Information Technology Joumnal & (3): 380-389, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Reliability and Security Enhancements for a User-Controlled
Lightpath Provisioning System

Jing Wu, Michel Savoie, Hanxi Zhang and Scott Campbell
Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, Ontario, Canada, K2H 852

Abstract: User owned and managed optical networks offer new benefits compared to carrier networks. A user-
controlled lightpath provisioning system is designed to address the network management challenges. The
prototyped management software has a service-oriented architecture and uses the Jim and JavaSpaces
technologies. Since the new management system is a distributed system, it has special requirements on system
reliability and security. System reliability 18 improved by using lease-based resource and service sharing,
transaction-based resource reservation, concurrent access and persistent storage of resource mformation and
federation clustering. With these system reliability enhancements, the system is able to maintain its integrity
even in the event of partial system failures. Since the new management system may be deployed over a public
Internet mfrastructure, secure access to the management modules 1s required. The application of existing system
security technologies to the new management system is analyzed.

Key words: Network management software, software reliability, distributed software security, user-controlled

lightpath provisioning

INTRODUCTION

There are basically two types of user owned and
managed optical networks: metro dark fibre networks
and long-haul wavelength networks (Wu et al., 2003;
St. Amaud et al, 2004). Schools, hospitals and
government departments are acquiring thewr own dark
fibres in metropolitan areas. They participate in so-called
condomimium dark fibre networks to better manage their
connectivity and bandwidth. They light up the fibres with
their own equipment and interconnect their fibres to other
institutions, commercial service providers or Internet
Exchanges. In the long-haul area, many providers are
selling or leasing point-to-point wavelength channels.
Some providers are offering condomimum wavelength
solutions, where a number of users share the capital costs
of deploying long-haul optical networks. In return, each
user i the condommium consortium owns a set of
wavelength channels.

User owned and managed optical networks offer new
benefits compared to carrier networks. In user-owned
optical networks, the cost of bandwidth 15 substantially
reduced, as it now largely becomes a capital cost rather
than an ongoing service charge. The user s able to
optimize the overall resource utilization. The user
purchases darlk fibres and/or wavelength channels from a
number of independent suppliers and participates in
condominium wavelength networks. Therefore, the user
has more flexibility in network planning and deployment

and 1s able to negotiate better deals from different
suppliers. The user may fine-tune the usage of each
resource. User-managed networks reduce Internet costs
via remote peering and transit. Since the user directly
owns and manages an optical networlk, the bandwidth and
quality of service are guaranteed. User-controlled
lightpath provisioning 1s a traffic engineering mechanism
for inter-domain applications. The primary application for
this technology is high-end scientific research in lugh-
energy physics, astronomy, bio-informatics, etc.
User-controlled optical networks face new technical
challenges in resource management, operation co-
ordmation and information storage management.
Managing networks with resources from different
suppliers 15 a new issue that has not been fully
addressed by existing network management techniques
(Wu et al., 2003). Now, only the customer has complete
visibility of its own network and no provider can see
all the network elements. This i1s in contrast to the
traditional centrally managed networking technologies,
e.g., Generalized Multi-Protocol Label Switching (GMPLS)
and Automatic Switched Optical/Transport Network
(ASON/ASTN), which assume that the provider manages
network elements and a common management system 1s
used. Rather than any provider, the user 1s in a better
position to decide the optimal scolution for protection and
restoration. The protection and restoration need to be
coordinated among multiple providers. The collaboration
among multiple independent users is critical for end-to-

Corresponding Author: Jing Wu, Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, Ontario,

Canada, K2H 882

Tel: +1 613 9982474 Fax: +1 613 9908382

Inform. Technol. J., 6 (3): 380-389, 2007

end connection provisioning. User-managed networks
adopt the peer-to-peer architecture, in which users peer
with each other. Each user not only receives transport
services from other users but also contributes new
transport services. During the establishment of an end-to-
end connection, each connection segment 1s set up on a
peer-to-peer basis. Central guiding mtelligence and
arbitration of conflicts may be necessary, but day-to-day
management and per connection control are decentralized.
How to search and take control of partner’s shared
resources has to be addressed. Policy enforcement,
authorization and authentication have to be applied.

The research on building a user-controlled network
was 1mtiated by CANARIE, Inc., Canada’s advanced
Internet development orgamization. The Internet inter-
domain routing protocol, Border Gateway Protocol (BGP),
was extended to facilitate lightpath routing. OBGP takes
the BGP routing table at the souwrce node and queries
along Autonomous System (AS) paths to check if there
are available lightpaths (Blanchet ez al., 2001). Later on, it
was realized that network management systems offer more
flexibility in providing new functions and features than a
distributed control plane. Tn 2003, CANARIE launched a
directed research program to design and prototype
network management systems enabling user-controlled
lightpath provisioning (St. Amaud ef al., 2003). A Web-
service based management system was designed primarily
focusing on the partitioning and concatenation of inter-
domain channel resources and transferring ownership
among users (Boutaba et al., 2004), assuming a central
database provides a global view of the inter-domain
topology and resource availability on all inter-domain
links. A policy based admission control was proposed in
another prototype system (Truong et al., 2004) to regulate
the user’s request to the connection provisioning. The
nature of inter-domain management was addressed by
using a global directory to provide links to the
management modules for every domain.

We are motivated to design and prototype a
management system directly confronting the challenges
of user-centered network management. To provision a
comection covering multiple domaims, the management
modules for the involved domains need to collaborate n
a peer-to-peer manner. It is critical to avoid any central
resource database or directory. Since optical networks are
dominant transport networks, we prototyped our system
for optical networks such as wavelength-routed
Wavelength Division Multiplexing (WDM) networks,
Synchronous Optical Networks (SONET) or Synchronous
Digital Hierarchy (SDH) networks. Therefore, we call our
systermn a User-Controlled Lightpath Provisioning (UCLP)

381

system. However, the design is generally applicable to
any type of inter-domain circuit-switched or bandwidth
guaranteed packet-switched comection provisiomng.
Recently, our research partner at Techmcal University of
Catalonia, Spain, extended the UCLP system to manage
Multi-Protocol Label Switching turmels.

Since the UCLP system has a distributed architecture,
the system reliability and security are of particular
significance. The whole system is required to operate
even if service modules are temporarily unavailable. For
example, when a communication failure between two
management modules occurs, the management system
should not run mto an unstable state. The management
should be the failed
communication access of the
management modules should be protected by security
features. In the present research we discuss the reliability
and security enhancements for the UCLP system.

function available after

18 recovered. The

JINI TECHNOLOGY

Building on top of the Java technology, Jini provides
an infrastructure for defining, advertising and searching
services in a network (i et al, 2000, Edwards and
Rodden, 2001). The Java Virtual Machine (TVM) provides
a hardware-independent software execution platform. The
Jim infrastructure spans multiple TVMs that may run on
different devices or computers connected via a network.
Unless we want to emphasize a module 1s a user or
provider of a function, we generally called a Jiun module as
a Jim service, because a module may provide services to
other modules and meanwhile the same module may be a
client of other modules utilizing other modules” services.
Since Jini services may be spread throughout a networle,
Tini technology needs to define, advertise and search
services and then enable services to communicate to each
other over a network.

Service lookup and discovery: The Jii Lookup Service
(JLS) 1s central to the Jim technology. The primary
function of the JLS 1s to let a service know the existence
of other services. On the other hand, a service armounces
its presence by registering to a JLS. Fault-tolerance
may be provided by using multiple JL.S’s for the same
group of Jini services. A JLS itself is a Jini service and
can be registered to other JL.S’s and therefore can be
searched for.

A Jini service locates a JLS by using service
discovery. Two types of service discovery are supported:
multicast and umnicast service discovery. In a multicast
service discovery, a Jimi service sends out a multicast

Inform. Technol. J., 6 (3): 380-389, 2007

message and then listens to possible replies from active
JLS’s. Multicast service discovery does not require a Ji
service know the location of a ILS. But, it depends on the
IP multicast. A JLS may not be located within the IP
multicast range of the Jim service. In a unicast service
discovery, a Jim service specifies the Umversal Resource
Locator (URL) of a JLS. In addition to the two service
discovery mechanisms, a JL.S may actively announce its
presence so that other services within the same multicast
domain are notified.

A TJini service registers its proxy to JLS’s, so that
available Jini services may be searched for and the
registered proxies may be downloaded to where the Jini
services are to be called. A proxy of a i service 1s a stub
that contains an interface to the Jini service. Several proxy
downloads or uploads are mvolved in a Jini system. First,
after a Jim service discovers a JILS, a proxy for the JLS
(called a registrar) 13 downloaded to the I service.
Second, the Jini service uses the registrar to register to
the TL.S by uploading the Jini service’s proxy. Third, when
other services search for a Jini service in the JL.S by
describing an interface type (written in the Java
Programming TLanguage) and possibly, other attributes.
The Jini service’s proxy may be downloaded to other
clients when a match is found. Other services use the
downloaded proxy to invoke the Jim service.

Remote method invocation and dynamic code
downloading: The Java Remote Method Invocation (RMI)
supports distributed Jini services to communicate to each
other (Edwards and Rodden, 2001). Jini services that are
implemented as Java objects may be distributed on
different JVMs and be hosted by different networked
machines. RMI supports a Java object to utilize another
remote object’s service. The two objects running on
different JVMSs are remote to each other. The service is
implemented as methods in the object. The service user
and provider have a common understanding about what
functions the service offers and what are the input
parameters and return values by using the same group of
Java interfaces to describe the service. Two objects, 1.e.,
stub and skeleton, can be generated for a service object
using a compiler. The stub, 1.e., the service proxy, runs on
the client JVM, taking care of networking details, such as
underlying communication protocols, packing and
unpacking input parameters to the service and return
values from the service. The skeleton runs on the service
IVM providing similar functions as the stub (Fig. 1). The
operations of stub and skeleton are transparent to the
client and service objects, as if the client and service
objects were commumcating directly.

382

Client Server
Remote Remote
interface implementation

Stub »| Skeleton

Fig. 1: Functions of a stub and a skeleton in RMI

The stub and skeleton use the serialization
mechamsm to convert the content of the corresponding
object into a byte stream that can be sent over a network.
The mput parameters and return values may be of
primitive types (such as integer, character, booleary, etc.),
or objects. Primitive-type input parameters and return
values are marked by the source end, sent over a network
and recogmzed by the destination. Representing the
content of a particular instance of a class needs special
treatments, because there is no standard approach to mark
and recognize objects as for primitive types. The
serialization mechanism is used to package up the member
data within an object. A serialized object may be written
to a file, or stored as an intermediate object of a special
Java class type, called marshaled object, before it 1s
recovered (1.e., unmarshalled) to a functional object that
can run on a JVM. The JLS stores and forwards the Jim
service proxy as a marshaled object.

The class file corresponding to a serialized object s
dynamically downloaded mto the JVM where the object
is to be reconstructed. The class file is required to create
a functional object, because the seralization only
packages up the states of all the member variables within
the object, not the bytecodes for the object itself. To
interpret and translate the received serialized object, the
class file for the object needs to be downloaded into the
IVM where the reconstruction of the object 15 to take
place. The place from where the class file 15 downloaded
1s called the codebase of the class and i1s packaged mto
the serialized object. Tagging the codebase to the
serialized data stream 1s called annotating the stream with
the codebase, because the stream depends on the
codebase class to be interpreted. After receiving the byte
stream representing the serialized object, the receiver
discovers the codebase of the class file, downloads the
class file and then reconstructs an object identical to the
object that is serialized at the sender. The codebase is
specified as a URL. For example, when a client downloads
a Jini service proxy from a lookup service, the client also
needs to download the stub class file from the Jini service

Inform. Technol. J., 6 (3): 380-389, 2007

proxy’s codebase, in most cases, from a directory or a
Tava ARchive (JAR) file that the service made available
for downloadmg.

Jini federation: Jini services for the same management
domain create a Jini federation, in which a Jini service may
access other Jimi services in the same Jini community via
service proxies dynamically downloaded from a local TLS.
Jini services in the same federation collectively offer a
group of functions under the same administration.
Therefore, basic notions of trust, identification and policy
are presumably agreed upon.

The integration of a JLS with other types of naming
or directory services provides a means of hierarchical
lookup. One option 1 to include other lookup services as
service objects i a JLS. The other option 1s to place a
reference to a JL.S in other naming or directory services,
providing a means for clients of those services to access
a Jim system.

A MANAGEMENT TOOL DESIGN BASED ON JINI
AND JAVASPACES

System architecture: Figure 2 shows the distributed
deployment of two copies of the UCLP system, one for
each independently managed domain (i.e., a federation).
Within one management system for a federation, there are
six key components: a JLS, an instance of JavaSpaces for
storage of Light Path Objects (ILPOs), a Jini Service
Access Point (SAP), an LPO service, an instance of
switch commumnication service for each switch m the
transport layer and a Grid SAP.

Lightpath management services: Figure 3 shows the
system architecture n more detail and indicates the main
service methods provided by the component mterface.
The management services provided by our system are
classified into two groups: those only available to
administrative users and those available to all users. The

Low-bandwidth internet conmection

Optical high-bandwidth connection
User X
PPN Internet UserY
{OGSI grid client) D (OGSI grid client) \
-~
Management system XML/SOAP Management system
for federation A AL for foderstion B
Jini service Jini service
access point access point
F Y ry
Java spaces Java spaces
h v
Storage N Tinii lookup Jini lookup Storage
of LPOS | LPO service service (JLS)/+1* service (JLS) LPO service of LPOs
Y
A 4
5 5
Switch o iich y
communication Switch
service (SCS) [x communication
[service (SCS)
/ A 2 L 4
LY L ol
S
ent

domain A

o Jini lookup service (JLS) «+— Interaction between software modules

D Jini service <+— Remote control of a network element

= Grid service assess point
#3| Transport network clement

Fig. 2: Distributed deployment of the UCLP system

383

Remote access of a management system
——— Optical high-bandwidth connection

Inform. Technol. J., 6 (3): 380-389, 2007

Grid service access point
Connection request Display resources
vcLp User Connection delete Admin Create new LPO
services functions Connection status functions Delete LPO
architecture Notification Modify LPO
I Jini SAP Connection request || Display resources -I
Connection delete || Create fund LPO |
| Find switch path Connection status || Delete fund LPO
L Find LFOs Notification || Modify LPO |
Jini lookup service —_— _—
— |_ Create E2E connection
Jini SAP Delete E2E connection
LPO service | Add LPO
L Delete LPO
CS interface | si(‘)oe C)
Javaspace proxy | Partition LPO
Wotification from switch
Federated JLS1 Find javaspace
Federated JL.Sn | (Juery javaspace
The switch implementation class | CS| interface
implements the CS interface toproxy ~ ¥ T T T
between different network devices
Make XC
— — — Stateless services that are Undo XC
executed at the client Switch Query Bvlzltgh
munmmnm Private methods within oommumcahon Rcrowm; —
the service service 28
O-UNI,
T GMPLS
aN

To OXC

Fig. 3: Detailed UCLP services architecture

latter mclude n particular ConnectionRequest by which
a user can request the establishment of an end-to-end
comnection from a given entry port of a given switch to a
given exit port on another given switch, possibly
belonging to a different federation. One of the functions
reserved to admimstrative customers 1s the addition of
new physical links to the available optical network.

In our design, LPOs are objects stored in JavaSpaces.
An LPO is an abstraction of a lightspan. Tt is associated
with a set of attributes and methods that enable possible
peering to other LPOs at a switch to create an end-to-end
connection or a longer lightspan. Supported customer
operations on LPOs include: concatenating two LPOs,
partitioning cne LPO into many LPOs sharing common
start and end powmnts but with smaller bandwidth
allocations and reserving/using/releasing LPOs. The
administrative operations include adding new LPOs and
deleting LPOs corresponding to changes m the physical
layer and the allocation of new resources.

For the execution of the ConnectionRequest, the Jini
SAP uses the internal methods FindSwitchPath and
FindLPOs. The latter searches through the pertinent
TavaSpaces to look for LPOs with attributes suitable for
the end-to-end connection to be built. It also uses the
functions provided by the methods of the LPO service.

RELIABILITY AND SECURITY ENHANCEMENTS

Lease based resource and service sharing: A leasing
mechamsm 1s used to ensure the integrity of the UCLP
system. A lease is a grant of access to a resource or a
service over a time period. The provider of a lease tries its
best to make the promised resource or service available
for the lease time. Therefore, the user of a lease may make
the reasonable assumption that to a certain extent, the
leased resource or service can be used. However, the
availability of the leased resource or service is only based
on the provider’s best-effort and is not absolutely

384

Inform. Technol. J., 6 (3): 380-389, 2007

guaranteed, since the availability of the leased resource or
service may also depend on some factors that are beyond
the provider’s control. Frequent check-up and renewal of
a lease may improve the lease user’s confidence on the
availability of the leased resource or service and reduce
the negative impact of their unavailability. A trade-off is
decided between frequent lease renewals and the
processing load of the UCLP system.

The registry of a Jini service is based on a lease. A
UCLP module registers to a JL.S with a lease time. The
UCLP module renews its registry to confirm its validity
(i.e., the service definition attributes and interface are
unchanged) and its availability (i.e., at least the service 1s
still commected to the network). When a UCLP module
fails to renew 1its registry before the expiration time, the
uploaded proxy in the JLS expires and 1s automatically
removed, so that no future download of the proxy 1s
possible and no new client of the service 15 to be
accepted. With a notification mechamsm, an expiration of
a UCLP module’s proxy in the JLS may trigger a
notification to clients who have downloaded the proxy.
Upon receiving such a notification, the clients who use an
affected service are made aware of the unavailability of
the service.

Each L.PO has a lifetime in the UCLP system, i.e., each
LPO 1s associated with a lease time. When a root LPO
15 1mtially configured usmg the UCLP system, the
mtegrity of resources corresponding to the root LPO
1s verified. Over time the UCLP system may lose track of
the integrity of resources, especially when the
notifications are inadequate. The resource from a provider
may be based on a lease contract which requires the
resource being retumned to the provider after the lease
expires. So the lease based root LPO inventory
management provides administrators with a tool to clean
up obsolete root L.POs.

The constituent LPOs for an inter-domain lightpath
are leased from the related domains. The lifetime of the
lightpath camnot exceed the lease time of any of its
constituent LPOs. To extend the lifetime of the hightpath,
negotiation needs to be conducted to renew the
constituent LPOs’ lease time. When a lightpath expires,
the lightpath 13 split into the root LPOs that were
concatenated to create the lightpath and the 1.POs are
returned to their original owners. If a constituent LPO’s
lease time is not expired yet, the lease for that TPO is to
be explicitly cancelled. Tust as creating a lightpath
involves taking the leased LPOs out of their database
and adding an LPO for the created lightpath into a
database, splitting a lightpath into its constituent LPOs
mvolves the reverse operations.

385

Transaction-based resource reservation: The primary
purpose of using a distributed transaction based resource
reservation in the UCLP system 1s to ensure an atomic and
consistent resource usage. The creation or deletion of a
lightpath involves distributed services, possibly
distributed i different domains. The more LPOs are used
and the more domains are imvolved, there 1s an mcreased
possibility of having undesired events happen. The
number of event combinations may become large, where
some service calls are successfully finished but others
fail. Compared to the design of a processing logic to
handle each scenario, the transaction based resource
reservation 18 much easier to handle and the processing
logic 13 much more straightforward and clean. All the
service calls involved in the creation or deletion of a
comnection should be organized mn a transaction, such
that either all service calls are committed (1.e., successfully
finished), or none of them 1s committed as 1f notlung had
happened. All the LPOs for a lightpath creation should be
successfully reserved, or no LPO is reserved at all.
Inconsistent partial TPO reservations should never
happen, otherwise this would result in partially reserved
LPOs become missing or unaccounted for in the UCLP
system and unusable to any users.

Tini supports a frameworlk, called a two-phase commit
protocol, to coordinate a distributed transaction. A
transaction manager providing
synchromization among distributed services, so that all
services 1n a transaction come together at certain time, in
known and consistent system states. Jim provides a
distributed transaction manager, called mahalo.

Figure 4 illustrates the two-phase commit protocol.
First, a transaction session 1s created and transaction
participants join the transaction session. Upon the
request from the transaction manager to prepare for the
commit, participants prepare the required work. Tt is
important that the required work is able to roll back if
necessary. If any participant fails to prepare, all other
participants are asked to roll back to the
before the preparation, as shown in the lower part of
Fig. 4. The failure of a participant may be explicitly
reported to the transaction manager by an abort-message
or implied by the transaction manager when a time-out
for a response occurs.

13 a Jimu service

state

Concurrent access and persistent storage of resource
information: The TavaSpaces service is used to store
LPOs and concurrently access LLPOs. The JavaSpaces
service is a core Jini service that provides a high-level
of creating and distributed
applications (Freeman and Hupfer, 1999). We use the term

means collaborative

Inform. Technol. J., 6 (3): 380-389, 2007

JaveSpace C

Fig. 4: Jmni two-phase commit protocol for a distributed transaction

space to refer to a JavaSpaces service implementation, 1.e.,
an 1instance of the JavaSpaces service. Supporting
concurrent access of LPOs stored in a space is key to the
UCLP system. Since a space may serve more than one
user, the requests for using the same LPO may cause a
contention. The JavaSpaces service has a bult-in
function that only allows one of multiple requests to
successfully acquire the LPO while all others are rejected.
That is, a space guarantees that the same LPO is never
allocated to more than one request at any time.

Because the JavaSpaces service supports leasing,
transaction and distributed event notification, as other
Jim services, it 1s convemient to use the JavaSpaces as an
object storage in the UCLP system. The basic operations
on a space include write (i.e., place an LPO into a space),
read (i.e., obtain a copy of an LPO matching a given
template) and take (i.e., remove an LPQO matching a given
template and return it to a requestor). The basic and the
derived (such as the conditional read or take) operations
on a space can be controlled by a Jiu transaction
manager. When an LPO is written into a space, a lease
object is created for the LPO. The time period of the LPO
to exist in the space is governed by the lease, which can
be renewed or cancelled by a holder of the lease object.
The distributed event notification is used for a client to
monitor the state changes of a space, e.g., the appearance
or disappearance of a certain type of LPOs.

The UCLP system builds an LPO service to access a
space, so that the access policy control can be enforced.
The JavaSpaces service does not provide access control.
When a client obtains a proxy for a space, the client
acquires complete control over all LPOs in the space.
Thus, the access control needs to be done by the service
that utilizes the JavaSpaces service. Direct access to a
space should be strictly controlled to protect the usage
of mnetwork resources. The LPO service verifies the
access rights to use a given LPO before any operation
on the LPO.

386

JavaSpaces also offers persistent storage of LPOs.
Once an LPO 1s written into a space, even if the space
restarts or reboots, the LPO remains in the space. The
persistent storage is based on logging the LPO
information in a file on a computer hard disk drive. As
long as the file 15 preserved, the space’s persistent
storage 1s offered.

Federation clustering: A federation manager is
introduced to facilitate the clustering of Jini federations.
To link two federations together, their JL.5’s need to
register with each other. So partner federations need to
discover or search for each other’s JLS’s. JLS discovery
can be realized as Juu multicast discovery, umcast
discovery and multicast announcement. The multicast
discovery and multicast announcement are limited by the
TP multicast range and reliability. The unicast discovery
requires the prior knowledge of the IP address and port
number of each partner federation’s JLS. Thus, the
umicast discovery does not scale well. With the federation
hierarchy, a higher level federation facilitates the
discovery of Tini lookup services for the lower level
federations. A high level federation uses a federation
manager, which 1s implemented as a space contamning
entries of the IP address and port number of all lower level
federations below it. A lower level federation dynamically
registers its lookup service TP address and port number
with the federation manager (Fig. 5). A federation manager
also notifies its lower level federations the appearance or
disappearance of a JLS.

System security

Secure socket layer (ssl): To securely transfer objects
across a network, SSI. is used to encrypt RMI data
streams and thus data streams between Jini services. SSL
provides data stream security at the session layer on top
of TCP/P. SSL offers four functions: server
authentication, data encryption, message mntegrity and

Inform. Technol. J.,

6 (3): 380-389, 2007

" Tederation

N manager -

1P address and port
number of
- Federation A
- Federation B
- Federation C

—

- Service registrar B - Service registrar A
-Service registrar C -Service registrar C
~—

Fig. 5: Jini federation manager in the federation clustering

optional client authentication (Lail, 2002). Compared to
encrypting TP flows using the TPsec protocol or
encrypting RMI data streams using public and private
keys, SSI. demands less computation by using the same
session key to encrypt and decrypt RMI data streams. In
the session establishment phase, a session key is derived
The
distribution of the session key between the authenticated
server and client 1s achieved by the client’s encryption of

from a randomly generated number. secure

the session key using the server’s public key and the
decryption of the session key using the
server’s private key. Practically, only with the server’s
private key, can the encrypted session key be decrypted
and only the server knows its own private key, so nobody
else can intercept the session key. The encrypted RMI
data streams can only be decrypted by using the right
session key, which is solely known to the involved

server’s

client and server.

The server and client authentication in SSL has
limitations 1 authenticating dynamically discovered
services. In SSL, the server authentication assumes the
client knows the identity of the server; the client
authentication assumes the server mamtains a list of
authorized clients who are allowed to access the service.
The server authentication only proves to the client that
the server is the real one that the client intends to connect
to. Tt is the client’s responsibility to make sure which
server to trust and then to connect to. Similarly, the client
authentication only verifies that the client is whom the
client claims to be. The server needs to know which
clients are allowed to use its service before any clients
connect to the server. However, n Jini, clients and servers
dynamically discover each other. It 13 not required that
they know each other’s identity in advance. A trade-off

Feoation B
e s

needs to be made between the effectiveness of SSL
security and the dynamics and spontaneousness of the
Jim networking environment.

There is a security gap between the data stream
security provided by the SSL and the system security
observed by a Tini client, because the client’s
communication to a remote service uses the RMI
mechamsm, which uses dynamically downloaded
service proxies (le., service stubs) at the client
(Hasselmeyer et al., 2000). The client needs a mechanism
to verity the trust associated with the downloaded proxy.
By attaching an authentication authority’s signature to
the proxy and using a public key based decryption, the
client may build a trust for the signed proxy. A different
approach 1s proposed in Ji version 2.0 to venfy proxy
trusts without using public/private key based
infrastructures.

Java security model: To securely execute a dynamically
downloaded Tava class, Tini adopts the Java security
model. A security manager provides authorization to
dynamically download classes by specifymg wlich
dangerous operations are allowed for each class. The
security manager offers flexible, fine-gramned security
policy control. Based on the codebase and the optional
signatures associated with ¢ the class file, the security
manager looks up the security policy file whether a
permission on a specific operation is granted. Examples of
such operations include executing other application
programs, shutting down the TVM, accessing other
application processes, accessing system resources
(such as print queues, event queues, system properties
and windows), file system and network operations,
etc. By attaching a third-party’s signature to the
bytecode, a bytecode 15 signed to guarantee the
bytecode’s origination and the integrity of the bytecode.

387

Inform. Technol. J., 6 (3): 380-389, 2007

This bytecode signing procedure is similar to the
certificate signing in the SSL and also public-key based
decryption is used. Multiple third-parties may sign the
same bytecode, resulting in potential matching multiple
policy entries in the security policy. In such situations,
permissions are granted in an additive fashion.

Tini adds customerized permissions (Li et al., 2000).
One such extension is the discovery permission. A Jim
client or service may be granted permissions to join a
specific group of JLS’s. This restricts the JLS’s that a Jim
client or service can discover in a multicast discovery.
The risk 1s reduced for a Jiu client or service runmng into
an unknown or undesired JLS. In the UCLP system, the
domain that a Jimi service (including a JL.S) serves for 1s
defined Therefore, the multicast discovery permission
can be properly set up. The location of the JL3’s remams
floating, so it is flexible to use different JL.5’s (e.g.,
baclup JL3’s) at various locations.

The TJava security model is static and operates at
the per class granularity. The security permissions are
pre-configured in policy files. Pre-configured policies
cannot be modified during the execution of an object.
Although the bytecode verifier examines downloaded
bytecodes based on basic Java design rules, it 1s
advantageous to delay granting security permissions until
an object 13 gomg to be executed. Before an advanced
proxy verification finishes, granting security permissions
1s Tisky.

Jini Extensible Remote Invocation (JERI) security
features: To securely use a dynamically downloaded
proxy to commumicate to a remote service, JERI 1s
implemented in Jini version 2.0 (Venners, 2002). JERI
supports security features such as invocation constraints,
remote method control and the trust verification model.
JERI 1s an extension of the Java RMI model

Proxy trust is a new security issue in Jini, because a
Jim client relies on a dynamically downloaded proxy to
communicate to a Jini service. JERT makes a good trade-off
between the flexibility and the security of the Juu
architecture by limiting pre-configurations required for
security. Two assumptions are made for a client to verify
a downloaded service proxy: i) the client knows the
server’s 1dentity; and 11) the client has a locally pre-
installed small bootstrap proxy to securely connect to a
server. The flexibility of using dynamically downloaded
service proxies is maintained by not limiting where the
proxies are downloaded from and who signs the proxies.
JERIT avoids using public-key based proxy authentication
because of the complexity associated with the
authentication authority management, public key
distribution to all potential clients and signing large
number of proxies that may change over time.

388

JTERI supports dynamic policy for a downloaded Tini
proxy mn addition to existing static permissions in the Java
security model. Dynamic policy allows a Jiu client to
delay the permission granting until after the client has
fully verified the proxy trust. A client may specify
constraints on the behaviour of remote invocations
through a downloaded proxy. A server may specify its
constraints on the service based on the mcoming remote
requests. The constraints are assigned to individual
remote 1nvocations as opposed to the entire proxy as for
static permissions in the Java security model. When a
TERI proxy wants to invoke a remote method, the client’s
and the server’s constraints are combined for that
particular method, taking into consideration the execution
context related comstramts such as time related
constraints. For example, a client may require a server
authentication to execute a remote method. A client may
require the server to be authenticated as any subset of
a list of names. Independently, a server may require a
client authentication as well. Both a client and a server
may choose to require encryption on the data streams
between them, verifying the data 1s unaltered during
transmission, ete.

CONCLUSIONS

The service-oriented architecture 1s used m the
management system for user-controlled lightpath
provisioning. The architecture is proven to be modular
and easy to maintain. Jini and JavaSpaces are suitable for
the management system thanks to their rich functions
such as supporting leasing, transaction and event
notification. We demonstrated our prototype managemernt
system in several events showing its capability in setting
up lightpaths directly controlled by users.

The system reliability is a fundamental requirement
for the user-controlled lightpath provisioning system. The
major system reliability enhancements include lease-based
resource and service sharing, transaction-based resource
reservation, concurrent access and persistent storage of
resource information and federation clustering. The
management system’s integrity is improved by properly
using these features.

Since the management system transfers information
over public Intemnet mfrastructures and uses dynamically
downloaded management modules or their proxies, system
security 18 required. Secure socket layer is used to
securely transfer mformation over public networks. Java
security functions, such as granting execution
permissions, help to securely execute a dynamically
downloaded Java class. Jim extensible remote invocation
offers new security features that improve our system
security. These security features are analyzed in the
context of our management system.

Inform. Technol. J., 6 (3): 380-389, 2007

ACKNOWLEDGMENTS

The research is partially funded by CANARIE’s
directed research program on UCLP. We thank Bill St.
Arnaud at CANARIE, Inc. for his leadership and
innovative vision for the UCLP research. We thank Prof.
Gregor von Bochmann at the University of Ottawa for his
contributions m the discussions and system design and
the team he led, including Jun Chen, Wei Zhang and Ling
Zou for their contributions to the implementation of a
prototype system. We thank Mathieu Lemay (Ecole de
Technologie Supérieure, Montréal, Québec);, Sergi
Figuerola (i2CAT) and Eduard Grasa, Joaquim Recio and
Albert Lopez (Techmcal Umversity of Cataloma,
Barcelona, Spain) for their participation in the
discussions.

REFERENCES

Blanchet, M., F. Parent and St. B. Arnaud, 2001. Optical
BGP (OBGP): Inter AS lightpath provisioning. IETF
draft, draft-parent-obgp-01 .txt.

Boutaba, R., W. Golab, Y. Iraqi and St. B. Armnaud, 2004.
Lightpaths on Demand: A Web-Services-Based
Management System. IEEE Commun. Mag.,
42: 101-107,

Edwards, W. and T. Rodden, 2001. Jini Example by
Example. Prentice Hall PTR. New Jersey, US.

Freeman, E. and S. Hupfer, 1999. Make room for
TavaSpaces. Java World.

389

Hasselmeyer, P., R. Kehr and M. Vol3, 2000. Trade-offs in
a Secure Jini Service Architecture. Tn: Proceedings
of Trends Towards a Universal Service Market
(TISM 2000). Munich, Germany.

Lail, B., 2002. Broadband Network and Device Security.
Osborme/McGraw-Hill.

L1 S. etal., 2000. Professional Jim; Wrox Press Inc.

St. Amnaud, B., . Wu and B. Kalali, 2003. Customer
Controlled and Managed Optical networks.
IEEE/OSA J. Lightwave Technol. Special Issue on
Optical Networks, 21: 2804-2810.

St. Amaud, B., A. Bjerring, O. Cherkaoui, R. Boutaba,
M. Pott and W. Hong, 2004. Web
architecture for user control and management of
optical Internet networks. Proceedings of the TEEE.,
92: 1490-1500.

Truong, D., O. Cherkaoui, H. Elbiaze, N. Rico and
M. Aboulhamid, 2004. A Policy-Based Approach for
User Controlled Lightpath Provisiomng. I
Proceedings of TEEE/FIP Networlk Operations and
Management Symposium, Korea, pp: 859-872.

Vemners, B., 2002, www.artima.com/intv/jinisecuP. html

Wu, T, S. Campbell, M. Savoie, H. Zhang, G. Bochmann
and B. St. Amnaud, 2003. User-Managed End-To-End
Lightpath Provisioning Over CA*net 4.
Proceedings of National Fibre Optic Engineers
Conference (NFOEC 2003), Orlando, Florida, USA.
Sept 7-11, 2003, 2: 275-282.

services

In

