
ELG 3120 Signals and Systems  Chapter 5 

 1/5 Yao 

Chapter 5 The Discrete-Time Fourier Transform 
 

5.0 Introduction 
 
• There are many similarities and strong parallels in analyzing continuous-time and discrete-

time signals.  
• There are also important differences. For example, the Fourier series representation of a 

discrete-time periodic signal is finite series, as opposed to the infinite series representation 
required for continuous-time period signal.  

• In this chapter, the analysis will be carried out by taking advantage of the similarities 
between continuous-time and discrete-time Fourier analysis. 

 

5.1 Representation of Aperiodic Signals: The discrete-Time Fourier 
Transform 
 

5.1.1 Development of the Discrete-Time Fourier Transform 
 
Consider a general sequence that is a finite duration. That is, for some integers 1N  and 2N , ][nx  
equals to zero outside the range 21 NnN ≤≤ , as shown in the figure below. 
 

 
 

 
We can construct a periodic sequence ][~ nx  using the aperiodic sequence ][nx  as one period. As 
we choose the period N to be larger, ][~ nx  is identical to ][nx  over a longer interval, as ∞→N , 

][][~ nxnx = . 
 
Based on the Fourier series representation of a periodic signal given in Eqs. (3.80) and (3.81), we 
have 
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If the interval of summation is selected to include the interval 21 NnN ≤≤ , so ][~ nx  can be 
replaced by ][nx  in the summation, 
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Defining the function 
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So ka  can be written as 
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Then ][~ nx  can be expressed as 
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As ∞→N  ][][~ nxnx = , and the above expression passes to an integral, 
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The Discrete-time Fourier transform pair: 
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Eq. (5.8) is referred to as synthesis equation, and Eq. (5.9) is referred to as analysis equation 
and )( 0ωjkeX  is referred to as the spectrum of ][nx . 
 

5.1.2 Examples of Discrete-Time Fourier Transforms 
 
Example : Consider ][][ nuanx n= ,  1<a .       (5.10) 
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The magnitude and phase for this example are show in the figure below, where 0>a  and 0<a  
are shown in (a) and (b). 
 

      
 
 
 
Example : nanx =][ , 1<a .         (5.12) 
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Let nm −=  in the first summation, we obtain 
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Example : Consider the rectangular pulse 
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This function is the discrete counterpart of the sic 
function, which appears in the Fourier transform of 
the continuous-time pulse. 

The difference between these two functions is that 
the discrete one is periodic (see figure) with period of π2 , whereas the sinc function is aperiodic. 

5.1.3 Convergence 

The equation ∑
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njj enxeX ωω ][)(  converges either if ][nx  is absolutely summable, that is 
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or if the sequence has finite energy, that is 
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And there is no convergence issues associated with the synthesis equation (5.8). 
 
If we approximate an aperidic signal ][nx  by an integral of complex exponentials with 
frequencies taken over the interval W≤ω , 
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and ][][ˆ nxnx =  for π=W . Therefore, the Gibbs phenomenon does not exist in the discrete-time 
Fourier transform. 
 
 
 
Example : the approximation of the impulse response with different values of W .  
 
For ππππππ ,8/7,4/3,2/,8/3,4/=W , the approximations are plotted in the figure below. 
We can see that when π=W , ][][ nxnx =) . 
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5.2 Fourier transform of Periodic Signals 
 
For a periodic discrete-time signal, 
 

njenx 0][ ω= ,           (5.19) 
 
its Fourier transform of this signal is periodic in ω  with period π2 , and is given 
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Now consider a periodic sequence ][nx  with period N and with the Fourier series representation 
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The Fourier transform is 
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Example : The Fourier transform of the periodic signal  
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Example : The periodic impulse train  
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The Fourier series coefficients for this signal can be calculated 
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Choosing the interval of summation as 10 −≤≤ Nn , we have 
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The Fourier transform is 
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5.3 Properties of the Discrete-Time Fourier Transform 
 
Notations to be used 
 

{ }][)( nxFeX j =ω ,  
 

{ })(][ 1 ωjeXFnx −= , 
 

)(][ ωjF eXnx →← . 
 

5.3.1 Periodicity of the Discrete-Time Fourier Transform 
 
The discrete-time Fourier transform is always periodic in ω  with period π2 , i.e., 
 

( ) ( )ωπω jj eXeX =+ )2( .          (5.29) 

5.3.2 Linearity 
 
If )(][ 11

ωjF eXnx →← , and )(][ 22
ωjF eXnx →← , 

 
then 
 

)()(][][ 2121
ωω jjF ebXeaXnbxnax +→←+     (5.30) 

 

5.3.3 Time Shifting and Frequency Shifting 
 
If )(][ ωjF eXnx →← , 
 
then 
 

)(][ 0
0
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and  
 

( ))(][ 00 ω−ωω →← jFnj eXnxe       (5.32) 
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5.3.4 Conjugation and Conjugate Symmetry 
 
If )(][ ωjF eXnx →← , 
 
then 
 

)(*][* ωjF eXnx −→←         (5.33) 
 
If ][nx  is real valued, its transform )( ωjeX  is conjugate symmetric. That is 
 

)(*)( ωω jj eXeX −=         (5.34) 
 
From this, it follows that { })(Re ωjeX  is an even function of ω  and { })(Im ωjeX  is an odd 
function of ω . Similarly, the magnitude  of )( ωjeX  is an even function and the phase angle is 
an odd function. Furthermore, 
 

{ } { }ωjF eXnxEv (Re][ →← ,         (5.35) 
 
and  
 

{ } { }ωjF eXjnxOd (Im][ →← .         (5.36) 
 

5.3.5 Differencing and Accumulation 
 
If )(][ ωjF eXnx →← , 
 
then 
 

( ) )(1]1[][ ωω jjF eXenxnx −−→←−− .    (5.37) 
 
For signal 
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its Fourier transform is given as 
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The impulse train on the right-hand side reflects the dc or average value that can result from 
summation. 
 
For example , the Fourier transform of the unit step ][][ nunx =   can be obtained by using the 
accumulation property.  
 
We know 1)(][][ =→←= ωδ jF eGnng , so 
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            (5.40) 

5.3.6 Time Reversal 
 
If )(][ ωjF eXnx →← , 
 
then 
 

)(][ ωjF eXnx −→←− .        (5.41) 
 

5.3.7 Time Expansion 
 
For continuous-time signal, we have 
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a
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a
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For discrete-time signals, however, a  should be an integer. Let us define a signal with k a 
positive integer, 
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][)( nx k  is obtained from ][nx  by placing 1−k  zeros between successive values of the original 

signal.  
 
The Fourier transform of ][)( nx k  is given by 
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That is, 
 

)(][)(
ωjkF

k eXnx →← .      (5.45) 
 
For 1>k , the signal is spread out and slowed down in time, while its Fourier transform is 
compressed. 
 
Example : Consider the sequence ][nx  displayed in the figure (a) below. This sequence can be 
related to the simpler sequence ][ny  as shown in (b). 
 

]1[2][][ )2()2( −+= nynynx , 
 
where  
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The signals ][)2( ny  and ]1[2 )2( −ny  are depicted in (c) and (d). 
 
As can be seen from the figure below, ][ny  is a rectangular pulse with 21 =N , its Fourier 
transform is given by  
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Using the time-expansion property, we then obtain 
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Combining the two, we have 
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5.3.8 Differentiation in Frequency 
 
If )(][ ωjF eXnx →← , 
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The right-hand side of the Eq. (5.46) is the Fourier transform of ][njnx− . Therefore, multiplying 
both sides by j , we see that 
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5.3.9 Parseval’s Relation 
 
If )(][ ωjF eXnx →← , then we have 
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Example : Consider the sequence ][nx  whose Fourier transform )( ωjeX  is depicted for 
πωπ ≤≤−  in the figure below. Determine whether or not, in the time domain, ][nx  is periodic, 

real, even, and /or of finite energy. 
 

  
 
• The periodicity in time domain implies that the Fourier transform has only impulses located 

at various integer multiples of the fundamental frequency. This is not true for )( ωjeX . We 
conclude that ][nx  is not periodic. 

• Since real-valued sequence should have a Fourier transform of even magnitude and a phase 
function that is odd. This is true for )( ωjeX  and )( ωjeX∠ . We conclude that ][nx  is real. 

• If ][nx  is real and even, then its Fourier transform should be real and even. However, since 
ωωω 2)()( jjj eeXeX −= , )( ωjeX  is not real, so we conclude that ][nx  is not even. 

• Based on the Parseval’s relation, integrating 
2

)( ωjeX  from π−  to π  will yield a finite 

quantity. We conclude that ][nx  has finite energy. 
 

5.4 The convolution Property 
 
If ][nx , ][nh  and ][ny  are the input, impulse response, and output, respectively, of an LTI 
system, so that 
 

][][][ nhnxny ∗= ,          (5.49) 
 
then, 
 

)()()( ωωω jjj eHeXeY = ,         (5.50) 
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where )( ωjeX , )( ωjeH  and )( ωjeY   are  the Fourier transforms of ][nx , ][nh  and ][ny , 
respectively. 
 
Example : Consider the discrete-time ideal lowpass filter with a frequency response )( ωjeH  
illustrated in the figure below. Using πωπ ≤≤−  as the interval of integration in the synthesis 
equation, we have 
 
 
 

 
 

 
 
 
 
 
 
The frequency response of the discrete-time 
ideal lowpass filter is shown in the right figure. 
 
Example : Consider an LTI system with impulse response 
 

][][ nunh nα= ,  1<α , 
 
and suppose that the input to the system is 
 

][][ nunx nβ= ,  1<β . 
 
The Fourier transforms for ][nh  and ][nx  are 
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If βα ≠ , the partial fraction expansion of )( ωjeY  is given by 
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We can obtain the inverse transform by inspection: 
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Using the frequency differentiation property, we have 
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To account for the factor ωje , we use the time-shifting property to obtain 
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Finally, accounting for the factor α/1 , we have 
 

]1[)1(][ ++= nunny nα . 
 
Since the factor 1+n  is zero at 1−=n , so ][ny  can be expressed as 
 

][)1(][ nunny nα+= . 
 
Example : Consider the system shown in the figure below. The LTI systems with frequency 
response )( ωj

lp eH  are ideal lowpass filters with cutoff frequency 4/π  and unity gain in the 
passband. 
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periodic with period of π2 ). 
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The overall system has a frequency response  
 

[ ] )()()()( )( ωωπωω jj
lp

j
lp

j
lp eXeHeHeH += − ,  

 
which is shown in figure (b). 
 
The filter is referred to as bandstop filter, where 
the stop band is the region 4/34/ πωπ << . 
 
It is important to note that not every discrete-time LTI system has a frequency response. If an 
LTI system is stable, then its impulse response is absolutely summable; that is, 
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5.5 The multiplication Property 
 
Consider ][ny  equal to the product of ][1 nx  and ][2 nx , with )( ωjeY , )(1

ωjeX , and )(2
ωjeX  

denoting the corresponding Fourier transforms. Then 
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Eq. (5.52) corresponds to a periodic convolution of )(1

ωjeX  and )(2
ωjeX , and the integral in 

this equation can be evaluated over any interval of length π2 . 
 
 
Example : Consider the Fourier transform of a signal ][nx  which the product of two signals; that 
is 
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Based on Eq. (5.52), we may write the Fourier transform of ][nx  
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Eq. (5.53) resembles aperiodic convolution, except for the fact that the integration is limited to 
the interval of πθπ <<− . The equation can be converted to ordinary convolution with 
integration interval ∞<<∞− θ  by defining 
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Then replacing )(1

ωjeX  in Eq. (5.53) by )(ˆ
1

ωjeX , and using the fact that )(ˆ
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ωjeX  is zero for 

πωπ <<− , we see that 
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Thus, )( ωjeX  is π2/1  times the aperiodic convolution of the rectangular pulse )(ˆ

1
ωjeX  and the 

periodic square wave )(2
ωjeX . The result of thus convolution is the Fourier transform )( ωjeX , 

as shown in the figure below. 
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5.6 Tables of Fourier Transform Properties and Basic Fourier Transform 
Paris 
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5.7 Duality 
 
For continuous-time Fourier transform, we observed a symmetry or duality between the analysis 
and synthesis equations. For discrete-time Fourier transform, such duality does not exist. 
However, there is a duality in the discrete-time series equations. In addition, there is a duality 
relationship between the discrete-time Fourier transform and the continuous-time Fourier 
series. 
 

5.7.1 Duality in the discrete-time Fourier Series 
 
Consider the periodic sequences with period N, related through the summation 
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If we let nm =  and kr −= , Eq. (5.54) becomes 
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Compare with the two equations below, 
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we fond that )(
1
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N

−  corresponds to the sequence of Fourier series coefficients of ][nf . That is 
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This duality implies that every property of the discrete-time Fourier series has a dual. For 
example, 
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are dual. 
 
Example : Consider the following periodic signal with a period of 9=N . 
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We know that a rectangular square wave has Fourier coefficients in a form much as in Eq. (5.59).  
Duality suggests that the coefficients of ][nx  must be in the form of a rectangular square wave. 
 
Let ][ng  be a rectangular square wave with period 9=N , 
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The Fourier series coefficients kb  for ][ng  can be given (refer to example on page 27/3) 
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The Fourier analysis equation for ][ng  can be written 
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Interchanging the names of the variable k and n and noting that kbnx =][ , we find that 
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Let kk −='  in the sum on the right side, we obtain 
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Finally, moving the factor 9/1  inside the summation, we see that the right side of the equation 
has the form of the synthesis equation for ][nx . Thus, we conclude that the Fourier coefficients 
for ][nx  are given by 
 







≤<

≤
=

42,0

2,9/1

k

k
ak ,  

 
with period of 9=N . 
 
 

5.8 System Characterization by Linear Constant-Coefficient Difference 
Equations 
 
A general linear constant-coefficient difference equation for an LTI system with input ][nx  and 
output ][nx  is of the form 
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==

−=−
M

k
k

N

k
k knxbknya

00

][][ ,         (5.63) 

 
which is usually referred to as Nth-order difference equation. 
 
There are two ways to determine )( ωjeH : 
 
• The first way is to apply an input njenx ω=][  to the system, and the output must be of the 

form njj eeH ωω )( . Substituting these expressions into the Eq. (5.63), and performing some 
algebra allows us to solve for )( ωjeH . 

• The second approach is to use discrete-time Fourier transform properties to solve for 
)( ωjeH . 

 
Based on the convolution property, Eq. (5.63) can be written as 
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Applying the Fourier transform to both sides and using the linearity and time-shifting properties, 
we obtain the expression 
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or equivalently 
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Example : Consider the causal LTI system that is characterized by the difference equation, 
 

][]1[][ nxnayny =−− , 1<a . 
 
The frequency response of this system is 
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The impulse response is given by 
 

][][ nuanh n= . 
 
Example : Consider a causal LTI system that is characterized by the difference equation 
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1. What is the impulse response? 

2. If the input to this system is ][
4
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][ nunx
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= , what is the system response to this input signal? 

 
The frequency response is 
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After partial fraction expansion, we have 
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The inverse Fourier transform of each term can be recognized by inspection, 
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Using Eq. (5.64) we have 
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After partial-fraction expansion, we obtain 
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The inverse Fourier transform is 
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