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Abstract—Instantaneous frequency measurement (IFM) based
on a silicon photonic Fano resonator with improved linearity and
sensitivity is proposed and experimentally demonstrated. The Fano
resonator has a steep edge in its spectral response, which is em-
ployed to translate the frequency information of a microwave signal
to an optical power change. When comparing the optical powers
at the output and input of the Fano resonator, a highly linear am-
plitude comparison function (ACF), which is used to estimate the
microwave frequency is obtained. The key device in the system is
the Fano resonator, which is realized by coupling a grating-based
Fabry–Perot cavity resonant mode with an add-drop microring
resonator mode, implemented on a silicon platform. The linearity
of the ACF is characterized by its R-squared value which is cal-
culated by fitting the ACF measurements with a linear function.
In our experimental demonstration, an R-squared value as large
as 0.99 is obtained. A frequency measurement range as large as
15 GHz with a resolution better than ±0.5 GHz is achieved. The
use of the proposed IFM system to perform Brillouin frequency dis-
crimination in a fiber-optic sensor for temperature measurement
is demonstrated.

Index Terms—Carrier-suppressed single sideband modulation,
Fano resonance, instantaneous frequency measurements, mi-
crowave photonics, silicon photonics.

I. INTRODUCTION

INSTANTANEOUS frequency measurement (IFM) of a mi-
crowave or millimeter-wave signal is of great importance
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for applications in electronic warfare and cognitive radio sys-
tems and for high resolution sensor systems. In recent years,
photonics-based techniques for IFM have been intensively in-
vestigated and numerous approaches have been proposed and
demonstrated. The key advantages of performing IFM based
on photonics include ultra-fast measurement speed, high accu-
racy, and large frequency measurement range [1], [2]. In gen-
eral, photonics-based IFM techniques can be divided into three
categories: frequency-to-microwave power mapping [3]–[8],
frequency-to-optical power mapping [9]–[22], and frequency-
to-time mapping [23]–[25].

For techniques based on frequency-to-microwave power map-
ping [3]–[8], a microwave signal with its frequency to be mea-
sured is first converted into an optical signal through electrical
to optical conversion using an optical modulator, and then sent
the modulated optical signal to a photonic processing module
(a dispersive element or an optical filter), where a monotonic
frequency-dependent microwave power penalty function in the
optical domain is introduced. A photodetector (PD) is connected
to the photonic processing module to convert the optical signal
into a microwave signal. To make the measurement to be inde-
pendent of the input power, two parallel channels which provide
different, usually opposite frequency-dependent power penalty
functions, are needed. The power ratio of the microwave signals
from the two channels, called amplitude comparison function
(ACF), is a function of the input microwave frequency. The
major problem associated with these techniques is that high-
frequency PDs and wideband microwave devices are needed,
making the systems costly.

To avoid the use of expensive microwave devices, techniques
based on frequency-to-optical power mapping were proposed
and the ACF is the power ratio between the optical powers
measured at the outputs of two optical paths [9]–[22]. The key
component in such a system is a photonic processing mod-
ule, such as an optical filter [9]–[16] or an optical mixing unit
[17]–[22], to translate the frequency of an input microwave sig-
nal to an optical power change. In most of the IFM schemes
based on frequency-to-optical power mapping, an optical filter
with a sinusoidal spectral response is employed to perform fre-
quency to power mapping, which leads to an ACF with very
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poor linearity. For example, a Sagnac loop based filter with
50 GHz free spectral range (FSR) was used in [9]. The mi-
crowave signal with an unknown frequency was modulated on
two optical carriers, one of which was set at a peak and the
other at a valley of the filter spectral response. The power ra-
tio of the two modulated signals, which is the ACF, is given
by [9]

ACF =
1 − cos (2πfRF /FSR)
1 + cos (2πfRF /FSR)

(1)

where fRF is the frequency to be measured. The R-square value
is calculated to be 0.65806, which is very low, indicating a poor
linearity.

For techniques based on frequency-to-time mapping [23]–
[25], the frequency of an unknown microwave signal is con-
verted into an electrical time delay using a dispersive time
delay device [23] or a frequency shifting recirculating delay
line (FS-RDL) [24], [25]. Since a dispersive element has a lin-
ear group delay and a FS-RDL has equal frequency shift per
roundtrip time, these techniques can lead to a linear IFM sys-
tem. However, the dispersion-based method has a relatively low
resolution (∼12.5 GHz) and a large measurement error (about
±1.56 GHz). The FS-RDL-based method has a long response
time, which may not be suitable for instantaneous frequency
measurements.

To achieve an IFM system with a high linearity, high reso-
lution, and short response time, a photonic processing module
with a highly linear frequency response to perform frequency
to power conversion is required. A linear ACF would ensure
identical measurement sensitivity for an entire frequency mea-
surement range, which is important for an IFM system to have
a high and uniform measurement resolution and accuracy. For
instance, a special FBG with two linear and complementary
spectral slopes was applied to achieve a highly linear ACF [13].
A measurement range of 1–10 GHz and a measurement accuracy
of ±0.2 GHz were demonstrated [13].

Among the approaches [3]–[25], those reported in [7], [8],
[14], [15], [18], [19], [22] were implemented based on inte-
grated photonic devices. The size is smaller, the stability is bet-
ter, the measurement latency is shorter, and the unit cost is lower.
These make integrated IFM attractive for practical applications.
However, those integrated solutions have poor linearity, mak-
ing the measurement resolution not uniform over the frequency
measurement range.

The performance of the integrated IFM techniques is summa-
rized in Table I, in which the measurement range, measurement
error and input power to the chip are considered. As can be seen
the input power levels for all the approaches [7], [8], [14], [15],
[18], [19], [22] were very high. For a practical IFM system, the
input power from a receiver is usually very low. Thus, a solution
to perform IFM with a lower input power is needed.

In this paper, we propose and experimentally demonstrate a
novel approach to achieve IFM based on a silicon photonic
integrated Fano resonator with high linearity, high sensitiv-
ity and low input power. The key device in the system is the
Fano resonator which is implemented using a grating-based

TABLE I
PERFORMANCE OF IFM TECHNIQUES BASED ON INTEGRATED PHOTONICS

Fabry-Perot (FP) cavity-coupled add-drop microring resonator
(MRR), where the resonant mode of the FP cavity interferes
with the resonant mode of the MRR in transmission response to
produce the Fano resonance. When an optical wave that carries a
microwave signal is applied to the Fano resonator, the frequency
information is converted to an optical power. By calculating the
ratio between the optical powers at the input and the output ports
of the Fano resonator, an ACF is obtained and the frequency of
the microwave signal is measured. A proof-of-concept experi-
ment is carried out. With only 0 dBm input power to the chip, a
frequency measurement range as large as 15 GHz with a resolu-
tion better than ±0.5 GHz is achieved. The use of the proposed
approach for Brillouin frequency discrimination in a fiber-optic
sensor for high resolution temperature measurement is stud-
ied and demonstrated. A measurement sensitivity as large as
1.24 MHz/°C is achieved.

II. PRINCIPLE

The schematic of the proposed system using a Fano resonator
for instantaneous microwave frequency measurement is shown
in Fig. 1. A continuous wave (CW) optical carrier (λc) is mod-
ulated by a microwave signal with its frequency to be mea-
sured at a Mach-Zehnder modulator (MZM) that is biased at
the minimum transmission point (MITP) to generate a double-
sideband modulated signal with suppressed carrier. After fil-
tering out the lower sideband using an optical bandpass filter
(OBPF), a carrier-suppressed single-sideband (CS-SSB) signal
is achieved and launched into the silicon chip via an optical cir-
culator (OC). Part of the CS-SSB signal is transmitted through
the Fano resonator while the other part of the CS-SSB signal
is reflected by the grating. The ACF, defined as the power ratio
between the transmitted and reflected average optical powers, is
given

ACF (λ) =
PTX (λ)
PRX (λ)

(2)

Since the frequency of the microwave signal has a unique
relationship with the ACF, once the ACF value is known, the
frequency of the microwave signal is measured. Note that the
optical powers rather than the microwave powers are measured,
thus no high speed PDs are needed.
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Fig. 1. (a) Schematic diagram of the proposed IFM system. (b) Image of the
fabricated Fano resonator obtained from a microscope camera. (c) The SEM
image of the Bragg grating. (d) The SEM image of the MRR. CS-SSB: carrier-
suppressed single-sideband; TLS: tunable laser source; PC: polarization con-
troller; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier;
OBPF: optical bandpass filter; OC: optical circulator.

III. FREQUENCY MEASUREMENT OF A MICROWAVE SIGNAL

A proof-of-concept experiment is carried out based on the
setup in Fig. 1. An optical carrier emitting at 1556.2 nm with a
power of 8 dBm is generated from a tunable laser source (TLS,
Anritsu MG9638A), which is then modulated by a microwave
signal from a microwave source (Agilent E8254A) at a 20-GHz
MZM (JDS Uniphase, Model 10026465). The MZM is biased at
the MITP and the microwave signal is amplified by an RF am-
plifier (MultiLink modulator driver MTC5515-751) by 20 dB.
Then, the carrier-suppressed double-sideband (CS-DSB) signal
is amplified using an erbium-doped fiber amplifier (EDFA, Nor-
tel Inc.) before introduced into the OBPF (Finisar, Waveshaper
4000 s). The lower sideband (LSB) is selected and launched
into the chip and the input power is kept around 0 dBm since
the EDFA works in a constant output power mode (Automatic
Power Control, APC). The total loss of the chip is 13.6 dB.
The optical powers at the transmission and reflection ports are
simultaneously measured by a two-channel optical power meter
(HP 8152A). Since the Fano resonator will experience a spectral
shift when the temperature changes, accurate and stable temper-
ature control (TEC, ILX Lightwave LDT-5910B) is employed
to make the temperature of the chip fixed at 23 °C. Thanks to

the stable environmental temperature and low input power to
the chip, the TEC controller can easily make the temperature
stabilized with a temperature variation smaller than 0.01 °C
during the process of the experiment and the power ratio of the
two channels is calculated and recorded. Since the two parallel
channels are experiencing the same environmental fluctuations,
the impact of the temperature change to the ACF is small and
can be neglected.

The transmission and reflection spectral responses of the Fano
resonator, which was first reported by us in [26] are measured
by an optical vector analyzer (LUNA OVA CTe) and shown in
Fig. 2(a) and (b). A zoom-in view of the region around the Fano
resonance is shown in Fig. 2(c) and (d). The ACF is calculated
using (2), which is shown in Fig. 2(e). A zoom-in view of
the linear region of the ACF is shown in Fig. 2(f) covering a
frequency range of 15 GHz. The R-square for the linear region
is calculated which is 0.98658.

Fig. 3 shows the measured microwave frequencies when the
output powers from the microwave source are set at −5 dBm,
0 dBm and 5 dBm. The frequency tuning range is from 3 to
18 GHz, which cannot be higher due to the limited bandwidth
of the 20 GHz MZM. The solid line shows the actual ACF of
the system. The measurement errors which are the difference
between the measured ACF values and the actual ACF values
are shown in Fig. 4. The measurement errors are smaller than
±0.5 GHz over the entire frequency measurement range from
3 to 18 GHz. The standard deviations of the errors for the three
power levels are calculated to be 0.1331, 0.1227, and 0.1625
(0.1142 without counting the first two points which have higher
errors). As can be seen, a higher input power will lead to smaller
measurement errors. A higher microwave power results in a
higher modulation index so that the signal-to-noise ratio (SNR)
of the modulated optical signal is higher after amplification. The
measurement errors for lower frequencies are higher when the
signal power is 5 dBm. This is because the high order sidebands
are stronger which are harder to be removed by the optical
bandpass filter.

The approach is effective for the measurement of a single-
frequency microwave signal. If a modulated microwave signal
is applied to the input of the IFM system, each frequency com-
ponent of the input microwave signal will be mapped to a corre-
sponding optical power and the output power will be the sum of
all the optical powers. Since an R-squared value as large as 0.99
is obtained in the proposed IFM system, the power-frequency re-
lation is highly linear and the measurement result will be a linear
combination of the frequencies, which will cause measurement
errors. Taking a double-sideband plus carrier (DSB+C) signal
as an example, if the carrier frequency is 10 GHz, and each of
the two sidebands has a power that is 5% or 10% of the power of
the microwave carrier, we calculate the measurement errors as
a function of the sideband frequency, as shown in Fig. 5. As can
be seen, the measurement error decreases as the frequency of
the sidebands and the sideband-to-carrier power ratio decrease.
If the two sidebands are separated from the microwave carrier
by 1 GHz, the frequency measurement error is 0.2 GHz (or 2%)
or 0.4 GHz (or 4%).
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Fig. 2. (a) Transmission spectral response of the device, (b) reflection spectral
response of the device, (c) and (d) zoom-in views of the region around the Fano
resonance, (e) ACF, and (f) a zoom-in view of the linear region of the ACF with
linear fitting.

IV. FREQUENCY DISCRIMINATION IN A BRILLOUIN FIBER

SENSING SYSTEM

Distributed Brillouin-based optical fiber sensors are widely
used in civil infrastructure and power supply systems to mon-
itor the temperature and strain variations along the sensing
fibers [27]. High speed and high resolution interrogation of

Fig. 3. Measured microwave frequencies when the input powers of the un-
known microwave signal are −5 dBm, 0 dBm and 5 dBm.

Fig. 4. Measurement errors when the input powers of the microwave signal
are at −5 dBm, 0 dBm and 5 dBm.

the Brillouin frequency shift (BFS) of such a sensor is a key
procedure to ensure a high performance temperature and strain
sensing [28], [29]. Thanks to the high speed and high linear-
ity, the proposed IFM system is a good candidate to achieve
real-time BFS discrimination in a Brillouin fiber-optic sensing
system.

Fig. 6 shows the experimental setup to use the proposed IFM
technique to interrogate a Brillouin sensor. A CW light emit-
ted from a TLS (Anritsu MG9638A) is amplified by an EDFA
(Nortel) to 15.8 dBm and then launched into a 10-km single-
mode fiber (SMF) through an optical circulator (OC1) as a
pump source. Due to stimulated Brillouin scattering, a Brillouin
gain spectrum at a longer wavelength is resulted, as shown in
Fig. 7. A peak at the same wavelength as the pump wavelength
due to Rayleigh scattering is seen, which is removed by an
OBPF (Finisar, Waveshaper 4000s), as also shown in Fig. 7.
The Brillouin gain spectrum is introduced into the IFM chip
through a second OC (OC2). By detecting the transmission
and reflection powers, the optical frequency of the Brillouin
gain spectrum is estimated. To evaluate its performance as a
temperature sensor, in the experiment we change the tempera-
ture of the SMF from 75 °C to 25 °C, the values of the BFS
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Fig. 5. Measurement errors of a DSB+C signal with 10 GHz microwave
carrier when the sideband-to-carrier power ratios are 5% and 10%.

Fig. 6. Experiment setup of the proposed microwave frequency measurement
system. BOTDR: Brillouin optical time domain reflectometry; SMF: single-
mode fiber.

Fig. 7. Optical spectra before and after optical filtering.

Fig. 8. Brillouin frequency shift as a function of the temperature change of
the SMF.

are measured. As can be seen from Fig. 8 the values are de-
creased with a fitted slope of 1.24 MHz/°C. The measurement
errors are within ±1.64 MHz, which are mainly caused by the
nonuniformity of the temperature distribution in such a long
fiber as well as the strain variations caused by the temperature
change.

Note that if the CW light source and the two-channel opti-
cal power meter are replaced by an optical pulse source and
two low-speed PDs, the sensor can be used for high speed and
high resolution distributed temperature sensing. For practical
implementations, temperature control of the chip can be used
to control the temperature of the chip in real time so that the
measurement errors would be further reduced.

V. CONCLUSION

A novel approach to implement instantaneous frequency mea-
surement based on a silicon photonic Fano resonator with high
linearity, high sensitivity and low input power was proposed and
experimentally demonstrated, for the first time, to the best of our
knowledge. The Fano resonance was generated by coupling a
grating-based FP cavity with an MRR. When the resonant mode
of the FP cavity interfered with the resonant mode of the MRR,
an asymmetric Fano response with a steep edge in its spectral
response was realized, which was used to convert the frequency
of a microwave signal to an optical power change. By comparing
the optical powers at the output and the input ports of the Fano
resonator, an ACF with high linearity was obtained. An experi-
ment was performed. The R-squared value of the measured ACF
was 0.99 while is very high confirming a good linearity of the
ACF. The input power to the chip was about 0 dBm, which was
low. A frequency measurement range as large as 15 GHz with
a resolution better than ±0.5 GHz was achieved. The proposed
IFM system was also used for Brillouin frequency discrimi-
nation in a fiber-optic sensor for temperature measurement. A
linear dependence between the Brillouin frequency shift and the
temperature variations was measured to be 1.24 MHz/°C with
measurement errors within ±1.64 MHz.
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