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Abstract—Optical time stretch has been employed for ultrafast
optical imaging based on space-to-wavelength-to-time mapping.
However, temporal overlap between two adjacent time-stretched
pulses is a disadvantageous factor that limits the spatial resolution,
or the frame rate has to be reduced by reducing the pulse repetition
rate to avoid the temporal overlap. To increase the spatial resolu-
tion without reducing the frame rate, we propose a novel technique
based on polarization-division multiplexing, using a polarization
modulator to generate two polarization interleaved pulse trains.
Since two adjacent optical pulses are orthogonally polarized, the
spacing between two adjacent pulses for one polarization direction
is doubled, and the spatial resolution is doubled by using a disper-
sive element with two times the dispersion. The proposed approach
is experimentally evaluated. An imaging system with an increased
spatial resolution is demonstrated.

Index Terms—Optical time stretch, polarization division multi-
plexing, space-to-wavelength-to-time mapping, ultrafast imaging.

I. INTRODUCTION

NONDESTRUCTIVE imaging plays an important role in
machine vision, which can find important applications in

modern manufacturing, such as defect detection, quality con-
trol, dimensional metrology, numbering and surface examina-
tion [1]–[5]. Most of the inspections are now performed in a
continuous real-time detection mode to realize quality evalua-
tion of various materials or products, such as thin films, paper,
concrete materials and silicon wafers [6]–[8]. In a conventional
surface inspection system, a white line light source with a line
scan camera is usually employed to scan the surface of a sam-
ple that is moved along the orthogonal direction [5], [8]. The
scattered light from the surface is continuously detected by the
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line scan camera. However, the line scan rate of a conventional
line detector is slow, restricted by the long response time of the
detector used in the system, such as a charge-coupled device
or complementary metal oxide semiconductor (CMOS) [9]. In
pursuit of high temporal resolution, the detection sensitivity is
sacrificed due to a short shutter time. The current highest frame
rate of a CMOS image sensor is limited to a mega frames per
second [10].

Recently, serial time-encoded amplified microscopy
(STEAM) is demonstrated as a novel optical imaging technique
that can achieve a high frame rate up to 10 MHz [11]–[14].
STEAM is an optical method that uses a combination of spatially
and temporally dispersive elements with a broadband mode-lock
laser source to achieve ultrafast single pixel imaging [15]–[20].
It should be noted that each single-shot pulse represents an im-
age and the temporal overlap between adjacent pulses after time
stretch must be avoided to ensure high imaging accuracy. For an
optical pulse train from a mode-lock laser source having a line
width of tens of nm and a repetition rate of tens of megahertz,
the chromatic dispersion of a dispersive element used to perform
wavelength-to-time mapping cannot be too large to avoid pulse
overlap, which will limit the spatial resolution. In a photonic
time-stretch system, to avoid temporal overlap, a solution is to
use wavelength division multiplexing (WDM). A continuous-
time large-bandwidth time-stretched signal is segmented and
interleaved into multiple parallel channels based on virtual time
gating (VTG), which makes the pulses in an individual chan-
nel have no temporal overlap [21], [22]. Base on this concept,
a WDM microscopic imaging system with an increased res-
olution was proposed and demonstrated [23]. However, such a
WDM technique has a limitation in producing a high quality im-
age, since a bank of optical filters at different WDM bands are
needed, which may not be designed to have ideal sharp edges to
avoid interband interferences, thus affecting the spectrum at the
boundary of the different WDM bands and reducing the quality
of the image.

In this paper, we propose and experimentally demonstrate a
polarization division multiplexing (PDM) time-stretch micro-
scopic imaging system with nearly two-time increased spatial
resolution without reducing the frame rate. The fundamental
concept of the proposed approach is to use a polarization modu-
lator (PolM) that is controlled by a square-wave sequence with
an amplitude voltage of Vπ /2, where Vπ is the half-wave volt-
age of the PolM, from an arbitrary waveform generator (AWG)
triggered by a synchronization signal from the mode-lock laser
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Fig. 1. Schematic of the PMD time-stretch microscopic imaging system. (a) Free space optical path for wavelength-to-space mapping to encode the spatial
information into the spectrum; (b) to convert the linearly polarized pulse train to two pulse trains with orthogonal polarizations. The PBS separates the two
orthogonally polarized pulse trains into two channels; (c) the two pulse trains are sent to DCF2 to perform wavelength-to-time mapping. The time-stretched
waveforms are captured by two PDs and digitized by a real-time oscilloscope. DCF: dispersion compensating fiber; EDFA: erbium doped fiber amplifier; OC:
optical circulator; PC: polarization controller; PolM: polarization modulator; Syn: synchronization; RF: radio frequency; PBS: polarization beam splitter; PD:
photodetector.

source, to alternatively change the polarization directions of
adjacent pulses in the pulse train, to generate two interleaved
pulse trains that are orthogonally polarized. Since two adjacent
optical pulses are orthogonally polarized, the spacing between
two adjacent pulses along one polarization direction is dou-
bled, thus the spatial resolution is doubled due to the use of a
dispersive element with doubled chromatic dispersion without
reducing the frame rate. The proposed approach is experimen-
tally evaluated. An imaging system with a spatial resolution of
18 μm and a beam width of 2.5 mm at a scan rate of 48.8 MHz
is demonstrated. In the experiment, two samples including a
resolution target and a silicon wafer are used. The improvement
in image quality based on the proposed technique is experimen-
tally verified.

II. PRINCIPLE

The schematic of the proposed PDM time-stretch microscopic
imaging system is shown in Fig. 1. An ultra-short pulse train
from a mode-lock laser source is sent to a dispersion compen-
sating fiber (DCF1) to temporally stretch the pulses before the
pulse train is sent to a diffraction grating via an erbium-doped
fiber amplifier (EDFA1), a half-wave and a quarter-wave plate.
The purpose to place DCF1 after the mode-lock laser source
is to extend the pulse width to reduce the peak power to avoid
damaging the later devices. However, since the system is a linear
time-invariant system, it is identical to place DCF1 at a location
just before photo-detection. The two wave plates are used to
adjust the polarization direction of the light wave to the diffrac-
tion grating to achieve the highest diffraction efficiency due to
the polarization dependence of the diffraction grating. At the
output of the diffraction grating, a pulse is extended to a one-
dimensional (1-D) beam due to the diffraction of the diffraction

Fig. 2. The principle of the PolM to generate two interleaved pulse trains that
are orthogonally polarized. The light along the x’-axis comes out when the drive
signal is 0 level. The light along the y’-axis comes out when the drive signal is
Vπ /2 level.

grating, which is sent via two mirrors and a focus lens to il-
luminate the sample. The sample is mounted on a translation
stage that is moving perpendicular to the direction of the 1-D
optical beam. The overall function of this free-space optics part,
shown in Fig. 1(a) as Part 1, is to perform wavelength-to-space
mapping to achieve 1-D imaging. The spatial information of the
sample is encoded onto the spectrum of the pulse [24]. The en-
tire two-dimensional (2-D) image of the sample is then captured
by translating the sample along the vertical direction controlled
by a stepper motor.

The second stage of this PDM time-stretch microscopic imag-
ing system is to interleave the pulse train coming from Part 1, to
form two pulse trains that are orthogonally polarized by using a
PolM. The interleave operation is shown in Fig. 1(b). As can be
seen, a linearly polarized pulse train from Part 1 is controlled
by a polarization controller (PC1) to have an angle of 45° to one
principal axis (x-axis in Fig. 2) of the PolM. The optical fields
along the two principal axes are given by
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where Ein is the optical filed of the light wave from Part 1, Ex

and Ey are the optical fields along the two principal axes of the
PolM. A square-wave sequence with an amplitude voltage of
Vπ /2 from an AWG triggered by a synchronization signal from
the mode-lock laser source is applied to the PolM to alternatively
change the polarization directions of the pulses in the pulse train,
to generate two interleaved pulse trains that are orthogonally
polarized. The optical field at the output of the PolM can be
expressed as [25]
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where vRF is the voltage applied to the PolM, Ex′ is the optical
component along the x’-axis and Ey ′ is the optical component
along the y’-axis, as shown in Fig. 2. When the voltage of the
square-wave sequence is vRF = 0, the polarization direction of
the linearly polarized pulse is not changed, which is along the x’-
axis. On the other hand, when the voltage of the square-wave is
vRF = Vπ /2, the polarization direction of the linearly polarized
pulse is rotated by 90°, which is along the y’-axis. By using a
polarization beam splitter (PBS) with its principal axes aligned
with the two orthogonal polarization directions of the two pulse
trains, realized by tuning PC2, the two orthogonally polarized
pulse trains are separated (demultiplexed) physically.

The physically separated polarization-interleaved pulse trains
are sent to a second DCF (DCF2) from the other sides, to perform
wavelength-to-time mapping, to convert the sample information
encoded on the pulse spectrums to the amplitudes of two tempo-
ral waveforms, as shown in Fig. 1(c). A second EDFA (EDFA2)
is used to further compensate for the insertion loss. Thus, two
time-stretched pulse trains carrying the imaging information in
the time domain are obtained, which are detected by two pho-
todetectors (PD1 and PD2), sampled by a high-speed oscillo-
scope, and reconstructed off-line using a digital signal processor.
Since the repetition rate of the two pulse trains is half than that
of the original pulse train, the dispersion of the dispersive ele-
ment can be doubled, thus the spatial resolution is increased by
nearly two times while maintaining the same frame rate without
pulse overlapping. Note that spatial resolution is improved since
the proposed system is temporal-dispersion limited, the use of a
dispersive element with a higher value of dispersion can further
stretch the pulses in the pulse train without causing pulse over-
lap, making the spectral resolution increased. It should also be
noted, however, a higher value of dispersion will usually bring
more loss and thus a higher gain is needed to compensate for
the loss. In the system, this is done by using the two EDFAs.

III. EXPERIMENT

An experiment based on the setup shown in Fig. 1 is carried
out. The optical pulse train used for imaging is generated from
a passively mode-locked laser source (IMRA femtolite 780)
with a center wavelength of 1558 nm, a 10-dB bandwidth of
∼14 nm, and a pulse repetition rate of 48.8 MHz. The spectrum
of a pulse from the pulse train is shown in Fig. 3(a). The pulse
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Fig. 3. (a) The spectrum of an optical pulse from the mode-lock laser, and (b)
the image of the1-D rainbow beam at the output of the focus lens.

train from the mode-lock laser source is sent to DCF1 with a
value of dispersion of −948 ps/nm to temporally stretch the
pulse, which is then amplified by EDFA1. The loss of DCF1
is about 7 dB. Note that the use of DCF1 just after the mode-
lock laser source is to broaden the pulse to reduce the peak
power of the pulse train to avoid damaging the PolM and other
components. However, the function is identical to placing DCF1
at any place in the system since the system is a linear time-
invariant system. The time-stretched pulse train is sent to the
diffraction grating to perform wavelength-to-space mapping.
The diffraction grating has a groove density of 1200 lines/mm.
A one-dimension spatially dispersed pulse is obtained at the
output of the diffraction grating. A singlet spherical lens with
a focal length of 100 mm is then used to focus the dispersed
pulse to be a rainbow line. The focused rainbow line is incident
onto a sample that is placed at the focal plane of the lens. The
1-D rainbow line is measured by a beam profiler (Thorlabs:
BP209IR/M) which is shown in Fig. 3(b). The rainbow line
has a width of 20 μm and a length of 2.5 mm. Consequently,
when the sample is illuminated by the optical pulse, its reflection
from the sample at different wavelengths in a range of 1551–
1565 nm corresponds to a different spatial coordinate along the
horizontal direction. The optical power illuminated on sample is
around 5 dBm. Thus, the information of the sample is encoded
on the spectrum of the rainbow pulse, which is reflected back
and directed via an optical circulator (OC) and a PC (PC1) to
the PolM. The optical power at port 3 of the OC is measured
to be about 0 dBm. A square-wave sequence with an amplitude
voltage of Vπ /2 from the AWG triggered by a synchronization
signal from the mode-lock laser source is applied to the PolM
to alternatively change the polarization directions of adjacent
pulses in the pulse train, to generate two orthogonally polarized
pulse trains. The PolM (Versawave) has a bandwidth of 40 GHz,
and a half-wave voltage of 3.5 V. The polarization extinction
ratio of the PolM is about 20 dB. A radio frequency power
amplifier is used to amplify the square-wave sequence to have
an amplitude voltage of Vπ /2. The polarization directions of
the two orthogonally polarized pulse trains are aligned with
the principal axes of the PBS by tuning PC2, to physically
separate the two pulse trains. Here the optical power is about
6 dBm. Fig. 4(a) shows the two interleaved optical pulse trains
at the outputs of the PBS. The repetition period (41.1 ns) of
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Fig. 4. The two polarization-interleaved optical pulse trains at the output of
the PBS. (a) The waveforms that are temporally stretched by DCF1 with a value
of dispersion of −948 ps/nm; (b) the waveforms that are temporally stretched
by both DCF1 and DCF2 with a total value of dispersion of ∼−2.7 ns/nm.
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Fig. 5. Theoretical spatial resolution of the ultrafast line scan imaging system
for three limiting cases: spatial-diffraction limited (red), temporal-dispersion
limited (green), and detection limited (blue). The position of spot A denotes the
final resolution of the system with a value of dispersion of ∼−1 ns/nm is limited
by temporal dispersion. The position of spot B denotes the final resolution of
the system with a value of dispersion of ∼−2.7 ns/nm is limited by spatial
diffraction. The system parameters: the center wavelength is 1558 nm, the input
beam waist is 8.5 mm, the focal length of the spherical lens is 100 mm, the
diffraction grating period is 1/1200 mm, and the detection bandwidth is 7 GHz.

the pulse trains is two times the period of the original pulse
train. Then, the two pulse trains are sent to DCF2 with a value
of dispersion of ∼−1.7 ns/nm from the other sides, to perform
the wavelength-to-time mapping (in fact, DCF1 and DCF2 are
working together to perform the wavelength-to-time mapping),
to convert the information encoded on the spectrum to the time
domain. The loss of DCF2 is about 8 dB. Note that the residual
pulses are also amplified by EDFA1, but they are very weak.
The total optical gain of the two EDFAs is ∼35 dB and the
spectrum of the pulses in the pulse train is within the gain
bandwidth of the EDFAs. Fig. 4(b) shows the waveforms of the
orthogonally polarized pulse trains after time stretch by DCF1
and DCF2. The residual pulses disappear after passing through
DCF2. The temporarily stretched pulse trains, each having a
power of −5 dBm, are detected by two high-speed PDs, and
digitized by a high-speed oscilloscope (Tektronix TDS7704B)
with a bandwidth of 7 GHz and a sampling rate of 20 Gs/s.

The spatial resolution of a line scan imaging system based on
the space-to-wavelength-to-time mapping is limited by: 1) the
spatial diffraction limited resolution, 2) the spectral resolution
of the dispersive fiber defined by the stationary-phase approxi-
mation, and 3) the temporal resolution of the optical detection
system including the PDs and the back-end digitizer [26], [27].
The contributions of the three factors to the actual spatial res-
olution of our proposed imaging system are evaluated and are
shown in Fig. 5. The values of the parameters used are the same
as the ones used in our experiment, which are given in the figure
caption of Fig. 5. For our used mode-lock laser source with a
pulse period of ∼20 ns, a section of DCF (DCF1) with a value
of dispersion of ∼−1 ns/nm is employed for time stretch, and
the pulse train after time stretch has no temporal overlap. In this
case (called as Case 1), the spatial resolution is restricted by fac-
tor 2, corresponding to a resolution of∼28 μm (marked by letter
A in Fig. 5). When using the PDM technique, the total value of
dispersion is increased up to ∼−2.7 ns/nm (DCF1+DCF2). For
this case (called as Case 2), the resolution is attributed to the spa-
tial diffraction which is ∼18 μm (marked by letter B in Fig. 5),
and the total line scan rate is still maintained at 48.8 MHz.
Here we should point out that it is not necessary to increase the
dispersion to excess the value of ∼−2.7 ns/nm, since the final
resolution is always limited by factor 1.

To evaluate the performance of the proposed imaging sys-
tem, we first perform optical imaging of a USAF-1951 standard
resolution target under two different values of dispersion of
∼−1 ns/nm and ∼−2.7 ns/nm. As a proof-of-concept demon-
stration, the imaging system works in the single-shot line scan
mode, along the scan direction shown in Fig. 1(a) at a frame
rate of 48.8 MHz. The 2-D imaging is achieved by moving the
sample in the vertical direction. Fig. 6(a)–(c) shows the three
2-D images of the resolution target: the image obtained from
a bright-field microscope, the image obtained for Case 1 with
a value of dispersion of ∼−1 ns/nm and the image obtained
for Case 2 with a value of dispersion of ∼−2.7 ns/nm. Here
the imaging region covers the group 4 elements from 2 to 6, as
shown in Fig. 6(a). For group 4 elements from 6 to 2, the line
widths are from 17.5 to 28 μm. It is clear that the image formed
using a DCF with larger dispersion results in better image qual-
ity in terms of spatial resolution. The experimental results in
Fig. 6(b) and (c) have confirmed the effectiveness of the pro-
posed technique to increase the spatial resolution. It should be
noted that both images are reconstructed from raw data with-
out any additional data processing. The difference in quality is
only resulted from the imaging system, where different values
of dispersion are employed, leading to different spatial reso-
lution. Though the system is diffraction limited, the quality of
Fig. 6(c) is more blurred than that of Fig. 6(a) because of its
poor resolution.

To demonstrate the proposed system for general applications,
the imaging of a silicon chip is then performed. This silicon chip
contains waveguides with different sizes and shapes. For Case
1 where the DCF for time stretch has a value of dispersion of
∼−1 ns/nm, the fine structures etched onto the chip are hardly
visible, as shown in the dashed-red circle of Fig. 7(b), compared
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The bright-field microscopic image of the group 4 elements from 2 to 6 of the
resolution target; (b) 2-D image obtained for Case 1 when the value of dispersion
is ∼−1 ns/nm; (c) 2-D image obtained for Case 2 when the value of dispersion
is ∼−2.7 ns/nm.

with the bright-field microscope image shown in the dashed-red
circle of Fig. 7(a). In contrast, the 2-D image obtained based on
the proposed technique using a DCF with a value of dispersion
of ∼−2.7 ns/nm shows a greatly improved image quality. The
fine line waveguides, shown in the dashed-red circle of Fig. 7(c),
can be well distinguished. In addition, for the part of the image
in the dashed-red box, the details of the micro-square for Case
2 are also clearer than that for Case 1. The results in Fig. 7 have
further proved the improvement in spatial resolution using the
proposed imaging system without sacrificing the frame rate.

A nearly doubled spatial resolution is confirmed by the experi-
ment. In the experiment, the value of chromatic dispersion of the
DCF for wavelength-to-time mapping device is ∼−2.7 ns/nm.
Based on the PDM technique, the scan rate maintains constant
while the value of dispersion is increased from ∼−1 ns/nm to
∼−2.7 ns/nm, corresponding to a spatial resolution change from
28 to 18 μm. Unlike the VTG technique, each single-shot line
scan image is no longer carved into multiple channels to avoid
temporal overlap. With no separation of each image-encoded
pulse, the final 2-D images can be reconstructed from the raw
data without further data processing and the imaging quality is
greatly improved. Note that the imaging system demonstrated
here is dispersion limited. Thus, the use of a dispersive element
with a higher value of dispersion can increase the spatial resolu-
tion. For an imaging system that is diffraction limited [28], the
scan rate can be increased until the system becomes dispersion
limited. Then, the PDM technique can be employed to further
improve the spatial resolution.

Fig. 7. Surface imaging of a silicon chip. (a) The bright-field microscopic
image of the silicon chip; (b) 2-D image obtained for Case 1 when the value of
dispersion is ∼−1 ns/nm; (c) 2-D image obtained for Case 2 when the value of
dispersion is ∼−2.7 ns/nm.

IV. CONCLUSION

We have proposed and experimentally demonstrated a novel
time-stretch imaging system based on PDM technique with in-
creased spatial resolution without reducing the frame rate. The
fundamental concept of the proposed approach was to use a
PolM to make the pulse train from a mode-lock laser source into
two interleaved pulse trains with orthogonal polarizations. Since
the spacing between two adjacent pulses in a new pulse train
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for one polarization direction is doubled, the value of disper-
sion of the dispersive element in the system for wavelength-to-
time mapping could be doubled without introducing pulse over-
lap. Thus, the spatial resolution was doubled while maintaining
the same frame rate. The proposed technique was experimen-
tally demonstrated. In the experiment, two samples, one was a
standard resolution target and the other was a silicon chip, were
used. For a DCF with a higher value of dispersion, the image
quality is increased. The results have confirmed the effectiveness
of the proposed approach for resolution-improved imaging.
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