has a series of
cladding modes with a relatively flat spectrum distribution. By
plating a nanoscale Au-coating on the surface of a TFBG,
SPR effect will be excited and the power distribution of
the cladding mode peaks will be changed to introduce a dip
when the Au-coated TFBG is immersed in a solution under
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Fig. 1. Transmission spectrum of a TFBG-SPR. An SPR dip is observed and

its location is changed when the ambient RI is changed from (a) 1.3325, (b)
1.3339, (¢) 1.359, to (d) 1.3372.

test. Fig. 1(a) shows the transmission spectrum of an Au-coated
TFBG when the ambient RI is 1.3325. As can be seen, the
transmission spectrum of the TFBG has multiple peaks induced
due to the cladding modes (shown as the blue curve). The power
distribution of these cladding mode peaks is modulated by a
dip (as the red curve shown) which is introduced due to the
SPR effect. The transmission spectrum of the cladding modes,
after WTT mapping, corresponds to a temporal signal with
its envelope modulated by the SPR dip. As can be seen, at
the wavelength of about 1550 nm, the power distribution of
the cladding modes is distorted and a dip is introduced due
to the SPR effect. When the ambient RI is changed, the location
of the dip will shift.

Normally, to demodulate the RI information in the optical
domain, the cladding mode where the SPR is located is marked
and the intensity change of the adjacent cladding mode is
measured as the ambient RI is increasing. Once the RI change
exceeds a threshold, the SPR will shift to another cladding
mode, marking the previous cladding mode and measuring the
intensity change of the adjacent cladding mode will no longer
be applicable. Fig. 1(b), (c) and (d) show the experimentally
measured SPR shifts versus RI change. We can see that the SPR
is shifted from 1552 nm to 1553.5 nm and from 1553.5 nm to
1554.75 nm when the ambient RI is increased from 1.3339 to
1.3359 and from 1.3359 to 1.3372, respectively. In addition, due
to the mechanical nature of the wavelength scanning mechanism
inside an OSA, the sensing speed is very low, which will further
deteriorate the sensing performance when a rapidly changing
bio-sample is under test. In fact, we can consider that when the
ambient RI is changing, the spectrum of the SPR will lead to a
continuously changing envelope in the optical domain. However,
this envelope change cannot be demodulated continuously in the
optical domain due to the limited number of cladding modes of
a TFBG. Therefore, if we can extract the envelope, the sensing
information can be continuously demodulated by monitoring the
change of the extracted envelope.
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Fig. 2. Schematic diagram of the proposed sensing system.

Based on the analysis of the demodulation method for the
TFBG-SPR mentioned above, to avoid using the wavelength
marking or the intensity monitoring method which is compli-
cated and has low accuracy and resolution, and to extract the SPR
envelope, we propose to use a microwave photonic technique to
convert the spectrum of a TFBG-SPR to the time domain based
on SS-WTT mapping, and detect the TFBG-SPR envelope using
a DSP.

The proposed sensing system is shown in Fig. 2. It consists
of a frequency swept laser source, a TFBG-SPR, a PD, an
oscilloscope, and a DSP. The frequency swept laser source is
used to generate a broadband frequency-chirped optical pulse.
Due to the frequency chirp nature of the pulse, a specific re-
lationship between the instantaneous wavelength and time is
established. By passing a broadband frequency-chirped optical
pulse generated by the frequency swept laser source to the
TFBG-SPR, the sensing information is encoded in the optical
pulse due to SS-WTT mapping, thus a temporal waveform with
its shape identical to the shaped optical spectrum is generated.
Finally, the temporal waveform is sampled by an oscilloscope
and the data are sent to the DSP, where the SPR envelope is
extracted at high speed and high resolution.

III. EXPERIMENTAL RESULTS

The experimental setup of the RI sensing system based on a
TFBG is shown in Fig. 3. A frequency-domain mode-locking
(FDML) laser (as shown in the dashed box) is used to provide
a frequency swept optical pulse train with a high repetition
frequency and large wavelength scanning bandwidth. The mode
locking is realized by a sinusoidal signal from a signal generator
(SG). A polarization controller (PC1) at the output of the FDML
laser source is used to adjust the polarization state of the output
pulses into a P-polarization state, so that the SPR-effect can be
effectively excited in the sensing element. In our proposed RI
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Experimental setup. The dashed box shows the structure of an FDML

sensing system, the sensing element is an Au-coated TFBG. The
TFBG is fabricated in a commercial single-mode-fiber (SMF)
with a length of about 30 mm and a tilted angle of 18 degree.
To excite the SPR, an Au-coating with a thickness of 50 nm
is planted on the surface of the TFBG. It should be noted that
we use a tilted angle of 18 degree is to make the wavelength
of the dip approximately locate at about 1550 nm when the
ambient RI is 1.3325 which is close to the central wavelength
of the light wave from the FDML laser source. The spectrum
of the frequency-swept optical pulse generated by the FDML
laser source is shaped by the Au-coated TFBG-SPR with the
RI information encoded in the spectrum. The spectrally shaped
optical signal is split into two paths by a 20:80 optical coupler
with the 20% path being sent into an OSA to monitor the
optical spectrum changes and the 80% path launched into a PD,
at which a temporal waveform with its shape identical to the
shaped spectrum is generated. A real-time oscilloscope which
is synchronized by the SG is employed to sample the temporal
waveform, which is processed in a DSP to extract the envelope
where the dip is located. Due to the high resolution and high
speed of the real-time oscilloscope and the DSP, the RI resolution
and the sensing speed of the proposed sensing system is greatly
enhanced compared with a conventional interrogation approach
using an OSA.

In the FDML laser source, as shown in the dashed box, a
semiconductor optical amplifier (SOA) provides a broadband
optical gain, and two isolators at the output and the input of the
SOA are used to ensure the light has a single operation direction
in the laser cavity. A polarization controller (PC2) at the output
of the isolator]l is used to adjust the polarization state of the
light so that an effective amplification can be achieved. The
length of the single-mode-fiber (SMF) used in the light source
system is about 7.95 km long and an 877 m long dispersion
compensating fiber (DCF) is utilized to compensate for the
dispersion to make the laser cavity dispersion free. The key
component in the FDML laser system is the wavelength selecting
component, a fiber Fabry-Perot tunable filter (FFP-TF2), which
is driven by a sinusoidal signal generated by the SG. The optical
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signal at the output of FFP-TF?2 is separated by a 40:60 optical
coupler, with the 40% portion used as the FDML laser output
and the 60% portion fed back to the laser cavity for a further
amplification.

In order to achieve Fourier domain mode locking, the FFP-
TF2 inside the laser cavity must be driven at a frequency that
is equivalent to N times of the fundamental cavity frequency,
which is given by

c

fdrive:N'fcav:N' (1)

Neore * (LsmF + Lpcr)
where N is an integer, c is the light speed in vacuum, 7oy 1S
the RI of the fiber core (here we assume that the fiber core RI
difference between the SMF and DCF is small and negligible),
Lsarr and L per are the physical lengths of the SMF and DCF,
respectively.

In our experiment, a sinusoidal function used as a drive signal
is applied to FFP-TF2 and the instantaneous output wavelength
can be expressed by

)LC (t) = A [Vpp . sin (27derivet) + VDC] —|— )\0 (2)

where A is the tuning sensitivity of FFP-TF2, V},,, is the peak-to-
peak voltage of the drive signal which decides the wavelength
scanning bandwidth of the laser source, fgrive is the drive
frequency of the sinusoidal signal, Vp¢ is the direct current
that decides the central wavelength of the laser source, and A
is the initial wavelength without applying the drive signal and
Vbc. The values of Vpc and the V,,, applied to FFP-TF2 in
our experiment are 4.98 V and 7 V, respectively. Therefore, the
central wavelength of the output optical pulse generated by the
FDML laser source will be located at 1550 nm and a wavelength
scanning bandwidth of 63 nm of the output optical pulse is
achieved. According to (1), the combination of the 7.95 km long
SMF and 877 m long DCF will lead to a fundamental cavity
frequency equals to 23.496 kHz (here we choose the integer N
to be 1), so that the output optical pulse generated by the FDML
laser will have a repetition frequency of 23.496 kHz. On the
other hand, due to the use of a high speed frequency swept laser,
the proposed RI sensing system will have a high sensing speed,
which equals to the repetition frequency of the frequency swept
laser source.

A pulse train from the FDML laser source with a repetition
frequency of 23.496 kHz is applied to the TFBG-SPR. The blue
curve in Fig. 4 shows the output spectrum of the light from the
FDML laser source. We can see that the output optical pulse
generated by the FDML laser source has a 63 nm scanning
bandwidth and there are two sharp peaks at 1520 and 1583 nm.
The cause of these two sharp peaks is due to the adoption of
the sinusoidal drive function, as given in (2), to drive FFP-TF2
inside the FDML laser source. For an identical time interval,
the instantaneous output wavelength of the FDML laser source
will be located at 1520 and 1583 nm (corresponding to the
maximum voltage and the minimum voltage of the sinusoidal
drive function) for alonger time. Meanwhile, due to the principle
of the integral of power over time of the charge-coupled device
(CCD) inside the OSA, a longer integration time means a larger
optical power and as a result, the output spectrum of the FDML
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the PD.

laser source will have two sharp peaks at the two sides of the
scanning bandwidth.

The red curve in Fig. 4 shows the output spectrum from the
TFBG-SPR. By spectral shaping, the output spectrum from the
FDML laser source is shaped by the TFBG-SPR with the RI
information encoded in the spectrum. The spectrally shaped
optical signal is launched into a PD, at which a temporal
waveform with its shape identical to the shaped spectrum is
generated. Fig. 5 shows the microwave waveform sampled by
the real-time oscilloscope within two cycles. We can see that
the microwave waveform includes two symmetrical pulses in
one cycle since a sinusoidal signal is used to drive FFP-TF2
inside the FDML laser source. When the instantaneous voltage
of the sinusoidal signal increases from the minimum value to the
maximum value, the instantaneous wavelength of the tunable
filter inside the FDML laser source will shift from 1583 nm to
1520 nm, a positively chirped optical pulse is generated. When
the instantaneous voltage decreases from the maximum value to
the minimum value, the instantaneous wavelength of the tunable
filter will shift from 1520 nm to 1583 nm, a negatively chirped
optical pulse is generated. The spectrum of the optical pulse
from the FDML laser source is shaped by the TFBG-SPR and
a dip induced by the SPR effect is produced. By wavelength to
time mapping, the shaped spectrum is converted to an electrical
waveform where a dip is located in its envelope.

In processing the signal at the output of the TFBG-SPR, we
consider the spectrum of the signal is amplitude modulated with
a dip in the envelope. After SS-WTT mapping, the spectrum
is converted to a temporal signal with the cladding modes of
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Fig. 6. (a) A positively chirped pulse after spectrally shaped by a TFBG
without SPR. (b) A positively chirped pulse after spectrally shaped by a TFBG
with SPR.

the TFBG-SPR as a high frequency signal while the envelope
as a low frequency signal that amplitude modulates the high
frequency signal. In order to extract the SPR envelope, the DSP
is used to filter out the high frequency component to get the low
frequency component. After being processed by the DSP, the
SPR envelope is extracted.

Fig. 6(a) shows a positively chirped pulse after spectrally
shaped by a TFBG without SPR. Due to the use of a sinusoidal
function to drive the FDML laser source, the instantaneous
output wavelength from the FDML laser source and time will es-
tablish a nonlinear relationship which will lead to arelatively low
frequency component at two sides of the microwave waveform
(corresponding to the maximum and the minimum voltage of the
sinusoidal function). The positively chirped pulse in Fig. 6(a) can
be described as

Csin (27 farivel)

TrrBG (t) = B +cos |27 D

3)
where B is the DC component of the microwave signal, C is
half of the scanning bandwidth, fg,.;¢ is the drive frequency of
the FDML laser source, and D is the wavelength interval of the
cladding modes of the TFBG.

In order to realize the extraction of the SPR envelope, the
sampled microwave waveform from the real-time oscilloscope
(as shown in Fig. 5) is sent to the DSP where the electrical
spectrum of the sampled microwave waveform is analyzed. We
select one of the positively chirped pulses to analyze its electrical
spectrum. The selected waveform is shown in Fig. 6(b), a dip
can be found in the SPR envelope and the waveform is given by

i 2 rivel

Trrpa-spr (t)=SPR(t)- {B+cos {Qﬂcsm(gfd)] }
“)

where SPR(?) is the SPR envelope. To highlight the dip informa-

tion, a Gaussian window is applied to the temporal waveform.
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The Gaussian window and the shaped waveform are shown in
Fig. 7(a). Mathematically, the shaped waveform is expressed as

/ (t — tO)2
Trrpe-spr(t) = exp | ==~ - SPR(1)
. {B + cos |:27chsln(2;;fdri1wt):| } 5)

where ¢ and E are the central time position and the time width of
the Gaussian window. Fast Fourier transform (FFT) is performed
to the shaped waveform and an electrical spectrum is acquired.
The blue and black curves in Fig. 7(b) are the electrical spectra
of the microwave waveforms with and without a dip after shaped
by a Gaussian window, respectively. After shaped by a Gaussian
window, the amplitude of the low frequency component of the
waveform without a dip is significantly compressed compared
to that with a dip, while the high frequency component of these
two waveforms are approximately equivalent. The shaped mi-
crowave waveform is then processed in the DSP where a digital
low-pass filter with a Gaussian function is implemented. The red
curve in Fig. 7(b) shows the frequency response of the Gaussian
filter. By adjusting the central frequency and the bandwidth of
the Gaussian filter, the high frequency component is filtered
out. Here, the central frequency and the 3-dB bandwidth of
the Gaussian filter are selected to be 0.705 MHz and 0.7 MHz,
respectively.

After filtering out the high frequency component, the filtered
microwave waveform is recovered through performing an in-
verse fast Fourier transform (IFFT) to the filtered electrical
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spectrum. The recovered signal is expressed as

(t —to)?

sz | SPR() ()

Trrpc-spr (t) = B-exp [—

and the recovered waveform is shown in Fig. 8. From the recov-
ered waveform we can see that the high frequency component of
the initial microwave waveform that corresponds to the cladding
modes of the TFBG-SPR spectrum is removed and the extraction
of the SPR envelope is achieved. Two peaks (we call them the
first peak and the second peak here) and a dip in the envelope
can be clearly seen. The filtered waveform agrees well with the
envelope of the Gaussian window shaped waveform shown in
Fig 7(a).

To evaluate the sensing performance of the proposed RI sen-
sor, we immerse the Au-coated TFBG into a NaCl solution with
different concentrations. Through increasing the concentration
of the NaCl solution, the RI value of the NaCl solution is
increased correspondingly. Fig. 9(a) shows the recovered signals
when the RI value of the NaCl solution is increased from 1.3326
to 1.3593. As the ambient RI changes, the two peaks and the dip
in the envelope are shifted towards a smaller time location.

By measuring the shift of the dip in the SPR envelope, the
sensing information is demodulated. Fig. 9(b) shows the RI
sensing curves. As can be seen when the Au-coated TFBG
is immersed in a NaCl solution with different concentrations
corresponding to different ambient RI values, different time
shifts (normalized) are obtained. In our experiment, the time
shifts of the two peaks and the dip on the envelope are estimated,
respectively. The symbols with red, blue and black color are the
experimentally measured time shifts of the first peak, the dip
and the second peak from the extracted envelope, respectively,
meanwhile, when different regions of the envelope are under
measured, different RI sensitivity and RI resolution can be
achieved. As can been seen from Fig. 9(b), the first peak on
the extracted envelope is shifted from 3.762 us to 0 us, the
dip is shifted from 3.823 us to 0 us and the second peak is
shifted form 3.227 us to O ps. The RI sensitivity of the first
peak, the dip and the second peak are calculated to be 140.465
u1s/RIU, 142.496 ps/RIU and 122.859 us/RIU, respectively. At
the same time, considering the sampling rate of the real-time
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Fig. 9. (a) The extracted envelopes versus the ambient RI change; (b) time
shifts of the first peak, the dip and the second peak on the envelope versus ambient
RI change. The symbols with three different colors are the experimental results
and the curves with three different colors are the results of the linear fitting.

oscilloscope is 6.25 GS/s, the RI resolution of the first peak,
the dip and the second peak are calculated to be 1.139 x 107°
RIU, 1.123 x 107% RIU and 1.302 x 10~® RIU, respectively.
Using a high speed frequency swept laser with a repetition
frequency of 23.496 kHz, the sensing speed of the proposed
sensing system is as high as 23.496 kHz. To achieve a better
demodulating performance, the RI sensitivity can be further
improved by reducing the repetition frequency of the FDML
laser source or using a dispersion element with a large dispersion
coefficient to broaden the output optical pulses generated by the
frequency swept laser. On the other hand, the RI resolution can
be improved by using a PD with a larger response bandwidth
and taking the advantage of the sampling rate of the real-time
oscilloscope.

IV. CONCLUSION

We have proposed and experimentally demonstrated a new
approach to demodulate the RI information based on a TFBG-
SPR by using a microwave photonics technique at a high-speed
and high-resolution. Instead of measuring the wavelength shift
or the intensity change in the optical domain by using an OSA
with low accuracy and resolution, we converted the spectrum of
the TFBG-SPR to the time domain based on SS-WTT mapping.
A real-time oscilloscope was used to sample the microwave
waveform in the time domain and a DSP was used to extract
the SPR envelope. Through monitoring the time shift of the
extracted SPR envelope, the continuous demodulation of the
sensing information was achieved. The proposed RI sensing
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system was experimentally demonstrated. Three different re-
gions of the extracted envelope were measured to estimate the
RI resolution and the RI sensitivity. The optimal RI resolution
and sensitivity of 1.123 x 107® RIU and 142.496 us/RIU at a
high speed of 23.496 kHz were achieved by measuring the time
shifts of the dip from the extracted envelope.
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