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Abstract—A continuously tunable microwave fractional Hilbert
transformer (FHT) implemented based on a nonuniformly spaced
photonic microwave delay-line filter is proposed and demon-
strated. An FHT has a frequency response with a unity magnitude
response and a phase response having a phase shift between 0
and at the center frequency. A seven-tap photonic microwave
delay-line filter with nonuniformly spaced taps is designed to
provide such a frequency response. The advantage of using
nonuniform spacing is that an equivalent negative coefficient
can be achieved by introducing an additional time delay leading
to a phase shift, corresponding to a negative coefficient. An
FHT operating at a center frequency around 8.165 GHz with a
tunable order between 0.24 and 1 is implemented. A classical HT
operating at a center frequency of 7.573 GHz with a bandwidth
greater than 4.5 GHz is also implemented. The use of the classical
HT to perform temporal Hilbert transform of a Gaussian-like
electrical pulse is demonstrated.

Index Terms—Chromatic dispersion, fractional Hilbert trans-
form (FHT), optical signal processing, optical single sideband.

I. INTRODUCTION

A MICROWAVE Hilbert transformer (HT), also called a
quadrature filter or wideband 90 phase shifter, plays an

important role in the theory and practice of microwave signal
processing [1], which is widely employed for applications such
as communications, radar, and modern instrumentation [1]. To
improve the performance of the Hilbert transform and also to
permit an additional degree of freedom, the classical HT was
generalized to a fractional Hilbert transformer (FHT) [2]. Thus,
the classical Hilbert transform can be considered as a special
case of the fractional Hilbert transform. In [3] and [4], the dis-
crete version of the fractional Hilbert transform is developed
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and is applied to achieve single sideband (SSB) modulation, and
edge and corner detections of a digital image.
In [5], the implementation of a classical HT based on an in-

tegrated electronic delay-line filter was proposed and demon-
strated. The major limitation of using pure electronics is the
small bandwidth and low operating frequency. Due to the ad-
vantages of high speed and broad bandwidth offered by modern
optics, the implementation of a microwave HT using photonic
techniques has been widely investigated recently [6]–[13]. In
[6]–[10], a photonic microwave FHT was implemented based
on a phase-shifted uniform fiber Bragg grating (FBG) [6]–[8],
a sampled FBG [9], or a Mach–Zehnder interferometer (MZI)
[10]. The sampled FBG in [9] and the MZI in [10] were used
as a classical HT to implement optical SSB modulation. An
FBG-based FHT can perform the transform of an optical pulse
with a bandwidth in hundreds of GHz [6]–[8]. The major limita-
tion of an FBG- or MZI-based FHT is that the fractional order is
not tunable. In [11] and [12], a classical microwave HT was im-
plemented based on a multitap photonic microwave delay-line
filter. The multitap classical HT in [11] was used to achieve
two orthogonally phased RF signals, and the HT in [12] was
employed to realize instantaneous microwave frequency mea-
surement. However, the implementations of the HT in [11] and
[12] were complicated due to the requirement of negative taps
and only a classical HT was achieved. In [13], we proposed and
demonstrated a continuously tunable microwave FHT based on
a multitap photonic microwave delay-line filter using a polar-
ization modulator (PolM). As a PolM was required to achieve
the negative tap coefficients in [13], the cost of the system was
high and the tuning of the polarization directions of the input
light waves was complicated.
Recently, a new concept to achieve a photonic microwave

delay-line filter with complex coefficients has been proposed
and demonstrated by us, in which the complex coefficients were
realized by nonuniform spacing [14]. The use of a nonuniformly
spaced photonic microwave delay-line filter for the generation
of a phase-coded and a chirped microwave pulse was demon-
strated [15], [16]. The use of a nonuniformly spaced photonic
microwave delay-line filter to achieve microwave matched fil-
tering was also reported [17]. The key significance of using a
nonuniformly spaced delay-line filter to achieve the functional-
ities is that the filter is easy to implement since the negative
or complex coefficients can be equivalently realized through
nonuniform spacing.
In this paper, we propose and demonstrate a continuously tun-

able microwave FHT based on a nonuniformly spaced delay-
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line filter. An FHT has a frequency response with a unity magni-
tude response and a phase response having a phase shift between
0 and at the center frequency. A continuously tunable FHT
with an order tuned at 0.24, 0.52, 0.88, and 1 is implemented
based on a seven-tap photonic microwave delay-line filter with
nonuniformly spaced taps. The fractional order of the FHT is
simply tuned by adjusting the tap coefficient of the central tap. A
classical HT operating at a center frequency of 7.573 GHz with
a bandwidth greater than 4.5 GHz is also implemented based
on an eleven-tap photonic microwave delay-line filter. The use
of the classical HT to perform temporal Hilbert transform of a
Gaussian-like electrical pulse is demonstrated. The processing
error is about 7%. The use of the stopband of the classical HT
as a first-order microwave differentiator is discussed.

II. PRINCIPLE

The ideal frequency response of an FHT can be expressed as
[2], [4]

(1)

where denotes the phase and is the fractional
order. As can be seen from (1), an FHT is a phase shifter and
the FHT becomes a classical HT when . By computing
the inverse Fourier transform of , the corresponding dis-
crete-time impulse response is given by [4]

(2)

As (2) is the discrete version of the ideal temporal impulse re-
sponse of the FHT, the corresponding frequency response is pe-
riodic and bandwidth limited. Fig. 1(a) shows the normalized

for . As can be seen from (2), the even tap co-
efficients are all equal to zero except the zeroth and the odd tap
coefficients are negative for . Considering that the im-
pulse response of the classical HT is [1]

(3)

thus, by using (3), the impulse response of the FHT can be con-
veniently rewritten as

(4)

where is the Dirac delta function. As can be seen from
(4), the fractional Hilbert transform of a signal is a weighted
sum of the original signal and its classical Hilbert transform
[2]. In addition, the order of the FHT is continuously tunable
by only adjusting the coefficient of the zeroth tap while keeping
the coefficients of the other taps unchanged. However, in this
case, the output microwave power is not constant for different
fractional orders. The output microwave power for is
about 6 dB lower than that for . To solve this problem,
in our case, the sum of all the tap coefficients is kept constant
and only the ratio between the zeroth tap coefficient and other

Fig. 1. (a) Ideal time-domain impulse response of the FHT. (b) Delayed and
truncated impulse response of the FHT with seven taps.

tap coefficients is adjusted. Then, the variation of the output
microwave power is reduced to about 1 dB.
As the impulse response of the FHT in (2) extends to infinity

in time, it should be truncated for practical implementation. In
addition, the impulse response exhibits negative time and is an-
ticausal; therefore, for practical implementation, a proper time
delay should be introduced to the truncated impulse response
to make it a casual system. Thus, the delayed impulse response
of the FHT is , where is a prescribed
delay. The delayed and truncated impulse response of the FHT
with seven taps is shown in Fig. 1(b), where . The cor-
responding frequency response is given by

(5)

As can be seen, the time delay will introduce a linear phase to the
phase response, but the linear phase has no effect on the output.
Usually, an appropriate window function should be applied to
the tap coefficients to obtain an optimal tradeoff between the
ripples and the bandwidth of the filter. The exact tap coefficients
could be obtained by windowing the impulse response after the
number of the taps is chosen [11].
According to (2), the frequency response of an FHT based on

a delay-line structure can be expressed as [18]

(6)

where is the time delay difference between two adjacent taps.
Based on (6), the frequency response of the FHT with different
phase shifts of 20 , 45 , 75 , and 90 is calculated which
is shown in Fig. 2, where ps. Seven taps are used and
the free spectral range is 8 GHz. The variations on the phase
responses in Fig. 2(a)–(c) are about 5 . The ripples on the mag-
nitude responses are relatively large due to the limited number
of taps and the applied rectangular window function in the time
domain. To reduce the ripples and increase the 3-dB bandwidth,
more taps could be used and the tap coefficients could be ad-
justed to apply an appropriate window function. To process a
baseband signal, the passband of 0–4 GHz is used to perform
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Fig. 2. Frequency responses of the FHT with true negative taps and the phase
shifts of 20 , 45 , 75 , and 90 .

the fractional Hilbert transform. However, as shown in Fig. 2,
the fractional Hilbert transform could also be performed at 4 or
8 GHz (null point), which makes the filter a bandpass FHT.
As the negative tap coefficients are difficult to achieve in

practice, to lower the cost and simplify the implementation, a
novel technique to design a filter having equivalent complex
coefficients based on a delay-line structure with nonuniform
spacing was proposed and demonstrated by us [14], and a com-
prehensive theoretical study was reported in [19]. According to
[14], the time delay and the coefficient of the th tap in our case
at the first channel are given by

(7)

where is the phase of . For the positive taps,
and for the negative taps, . Thus, the frequency re-
sponse of an FHT based on a nonuniformly spaced delay-line
filter can be expressed as

(8)

Fig. 3 shows the frequency response of the FHT with equivalent
negative taps at the first channel based on (8). The phase varia-
tions are less than 5 . As can be seen from (7) and (8),
is exactly equal to at the frequency of ; how-
ever, a nonlinear phase response is introduced to at
other frequencies in the passband when . Fig. 4 shows
the phase difference between the phase response of the FHT
with true negative taps and that of the FHT with equivalent neg-
ative taps. The linear phase difference is eliminated as the linear
phase response is equivalent to a pure time delay and has no ef-
fect on the output. As can be seen from Fig. 4, an additional

Fig. 3. Frequency responses of the FHT based on nonuniformly spaced mi-
crowave delay-line filter with all-positive taps.

Fig. 4. Phase differences between the phase response of the FHT with true
negative taps and that of the FHT with equivalent negative taps.

phase shift of about 3–5 is introduced to the FHT with equiv-
alent negative taps when and the additional variations
introduced to the passband are less than 2 . For practical im-
plementation, a calibration should be performed to adjust the
coefficient of the central tap to eliminate the additional phase
shift. For example, the theoretical nonzero tap coefficients for
45 phase shift are [0.33, 1, 1.57, 1, 0.33], while the calibrated
tap coefficients are [0.33, 1, 1.81, 1, 0.33], which are identical
to the theoretical tap coefficients for a phase shift of 41 .

III. EXPERIMENTAL RESULTS

The proposed continuously tunable microwave bandpass
FHT based on a seven-tap nonuniformly spaced delay-line
filter is then experimentally demonstrated. The experimental
setup is shown in Fig. 5. Five wavelengths from five laser
diodes (LDs) are multiplexed using an optical coupler and
then sent to a Mach–Zehnder modulator (MZM). The optical
powers from the LDs are adjusted to ensure that the powers
are properly set among the channels, to achieve the required
tap coefficients. The intensity-modulated signal is applied to a
photodetector (PD) via a length of standard single-mode fiber
(SMF). An erbium-doped fiber amplifier (EDFA) is used to
compensate the optical power loss and keep the optical power
incident on the PD constant, which also makes the sum of all
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Fig. 5. Experimental setup for the FHT based on a nonuniformly spaced pho-
tonic microwave delay-line filter.

the tap coefficients constant. Due to the dispersion of the SMF,
a time delay difference between two wavelengths is generated.
The length of the SMF is about 24.7 km, and the chromatic
dispersion is calculated to be ps/nm when the
wavelength is around 1545 nm. Since the time delay difference
between two taps is proportional to the wavelength spacing, the
optical wavelength of the th tap is calculated by [14]

(9)

where and are the wavelengths of the first and the th
nonzero taps. In the experiment, the wavelengths of the LDs are
tuned to achieve the required nonuniformly spaced time delay
differences based on (9). The power of each LD is also adjusted
to obtain the desired tap coefficients. By tuning the coefficient
(laser power) of the zeroth tap while keeping the coeffi-
cients of the other taps unchanged, a continuously tunable band-
pass FHT is achieved. Fig. 6 shows the frequency response of
the FHT with different unrecovered phase shifts of 18 ,
42 , 75 , and 90 . The wavelengths of the nonzero taps are
set at [1543.680, 1544.280, 1544.730, 1545.030, 1545.630] nm,
which makes the center frequency of the FHT at about 8.165
GHz. The phase shifts in Fig. 6(a) and (b) were originally de-
signed to be 20 and 45 ; however, an about 2 error was in-
troduced during the power-tuning process of LD3. Small errors
also exist on other phase responses, but the experimental results
still agree very well with the theoretical results. Fig. 7 shows
the recovered phase response from Fig. 6 with the linear phase
eliminated. As can be seen, an additional phase shift of about
4 is introduced when , and the phase variations are all
within in the passband, which shows excellent agreement
with the previous prediction.
To increase the 3-dB bandwidth and reduce the variations on

the magnitude response, another classical HT with eleven taps
is designed. In the design, the wavelengths of the nonzero taps
are set at [1543.190, 1543.790, 1544.390, 1545.140, 1545.740,
1546.340] nm and the length of the SMF is adjusted to be 22.8
km, which makes the center frequency of the HT at about 8.86
GHz, and the tap coefficients are set to be [0.09, 0.23, 1, 1, 0.23,
0.09]. The frequency response of the bandpass HT is shown in
Fig. 8(a), which is measured using a vector network analyzer
(VNA, Agilent E8364A), as shown in Fig. 5. As can be seen, the
center frequency is 8.857 GHz and the phase shift is close to .
The operating bandwidth is about 5.4 GHz and the ripples of the
phase within the passband are less than 3 . Then, to demonstrate
the frequency tunability, we tune the wavelengths at [1542.890,
1543.590, 1544.290, 1545.165, 1545.865, 1546.565] nm and the
tap coefficients are set to be [0.13, 0.22, 1, 1, 0.22, 0.13]. The
frequency response of the classical HT is shown in Fig. 8(b). It

Fig. 6. Measured and calculated frequency responses of the FHT with equiva-
lent negative taps and unrecovered phase.

Fig. 7. Recovered phase response of the FHT with the linear phase eliminated.

Fig. 8. Measured and calculated frequency responses of a classical HT with
equivalent negative taps and different center frequencies. (a) 8.857 GHz.
(b) 7.573 GHz.

can be seen that the center frequency is now 7.573 GHz and the
bandwidth is about 4.6 GHz. The phase shift agrees very well
with the theoretical prediction. The ripples of the linear phase
in the passband are also within .
To verify that the proposed nonuniformly spaced microwave

delay-line filter can be used to implement real-time tem-
poral Hilbert transform, an electrical pulse from an arbitrary
waveform generator (AWG, Tektronix AWG7102), shown
in Fig. 9(a), is mixed with a 7.573-GHz signal from a local
oscillator (LO) at an electrical mixer and applied to the MZM.
The pulse from the AWG has a shape close to Gaussian with a
full-width at half-maximum of about 0.47 ns and a bandwidth
of about 2.3 GHz. The electrical pulse output from the PD is
downconverted to the baseband at another electrical mixer with
the same LO. The output waveform is observed by a digital
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Fig. 9. Experimental results. (a) Input pulse from the AWG. (b) Theoretically
calculated and the experimentally measured Hilbert-transformed pulses.

Fig. 10. (a) Simulated processing error as a function of the input pulse band-
width for the classical HT shown in Fig. 8(b). RMSE: root mean square error.
(b) Frequency response of a classical HT with equivalent negative taps and the
center frequency of 40 GHz.

phosphor oscilloscope (Tektronix TDS7704B). Fig. 9(b) shows
the theoretically calculated and the experimentally measured
Hilbert-transformed pulses. As can be seen, the calculated
and measured pulses agree well. The root mean square error
(RMSE) is calculated to be 7.16%, which is normalized to
the peak-to-peak value of the calculated Hilbert-transformed
output pulse.

IV. DISCUSSION AND CONCLUSION

The processing error as a function of the input pulse band-
width is calculated based on the measured magnitude and phase
responses of the bandpass classical HT shown in Fig. 8(b). The
input is an ideal Gaussian pulse with different bandwidths. The
processing error is then obtained by calculating the normalized
RMSE between the calculated output pulse using the measured
classical microwave HT and the theoretical Hilbert transform
of the input ideal Gaussian pulse, as shown in Fig. 10(a). It can
be seen that the processing error is larger when the bandwidth
of the input pulse is smaller due to the notch at the center fre-
quency of the magnitude response.
As can be seen from Figs. 2 and 3, the bandwidth of the pro-

posed FHT with equivalent negative taps is smaller than the
original FHT with true negative taps. This is due to the narrow-
bandwidth feature of the nonuniformly spaced delay-line filter
[14]. The bandwidth of the proposed FHT could be increased by
increasing the center frequency. Fig. 10(b) shows the frequency
response of a classical HT based on an eleven-tap nonuniformly
spaced filter. The center frequency is 40 GHz. As can be seen,
the bandwidth of the HT is increased to about 24 GHz, which is
much larger than those in Fig. 3. For broader bandwidth oper-
ation, the power fading effect resulted from the chromatic dis-
persion of the dispersive fiber should also be taken into consid-
eration [20].

Fig. 11. (a) Magnitude responses of the HT shown in Fig. 8(a) and the cor-
responding ideal differentiator. (b) Error between the HT and the ideal differ-
entiator in (a). (c) Magnitude responses of the HT shown in Fig. 8(b) and the
corresponding ideal differentiator. (d) The error between the HT and the ideal
differentiator in (c).

It was shown in [21] that a first-order optical HT could also
function as a first-order temporal optical differentiator in the
stopband. This also applies to the microwave bandpass HT in
our case, which also functions as a first-order microwave differ-
entiator. Fig. 11 shows the magnitude responses of the classical
HT shown in Fig. 8 and the corresponding ideal differentiator.
The operating bandwidths are 0.66 and 0.56 GHz, respectively,
in Fig. 11(a) and (b). As can be seen, the experimental result
agrees very well with the ideal result and the error is smaller
than dB in the entire passband of the differentiator.
In conclusion, we have proposed and demonstrated a contin-

uously tunable bandpass FHT based on a nonuniformly spaced
delay-line filter. An FHTwith a tunable order at 0.24, 0.52, 0.88,
and 1 and a center frequency of 8.165 GHz was implemented. A
classical HT operating at a center frequency of 7.573 GHzwith a
bandwidth greater than 4.5 GHz was also implemented based on
an eleven-tap nonuniformly spaced microwave delay-line filter.
The use of the classical HT to perform temporal Hilbert trans-
form of a Gaussian-like electrical pulse was demonstrated. The
processing error as a function of the input pulse bandwidth was
estimated based on the frequency response of themeasured clas-
sical microwave HT. The use of the stopband of the classical HT
as a first-order microwave differentiator was also discussed.
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