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A modified genetic algorithm is proposed for the optimization of fiber birefringent filters. The orientation
angles and the element lengths are determined by the genetic algorithm to minimize the sidelobe levels
of the filters. Being different from the normal genetic algorithm, the algorithm proposed reduces the
problem space of the birefringent filter design to achieve faster speed and better performance. The design
of 4-, 8-, and 14-section birefringent filters with an improved sidelobe suppression ratio is realized. A
4-section birefringent filter designed with the algorithm is experimentally realized. © 2006 Optical
Society of America
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1. Introduction

Fiber birefringent filters are of great interest for
many applications such as dense wavelength division
multiplexing, multiwavelength fiber lasers, and opti-
cal signal processing. A fiber birefrigent filter consists
of a certain number of birefringent optical elements
between a certain number of polarizers.1–6 The ele-
ments are usually of high birefringence.7,8 Phase
shifts are introduced between the two orthogonal
components of a linearly polarized light. The polar-
izer is used to interfere with the two orthogonal com-
ponents such that the intensity of the linearly
polarized light is strengthened or weakened, depend-
ing on the shift angle between the polarizer and the
polarized light.1–6,8 The transmission through a bire-
fringent filter at a given wavelength is a function of
the optical retardation exhibited by each of the filter
stages.1–6 Adding the retardation to each stage in
proper fashion makes it possible to shift the pass-
bands and stop bands at will. Therefore, by rotating
the relative angles between adjacent birefringent el-
ements, we can obtain different spectral responses.
The goal of designing a birefringent filter is to find a
series of lengths and angles of the birefringent ele-

ments such that the designed spectral response best
approximates the desired spectral response.3,5

Birefringent filters were first introduced to be an
effective tool in astronomical research1,4,10 since they
are capable of transmitting monochromatic light from
a broadband source. Now they have found applications
in a wide variety of other disciplines such as spectros-
copy, imaging, and optical telecommunication.11–15

There are two types of basic birefringent filters, Loyt
and Solc birefringent filters, with retardation intro-
duced by control of the element lengths and adjacent
element shift angles, respectively.1–3,5

The Lyot filter was first introduced by a French
astronomer, Bernard Lyot, in 1933.1 It consists of a
number of alternating polarizers and birefringent
plates. The length of each successive birefringent
plate is twice that of the previous plate.1,16 The mul-
tiple passbands are spaced by the free spectral range
(FSR) of the thinnest optical element.1,16 The config-
uration of a Lyot filter is shown in Fig. 1.

The Solc filter is another type of birefringent filter
with a simpler structure than that of the Lyot bire-
fringent filter.2,3 Unlike the Lyot filter, which has one
birefringent section between a pair of polarizers, the
Solc filter has a number of birefringent sections be-
tween a pair of polarizers. The Solc filter can be fur-
ther classified into two categories, folded and fan Solc
filters. A folded Solc filter consists of alternating
equal shift angles.6,17 The fan Solc filter differs from
the folded Solc filter in that the shift angle increases
in magnitude by a constant instead of alternating in
sign.17

Both Lyot and Solc filters have symmetrical struc-
tures. As pointed out by Harris et al.,5 the shift angles
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between the birefringent sections can be adjusted ar-
bitrarily to further reduce the sidelobe levels of the
filter spectral responses. The Jones matrix can be
used to generalize the transmission characteristic of
the Solc filter with arbitrarily angles.2,3,17–19

Figure 2 shows the configuration of a Solc birefrin-
gent filter with arbitrary angles. This configuration is
a general form of the fan Solc filter and the folded Solc
filter. As shown in the figure, the light with input Ex0
and Ey0 is polarized first and then travels along the z
axis in a rectangular coordinate system. The face of
each birefringent section is normal to the z axis. The
electric field vectors of the light after the analyzer can
be expressed as3

�EA1

EA2
�� R��p�M��i, ��Px�Ex0

Ey0
�, (1)

where Ex0 and Ey0 are the inputs; EA1 and EA2 are the
transmitted and rejected components, respectively;
and R��p� is the matrix representing the rotation by
�p and is defined as3,17

R��p� � � cos �p sin �p

�sin �p cos �p
�, (2)

where Px denotes the input polarizer transmitting the
electric vector parallel to the x axis, defined as3,17

Px � �1 0
0 0�, (3)

M��i, �� is a matrix product of a series of rotations
and retardations caused by a stack of birefringent
sections; therefore3,17

R��p�M��i, �� � R��p � �n�R�R��n � �n�1�
� R� · · · R��2 � �1�R�R��1�

� R��n�R�R��n�1�R� · · · R��1�R�R��0�.
(4)

Here the relative rotation is3,17

R��i� � � cos �i sin �i

�sin �i cos �i
�. (5)

The retardation is3,17

R� � �exp�j��2� 0
0 exp��j��2��, (6)

� � 2�f��nL�c�, (7)

where �n is the birefringence, L is the length of the
birefringent section, and f is the frequency of the
light.

2. Designing a Birefringent Filter by a
Genetic Algorithm

To design a birefringent filter, one should find the
shift angle and length of each birefringent section to
meet the specific design requirement. Many algo-
rithms have been proposed in the past few de-
cades.3,5,6 Harris et al.5 assumed that the birefringent
sections are equal in length and used a Fourier series
approximation to calculate the filter coefficients. Chu
and Town3 used the Remez exchange algorithm and
Pegis’s method to find the polynomial, from which
they used an inverse transform algorithm to find the
angles. These algorithms usually require a large
number of sections, by using an inverse transform to
obtain a specified spectral response, since they are
usually based on a particular case of birefringent
filter (Solc or Lyot) and have less freedom to control
the retardation of the optical elements. In this paper,
we propose a modified genetic algorithm (GA) that
uses the forward transform of the Jones matrix di-
rectly to find the corresponding parameters for a
given birefringent filter. The birefringent filter de-
signed by the modified GA, compared with other al-
gorithms,3,5 provides a more flexible structure and
better performance in terms of the sideband suppres-
sion ratio.

In our study, we first use Solc filters as an example
to describe our algorithm and assume the filter sec-
tion lengths to be identical. However, the GA does not

Fig. 1. Lyot filter.

Fig. 2. (Color online) Solc filter with arbitrary angles.
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require that the birefringent sections have identical
lengths since the GA is a forward transform algo-
rithm and can be applied to an arbitrary configura-
tion of birefringent filters as long as the parameters
(element lengths, angles) are encoded as their corre-
sponding chromosomes. We later describe the algo-
rithm to design another example with both the
element length and the shift angles variable.

A. Cost Function

For a low-pass filter, the desired spectral response of
a filter can be expressed as �0, fp, fs, 1� in which fp is
the normalized pass frequency and fs is the normal-
ized stop frequency. The normalized desired intensity
is

I �� 1 	 
pass, 0 � f � fp

not of concern, fp � f � fs

0 	 
stop, fs � f
	, (8)

where 
pass and 
stop are the passband and the stop
band intensity deviations, respectively.

The goal of designing a Solc birefringent filter is to
find a series of shift angles �1, �2, . . . , �n such that
the output spectral response best approximates the
desired response. The difference between the output
spectral response and desired spectral response is the
cost function, which is the object function that we will
optimize as fitness in the GA. The cost function is
represented as the least-mean-squares error. There-
fore the design problem is reduced to finding the shift
angles between adjacent sections such that the least-
mean-squares error is minimized. The cost function
can be expressed as

cos t��1, �2, . . . , �n� � 

passband

Ipass � 1
	 W 


stop band
Istop, (9)

where Ipass is the normalized passband intensity and
Istop is the normalized stop band intensity that comes
from the Jones matrix R��p�M��i, ��. W is the weight
that can be used to control the ripples of the designed
spectral response; in particular, we can control those
important regions such as the passband and the stop
band and ignore the errors in the transition band. If
we need to achieve a lower sidelobe level, then
we can assign a large value of W to the stop band:
for example, if we want to design a filter with 
pass
� �2 dB and 
stop � �20 dB. Since the values of �2
and �20 dB are about 0.6 and 0.01, respectively, if we
want the passband and the stop band to have the
same significance in the cost function, the weight of
the stop band should be 0.6�0.01 � 60. However, the
large value of W assigned to the stop band might
degenerate the performance of the passband and the
transition band. This means that a large value of W
can lead to a lower sideband level but might impair
the flatness of the passband. In our design the value
of W is empirically set to be between 1 and 1000,

depending on the ripples allowed in the spectral re-
sponses of the passband and the stop band.

Figure 3 shows the designed spectral responses of
a 4-section birefringent filter for two different
weights. The dashed–dotted curve shows the Solc
filter with a weight of 10 in the stop band, and the
solid curve shows the Solc filter with a weight of 1 in
the stop band. As shown in the figure, the Solc filter
with a weight of 10 can achieve lower sidelobes; how-
ever, the passband is not as flat as the one with the
weight of 1.

B. Genetic Algorithm

The GA is an optimization algorithm that has been
extensively researched in the past few years.20–23 The
principle of the GA is simple and direct. It imitates
the process of natural evolution by maintaining a
population pool.20 Different individuals in nature
compete for food generation after generation. The
stronger individuals have a better chance of mating
and will have more offspring. Their offspring inherit
similar characteristics from their ancestors. There-
fore the offspring of the stronger individuals might be
more competent to survive than the offspring of the
weaker ones. The problems that are optimized by the
GA are implemented by genetic operators, including
selection, crossover, and mutation.

1. Encoding Scheme
Either binary encoding or floating-point (FP) encod-
ing of the GA can be used for the optimization
problems.24–26 Binary encoding offers the maximum
number of schemata per bit of information of any
coding,20,24,25 and consequently the bit-string rep-
resentation of solutions has dominated genetic re-
search. One drawback of binary encoding for real
numbers is that the string length is long with high
precision. The longer the length, the wider the prob-
lem space will be. Another problem with binary en-
coding is that the chromosome value does not
correspond to the real problem space. A small differ-
ence in the chromosome may lead to a large difference

Fig. 3. (Color online) Spectral responses with different weights.
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in the real parameter space, which depends on the
position of the bit to be mutated. FP encoding miti-
gates such problems by using floating data to directly
represent a real number, and the precision of the data
depends on only the precision of the computer. Our
study demonstrates that for the birefringent filter
design, FP encoding performs more consistently than
binary encoding.

FP encoding gives the chromosomes more adapt-
ability. The shift angle �i can be encoded as

�i � ��r � 0.5�, (10)

where r is a random variable ranging from 0 to 1 and
�i is the shift angle ranging from ���2 to ��2.

2. Genetic Operators
The selection operator used in this paper is the tour-
nament selection scheme27 based on the fitness rank
in a population pool.

The arithmetical crossover20 is used to generate
new offspring. If two chromosomes �� � ��1

�,
�2

�, . . . , �n
�� and �w � ��1

w, �2
w, . . . , �n

w� are to be
crossed in the position k, the resulting offspring
are ��1

�, �2
�, . . . , �k

�	, . . . , �n
�� and ��1

w, �2
w, . . . ,

�k
w	, . . . , �n

w), that is,

�k
�	��1 � a��k

� 	 a�k
w,

�k
w	 � �1 � a��k

w 	 a�k
�, (11)

where a is a dynamic parameter calculated in a given
context of �k

�, �k
w and their range determines how

close the offspring are to their parents.
Since we use FP encoding, the mutation of each

gene �k
t can be expressed directly as

�k
t	1 � �k

t � �, (12)

where �k
� is the kth gene of the tth generation and �

is the step size that determines how a gene is mu-
tated. The step size � is an important function for
controlling the convergence speed of the genetic pro-
cess.20,21 The step size � should be a large value in the
beginning to enable the genetic process to search a
wider area and decrease gradually to avoid the ge-
netic drift. The step size can be expressed as

� � �r�1 � � t
T�x�, (13)

where r is a random variable ranging from 0 to 1, t is
the number of the current iteration, T is the total
number of iterations, and x is a variable that deter-
mines the convergence speed of the step size that
ranges from 0 to 1.

In our design, the population size, mutation proba-
bility, and crossover probability are common values as
used in other GAs.20–23 The elitism principle is used to
increase the selection pressure and to avoid the dete-

rioration of the best individual by other genetic oper-
ators such as mutation. To avoid the premature
convergence, what we usually can do is increase the
mutation probability. Another parameter x in Eq. (13)
can also be used to control the convergence speed and
to avoid the premature convergence. A larger value of
x can lead to a lower convergence speed. For a large-
section birefringent filter design, we usually use a rel-
atively large value of x to reduce the convergence
speed.

3. Designing Examples by the Normal
Genetic Algorithm

Before we start the design, several parameters
need to be specified first. As shown in Eq. (7),
� � 2�f��nL�c�. That means the phase shift � is
determined by the birefringence �n and the section
length L. To determine the center wavelength, the
phase shift � should be 2k� (k is an integer) to have
the maximum output. Therefore,

� � 2�f��nL�c� � 2���nL��� � 2k�,

k� � �nL. (14)

Equations (14) mean that �nL must be an integer
times the center wavelength. If the birefringence of
the fiber is 4 � 10�4 and the center wavelength
is 1550 nm, the element length can be 7.75 cm,
15.5 cm, etc. The FSR can be calculated as3

FSR �
c

�nL . (15)

Therefore, if the section length is 7.75 cm, the FSR is
9.667 � 1012 Hz.

For our design, we specify the required spectral re-
sponse to be (0, 0.2, 0.5, 1), in which the pass frequency
fpass � 0.2 and the stop frequency fstop � 0.5. The
requirement for the passband is Ipass � 
 � 0
� 2 db.

Fig. 4. (Color online) Spectral response of an 8-section birefrin-
gent filter.
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Figure 4 shows the spectral response of an
8-section birefringent filter designed by the normal
GA. From the figure we can find that its sidelobe
suppression is about 33 dB.

4. Designing a Birefringent Filter by a Modified
Genetic Algorithm

A. Reducing Problem Space

The performance of the GA is affected to some extent
by the problem space. The larger the problem space,
the poorer the performance might be.20 To achieve a
comparative performance for the design with a large
problem space, one of the methods is to enlarge the
population size such that the GA has more candidates
to search in wider areas.20 However, a large popula-
tion size will increase the computation time. In prac-
tice, we have to make a compromise between the
computation speed and the performance.

Another method for improving the performance is
to reduce the problem space directly since the shift
angle is within ����2, ��2� and the size of the prob-
lem space depends on the precision. Our method is to
perform the search hierarchically. We called the first
run a rough search. The purpose of the rough search
is to locate the individual quickly in a certain range of
the problem space. If we set the mutation step size to
be integer times of �� and the shift angle found by
the GA is �i, then the final angle should be located in
the range of ���� 	 �i, �� 	 �i�. The dimensions of
�� will determine the size of the problem space. If ��
is large, the GA will work more consistently; how-
ever, a large �� might cover many local optima and
will affect the search by the second run. Therefore
there is a compromise in choosing ��. In our design,
�� is empirically set to be 0.5°.

The second run is called the precise search, and we
use the simulated annealing (SA) algorithm, another
random optimization algorithm,28,29 to replace the
GA to accurately locate the individual. The SA algo-
rithm, introduced by Kirkpatrick and co-workers in
1983, was proposed based on an analogy with the
annealing of solids: The object function to be mini-
mized is analogous to the energy of solids, and the
control parameter is analogous to the temperature of
solids.28,29 One advantage of SA over the GA is that it
can precisely locate the optimum in a narrow area
faster than the GA since the operator of the SA algo-
rithm is simply mutation, whereas the operator of the
GA is complicated, and those operations might cause
the GA to deviate from the precise position. Although
our algorithm has multiple runs, since the algorithm
converges much faster in a smaller problem space,
the total time consumed is reduced. Since in the sec-
ond run the GA has already found the nearly opti-
mum solution, the cooling temperature for SA must
be high to avoid drift from that area.

B. Family Solutions and Processed Fitness

As our study shows, the solution to a given birefrin-
gent filter is not unique. Different combinations of
shift angles can be applied to realize the same spec-

ified spectral response with similar performances. Al-
though the GA has a large population size and can be
used to produce family solutions, its individuals usu-
ally converge to an identical individual finally. There-
fore, in practice we usually obtain only one solution
for each run. One way to obtain family solutions is to
run the algorithm many times. Since the GA starts
the search from random individuals, it might reach
different outcomes with different runs.

The search for family solutions by different runs of
the GA may also produce the same results by different
runs since the GA does not know what it has explored
in the previous search and may fall into the same area.
Consequently a simple repeat is ineffective and time
consuming. One way to solve this problem is to make
the GA memorize what it has done and not explore
those already explored areas. After the GA records
those optimal shift angles that it has discovered, when
the successive runs approach that area, then the algo-
rithm can force it to leave that area.

The processed fitness30,31 can be used to memorize
the area already explored by the GA. Suppose that
we have two series of angles ��1, �2, . . . , �n� and
��1, �2, . . . , �n�, where ��1, �2, . . . , �n� is the solution
already found. The Euclidean distance can be used to
measure the distance between ��1, �2, . . . , �n� and
��1, �2, . . . , �n�.30 If the distance between them is
smaller than a certain value (section radius), we may
consider that ��1, �2, . . . , �n� is now exploring the
already explored area of ��1, �2, . . . , �n�, and we can
force ��1, �2, . . . , �n� to leave this area.

Forcing an individual to leave an area can be imple-
mented by reducing the opportunities the individual
has to survive when it is close to that area. It is im-
plemented by lowering the fitness in accordance with
the distance to the best individual in that area. There-
fore the new fitness of an individual x can be expressed
as30,31

F��x� � F�x�G�x, s1, s2, . . . , sn�, (16)

where F��x� is the new fitness, which is also called
the processed fitness. F(x) is the original fitness
and G�x, s1, s2, . . . , sn� is an evaluation function
that corresponds to the distance between the individ-
ual x and those already-found best individuals

Fig. 5. (Color online) Flow chart of the modified GA.
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�s1, s2, . . . , sn�.30,31 The closer the distance, the
smaller the G�x, s1, s2, . . . , sn� will be. The evaluation
function used in our design is given as30

where d�x, s1, s2, . . . , sn� is the minimum Euclidean
distance of the individual x and those already-found
best individuals �s1, s2, . . . , sn�, � is a parameter (it is
5 in our example), and r is the section radius that is
in direct proportion to the number of birefringent
sections and inverse to the number of solutions.30

As a random search algorithm, the GA cannot
avoid falling into a local optimum completely. There-
fore, to let the GA know what it has done so it will not

repeat exploring the already explored area is helpful
for the improvement of the GA. Furthermore, the GA
will discover a serial of solutions by different runs.

Some of these solutions are only local optima, and in
practice we can set a certain standard such as the
sidelobe level to eliminate those local optima.

C. Reducing Search Space by Creating Group Solutions

The search space can be further reduced in the bire-
fringent filter design. For an n-section (n is an even
integer) birefringent filter, the shift angle ��0, �1,
�2, . . . , �n� represents a certain spectral response. We

G�x, s1, s2, . . . , sn� ���d�x, s1, s2, . . . , sn��r��, d�x, s1, s2, . . . , sn� � r
1, otherwise , (17)

Fig. 6. (Color online) Family of an 8-section birefringent filter designed by the modified GA.
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can prove that for ��0, �1, �2, . . . , �n�, every two angles
that are symmetrical to the center angle �n�2 can be
exchanged without altering the output spectral re-
sponse. We briefly describe the derivation of this the-
ory in two steps.

Step 1: For a 2-section filter, the output is

R��2�R�R��1�R�R��0�

�� cos �2 sin �2

�sin �2 cos �2
��exp�j��2� 0

0 exp��j��2��
� � cos �1 sin �1

�sin �1 cos �1
��exp�j��2� 0

0 exp��j��2��
� � cos �0 sin �0

�sin �0 cos �0
�. (18)

Let

�exp�j��2� 0
0 exp��j��2��� cos �1 sin �1

�sin �1 cos �1
�

� �exp�j��2� 0
0 exp��j��2��� �A �B*

B A* �, (19)

where A � exp�j��cos �1 and B � �sin �1, then the
intensity can be expressed as

A cos �2 cos �0 � A* sin �2 sin �0 	 B sin �2 cos �0

	 B* cos �2 sin �02;

therefore the intensity must be the same if the �2 and
�0 are exchanged.

Step 2: Use the induction method. If the n-section
birefringent filter agrees with this theory, then for an
�n 	 2�-section filter, since the output of the n-section
filter can also be expressed as

�A �B*
B A* �,

the intensity can be expressed as

A cos �n	2 cos �0 � A* sin �n	2 sin �0

	 B sin �n	2 cos �0 	 B* cos �n	2 sin �02,

which also satisfies the theory.
This theory tells us that, for each solution

��0, �1, �2, . . . , �n�, we will have 2n�2 solutions that can
realize the same spectral response. Therefore, for ev-
ery solution we find, we can use the processed fitness
to disable the search for the other 2n�2 areas.

D. Flow Chart of Our Algorithm

By summarizing all the steps discussed above, we
have the flow chart of the algorithm, shown in Fig. 5.

E. Designing Examples by the Modified
Genetic Algorithm

We use the modified GA discussed above to redesign
the 8-section birefringent filter. The corresponding
spectral responses are shown in Fig. 6.

As shown in Fig. 6, the modified GA provides a
series of solutions to the required spectral response.
The spectral response shown in Fig. 6(a) has a similar
sideband suppression ratio as that in Fig. 4 achieved
by use of a normal GA, but their design angles are
totally different. Figures 6(b), 6(c), and 6(d) have a
higher sideband suppression ratio than the design by
the normal GA, and at the same time the flatness is
within our requirements. Figure 6(d) achieves a side-
band suppression ratio of better than 42 dB. There-
fore, as far as both the passband and the stop band
are concerned, the design shown in Fig. 6(d) has the
best performance. The results also indicate that the
modified GA not only improves the performance but
also provides different outputs that we can choose as
our desired solution.

To further analyze the three methods, the hierar-
chical search, the processed fitness, and the use of the
symmetrical principle of the birefringent filter to re-
duce the problem space on the performance of the GA,
we use an 8-section birefringent filter to test these
methods separately. Since the symmetrical principle

Fig. 7. (Color online) 14-section birefringent filter designed by the
modified GA.

Table 1. Comparison of Cost Functions between the Normal Genetic
Algorithm and the Modified Genetic Algorithm

Method

Maximum
Cost

Function

Minimum
Cost

Function

Average
Cost

Function

Normal GA 7.3892 1.7634 4.3856
Use hierarchical search

only
7.0292 1.0825 3.6009

Use processed fitness
only

8.8773 1.1408 4.1445

Modified GA (use both
hierarchical search
and processed fitness)

8.2798 1 3.5027
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of the birefringent filter is implemented by reducing
the processed fitness, it can be classified into the
second method. Each test runs 100 times, and the
results are summarized in Table 1.

The cost functions are normalized based on the
minimum cost function of the modified GA. From
the table we can find that the hierarchical search
improves the performance more than the processed
fitness since the average cost function by the hier-
archical search is 3.6009, whereas that by the pro-
cessed fitness is 4.1445. In locating the best
individuals, the hierarchical search also performs
better. Although the processed fitness acquires a
worse individual than the normal GA (the maxi-
mum cost function of it is larger), the best individ-
ual it acquires is much better than that of the
normal GA. This is because the processed fitness
memorized those already-explored spaces and
hence will not be trapped in the local optimum as
easily as the normal GA. From our tests, we also
found that the modified GA reduces the overall com-
putation time by 9% compared with the normal GA.
Although the methods we discussed above increase
the algorithm complexity for each iteration, these
methods reduce the problem space for the GA; hence
the overall iterations are reduced and the total com-
putation time is reduced too.

5. Comparison of the Modified Genetic Algorithm with
Other Algorithms

The design of a birefringent filter by a random search
algorithm has been reported in recent years.6,32

These algorithms explored the field of filter designs
that used to be governed by the conventional digital
filter design algorithms.3,5 However, as their results
show in Refs. 6 and 32, the performance still cannot
reach those designed by the conventional digital filter
design algorithms, as far as the sidelobe level is con-
cerned. Chu and Town3 proposed using a digital filter
algorithm to determine an optimal polynomial ap-
proximation to obtain a specified finite impulse re-

sponse. In their example, they used a 14-section
birefringent filter to design a bandpass filter with a
desired spectral response (0, 0.2, 0.5, 1) and they
achieved a sideband suppression ratio of about 42 dB.
To compare the performance, we use the modified GA
to design a 14-section birefringent filter with all the
other parameters identical to those in Ref. 3. The
designed shift angles from section number 0 to 14 are
�1.1295, �0.8743, 0.2239, �1.1757, �0.5691, 0.7228,
0.4879, �1.3058, 0.3929, 0.0682, 0.4697, 1.1741,
�0.4386, 0.5856, and 1.3265.

As Fig. 7 shows, the birefringent filter designed by
the modified GA has a sideband suppression level of
about 47 dB. The passband flatness of the filter by the
modified GA is also better than that in the example of
Ref. 3, and the deviation of the passband is within 0.3
dB, whereas the deviation of the passband of the
example in Ref. 3 is 1 dB. Compared with the exam-
ple in Ref. 3, the modified GA improves the sideband
level by about 5 dB and the passband flatness by
about 0.7 dB. Furthermore, the 8-section filter shown
in Fig. 6(d) has a sideband suppression ratio of 42 dB,
which is identical to that of a 14-section filter in Ref.
3. This indicates that filters designed by the modified
GA can reach the same sideband suppression ratio
with fewer filter sections.

Therefore we can say that the modified GA outper-
formed the conventional digital filter design algo-
rithm at least in some cases. There are two more
advantages of the GA over the conventional digital
filter design algorithm: The first, as we described
above, is that the GA can obtain family solutions
easily. The second is that the GA can design the
birefringent filter with more flexible structures. The
Lyot filter and Solc filter are two special examples of
birefringent filters. Our designs presented above are
Solc birefringent filters with identical section lengths

Fig. 8. (Color online) 4-section birefringent filter with nonidenti-
cal section lengths.

Fig. 9. Experimental setup. SM, single-mode; PM, polarization-
maintaining fiber.
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and arbitrary angles. A more general birefringent
filter is the one for which both the section lengths and
the shift angles are adjustable. The design for the
filter with both variable lengths and angles is sum-
marized as below:

1. For an n-section birefringent filter, the chro-
mosome is represented as ��1, �2, . . . , �n	1, l1,
l2, . . . , ln�; here �i is the shift angle between the
(i�1)th element and the ith element, li is the length
of the ith element; li is an integer times the shortest
element length, which is determined by Eqs. (14).

2. The genetic operators are categorized into two
groups: the group of shift angles and the group of
lengths. They are characterized by different step
sizes and different ranges.

3. The calculation of the section radius is modified
to adapt to the group range. An individual is consid-
ered to be in the same section only when its fiber
element length is the same as the individual in that
area.

Figure 8 shows the output spectral response of a
4-section birefringent filter with nonidentical section
lengths. The result achieves a performance similar to
that of the 8-section filter when the normal GA is
used. The simulation results demonstrate that bire-
fringent filters with adjustable lengths and angles
can produce a better output than those with only
adjustable angles. The filters with both adjustable
lengths and angles can be viewed as a special type of
birefringent filter. The fiber elements with the length
integer times as long as the shortest element can be
viewed as formed by several of the shortest elements
and the shift angles between these shortest elements
are 0. Therefore the improvement of performance is
actually realized by the increase of section numbers.

6. Experiments

A. Experiment Setup

From the theoretical model and the simulation, a
4-section identical-length birefringent filter is fabri-
cated and tested. The reason that we use fewer sec-

tions is the fabrication difficulty. The experimental
setup is shown in Fig. 9.

The filter consists of 4-section polarization-
maintaining (PM) fibers that are spliced by a PM
splicer with the shift angles designed by the GA. Each
end of the PM fiber is spliced to a single-mode fiber
that is connected to a fiber polarizer. The fiber polar-
izers are used to control the input and output shift
angles of the birefringent filter. In addition, the input
polarizer converts the unpolarized light from the
broadband source to linearly polarized light. The
spectral response is observed on an optical spectrum
analyzer.

The angular resolutions of the polarizers and the
splicer that we use for our experiments are 1°; there-
fore we have to round off the design results to integer
numbers. The parameters of the PM fiber that we
used in our experiments are as follows: birefringence;
4 � 10�4; section length, 33.3 cm. The FSR calculated
based on Eq. (15) is 2.292 � 1012 Hz.

B. Experiment Results and Discussions

To do the experiment with a splicer resolution of 1°,
we have to round off the angles to integers. The
rounding of the angles will affect the output spec-
trum. Based on our simulation, the extent of the in-
fluence on the stop band suppression ratio usually
ranges from 1 to 3 dB.

The theoretical and experimental spectral re-
sponses are shown in Fig. 10. From the figure we can
find that the period of the experimental spectral re-
sponse agrees well with that of the theoretical
response. The shapes of the experimental and theo-
retical responses are also close. However, the theo-
retical sideband suppression ratio is 25 dB, whereas
the sideband suppression ratio obtained experimen-
tally is only 14 dB, about 11 dB less than the theo-
retical result. Furthermore, the center wavelength is
drifting a little away from the theoretical center
wavelength.

To find the reasons that lead to these discrepancies,
we intentionally introduce some errors into the shift
angles and the birefringent section lengths. The re-

Fig. 10. (Color online) Theoretical (solid curve) and experimental
(dashed curve) spectral responses.

Fig. 11. (Color online) Precise angles (solid curve) versus angles
with up to 1° error (dashed curve).
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sponses with shift angle errors and fiber length errors
are shown in Figs. 11 and 12, respectively.

From Fig. 11 we find that the angle errors will
influence the sideband suppression ratio, but the
center wavelength is not affected. From Fig. 12 we
find that the length errors have a great effect on
the output spectral response. It will affect not only
the sideband suppression ratio but also the center
wavelength. From Eq. (13), we know that the sec-
tion length is inversely proportional to the fiber
birefringence. To reduce the influence of length er-
rors on the center wavelength, a PM fiber with a
smaller birefringence may be used. Another solu-
tion to this problem is to use integrated optical
waveguides. Since the waveguide length can be con-
trolled precisely, the spectral response of the
birefringent-filter-based optical waveguides can
provide precise spectral response.

7. Conclusions

A modified GA has been proposed for designing bire-
fringent filters. The modified GA uses two hierarchi-
cal searches to reduce the problem space and to use
the processed fitness to memorize those already-
explored areas, to get multiple outputs, and to im-
prove the performance. The simulation results
showed that the modified GA can search in a wider
range and get lower sidelobe levels compared with
the normal GA. When it is compared with the con-
ventional digital filter design algorithm, the proposed
algorithm can provide a lower sidelobe level. In ad-
dition, the filter design using the proposed algorithm
can design filters with more flexible structure. The
birefringent filter was fabricated and experimentally
verified. The implementation errors were also inves-
tigated. The study showed that the errors in section
lengths would not only affect the center wavelength
but also the sidelobe suppression ratio, whereas the
errors in the shift angles would affect the sidelobe
errors.
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