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Valiant load balancing (VLB) network has been proposed as a capacity-efficient solution

to handle highly dynamic traffic in future backbone networks. In this paper, we study the

availability of VLB networks that are overlaid over an optical infrastructure. The main

challenges in such a context arise from the unique routing and protection scheme that

goes beyond the definition of conventional connection-level service availability as well

as the logical link failure correlation that prohibits the use of traditional analytical

methods. We propose a network-level availability model to compute the probability that

a VLB network is congestion-free under all traffic patterns. Numerical results show that

with a proper truncation level, our calculation on availability can be accelerated

significantly by generating tight lower and upper bounds. Our main finding is that

physical link sharing in a two-layer setting degrades the network availability drastically

by several orders of magnitude due to the full mesh requirement for VLB networks, and

may remove the capacity efficiency advantage of VLB networks.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Backbone networks are designed using a layered
approach with packet-switched networks overlaid on
top of a common optical network infrastructure. Such a
layering method allows more efficient utilization of the
optical network infrastructure, and enables flexible and
customized internet service at the same time [1]. Internet
services are typically carried over packet-switched net-
works, which provide better bandwidth manageability
using IP protocols. IP networks, in turn, are constructed
over optical networks by physically establishing an
end-to-end lightpath between two routers of each IP link.
The setup and teardown of a lightpath correspond to the
creation and removal of an IP link, respectively. In this
. All rights reserved.

a (C. Huang),

. Savoie).
sense, IP links are referred to as logical links and IP
network topologies as logical topologies.

Optical networks, on the other hand, are advancing to be
highly dynamic and highly resilient [2]. This architecture
migration is driven in part by the need to accommodate
emerging high-bandwidth applications characterized by
highly variable traffic as well as the need to handle frequent
failures impacting carrier networks. The ever-increasing
flexibility and reconfigurability built into optical networks
offer a promising way of fulfilling the twofold need. Ideally,
lightpaths would be set up and tore down on demand in
instant response to traffic variations and failure events.
However, dynamic bandwidth provisioning at a very small
timescale is technically prohibitive. Rapid power changes on
a fiber link due to the add/drop of wavelength channels
result in widespread optical transient effects, which further
limit the response time to bandwidth requests [3]. More-
over, finding an on-line provisioning solution subject
to various resource constraints and QoS requirements is
computationally complex, particularly in a timely and
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cost-effective manner. Additionally, frequent lightpath
reconfiguration incurs network control and management
overhead, which compromises the benefits of dynamic
optical networking.

To bypass the difficulties, an innovative yet simple
way of handling highly variable traffic was proposed in
[4,5] by introducing the notion of Valiant load balancing
(VLB) to backbone network design. Specifically, a two-hop
traffic routing scheme is proposed over a full mesh logical
topology. In the first hop, traffic load originating from a
logical node is evenly split and sent to all the logical
nodes, regardless of the packet destinations. In the second
hop, a logical node forwards packets received from all the
logical nodes to their designated destinations. We refer to
logical networks that employ the two-hop routing scheme
as VLB networks. VLB networks have the advantage of
supporting all possible traffic matrices with no need of
dynamic reconfigurations as long as the traffic matrices
are valid in the sense that they are consistent with the
ingress/egress capacity limits on logical nodes. More
importantly, the authors in [4] show that the link capacity
required to serve any valid traffic matrix is significantly
lower in comparison to traditional static networks with
direct source–destination single path routing. Even when
survivability feature is incorporated, the spare capacity to
be allocated is small relative to the working capacity, but
only at the regime where the number of failed links to
tolerate is small. From a standalone single-layer view-
point, which was taken by the above study, the regime for
efficient spare capacity allocation can be well appreciated
as tolerance up to a small number of failed links can be
sufficient for service availability guarantee. However,
when the VLB network is laid out on an optical network,
such a tolerance level can be far from satisfaction. The
seemingly independent logical links can be intimately
related by sharing the same fiber link. Consequently, even
a single physical link failure can lead to multiple corre-
lated logical link failures. It is observed in real-life carrier
networks that at least two logical links fail in an optical
failure event, and the number of concurrently failed links
can go up to ten [6]. In the case of embedding VLB
networks onto optical networks, sharing potential of a
physical link can increase substantially among multiple
logical links due to the full mesh connectivity required at
the IP layer and the sparse connectivity deployed at the
optical layer. Therefore, a more realistic study in the
context of two-layer architecture is required to evaluate
the survivability performance of VLB networks.

In parallel to the above study, the work in [5] (with a
full version in [7]) made a step forward by considering
how each logical link is routed in the form of a lightpath
over an optical network. Once the lightpath routing is
decided, a full mesh VLB network is constructed logically
at the IP layer. However, no survivability feature is
discussed in this original work. Follow-on works in
[8–10] filled the gap by protecting VLB networks at the
optical layer. Specifically, working lightpaths (i.e., work-
ing logical links) are protected against single physical link
failures by traditional link or path protection scheme. Due
to the large number of working lightpaths to maintain a
full mesh logical topology, spare capacity sharing is
employed to be capacity-efficient. Note that in [8–10],
protection is deployed at the optical layer, while the work
in [4] takes a completely different approach by protecting
a VLB network at the IP layer with spare capacity
allocated on each logical link. Thus, we call the latter
approach protection at the IP layer. However, no matter
which approach is taken, only a predefined limited set of
failure scenarios is tolerated in both cases. Indeed, a more
complete and better understanding of these approaches
should include the notions of service level agreement and,
in particular, network availability [11], which, however, is
currently absent to the best of our knowledge.

This motivates us to analyze the availability of survi-
vable VLB networks over optical networks. We consider a
highly changing traffic environment. In this context,
availability is defined to be the probability that a VLB
network is congestion-free to accommodate all valid
traffic matrices. By ‘‘valid’’, we mean that a traffic matrix
is compliant with the ingress/egress capacity limits on
logical nodes. By ‘‘congestion-free’’, we mean that under
any possible valid traffic matrix, no link is overloaded, and
the network achieves 100% throughput. We focus on
protection approach at the IP layer proposed in [4] due
to the following reasons: (1) today’s carrier networks rely
on the IP layer to provide survivable services, and there is
generally no lower-layer protection beneath the IP layer
[6,11–13]. Protection at the IP layer does not require
reconfigurability at the optical layer, and thus can be
easily supported in today’s carrier networks; and (2) spare
capacity is allocated more efficiently when protection is
deployed at the IP layer. Specifically, extra capacity for
failure tolerance is very small relative to the working
capacity by taking advantage of the load balancing prop-
erty. On the other hand, if protection can be performed at
the optical layer, logical links (i.e., lightpaths) are pro-
tected by conventional link or path protection. This
typically results in the total extra capacity to be over
60% of the total working capacity even if spare capacity
sharing is enabled.

Assessing the availability of an overlay logical network
is rather challenging due to the correlation of logical link
failures arising from physical link sharing. A large body of
works [14–19] have dealt with the problem of service
availability estimation in a single-layer setting. Analytical
models were proposed to compute or bound the steady-
state probability that a connection is in an operating state.
However, all these models are on a per-connection basis,
and assume independent link failures. The work in [20]
first considered service availability in a logical network
setting. Correlation among logical links is modeled by
joint failure probability of two logical links. Based on this
model, failure probability (i.e., unavailability) of a con-
nection with two logically link–disjoint paths is approxi-
mated. Joint failure probability of two logical links gives a
first-order approximation to connection failure probabil-
ity with an upper bound value. A more accurate model
requires introducing joint failure probability of multiple
(i.e., four, six, etc.) logical links. Note that the focus of the
work is still on availability estimation at a connection
level. The network-level availability was recently studied
in [21] in a two-layer setting. Given a fixed lightpath
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routing of logical topology, availability is defined to be the
probability that the logical topology remains connected.
Polynomial expression for network availability was estab-
lished as a function of physical link failure probability,
which is required to be homogenous with a global value p.
This, however, limits the application scope of the approx-
imation method. Also, the definition of network avail-
ability cannot be applied to VLB networks that dictate a
unique definition for network availability.

In a VLB network, traffic between any source–destina-
tion pair is distributed through multiple paths naturally.
There is no need to establish protection paths for higher
availability as legacy protection schemes. When a link
fails, traffic traversing the link will be distributed to other
paths that go to the same destinations. To make sure that
all other paths have enough capacity to carry the extra
load, links on all other paths need to be engineered with
enough capacity. In fact, the link capacity of a VLB
network has to be provisioned in such a way that they
can accommodate all traffic patterns. In other words, if
any single link becomes overloaded under any single
traffic pattern, the network is considered to be down.
This kind of availability definition is unique in the sense
that (1) all paths are mutually protected in a global
manner, and (2) it is agnostic of traffic patterns. It was
shown in [4] that the extra capacity required to achieve
this kind of availability is moderate when the number of
concurrent failures is relatively small. Existing studies on
network availability cannot be applied to this kind of
unique protection scheme as discussed above. In this
paper, we develop a new approach for modeling and
calculating the availability of VLB networks. To make it
easier, we assume that the VLB network is configured to
tolerate single logical link failures using the approach
developed in [4]. We show that with any multiple ð41Þ
logical link failures, VLB network is congested under
certain valid traffic matrices due to link overload, and
thus becomes unavailable. This property enables a simple
demarcation of network operating states and down states.
With a clear classification of network states, we propose
an availability model for the VLB network to be overlaid
over optical networks. Our model is developed based on
the inclusion–exclusion formula, where correlation
among logical link failures is modeled as joint failure
probability. To address the unique availability definition
for VLB networks, we develop a new calculation method
through some sophisticated analytical techniques. With a
proper truncation level, tight upper and lower bounds on
network availability can be calculated much faster than
the exact value. Another important aspect of our model is
that it does not require the failure probability of physical
links to be homogeneous, and is generally applicable to
inhomogeneous cases. Our main finding is that once a VLB
network is mapped onto an optical network, strong
correlation among logical link failures degrades the net-
work availability by several orders of magnitude to
further take away the capacity efficiency advantage of
VLB networks.

The remainder of the paper is organized as follows.
In Section 2, we present the network model, and identify
the failure states where a VLB network is unavailable. This
provides the basis to derive an availability model. In
Section 3, we consider the case of independent link
failures to serve as a baseline. In Section 4, availability
model under correlated link failures is proposed for VLB
networks mapped over optical networks. Numerical
results for the correlated failure case are presented in
Section 5. We conclude the paper in Section 6.

2. Network model

We model the logical VLB network as an undirected
graph G¼ ðN ,LÞ, whereN is the node set, and L is the link
set. The nodes and the links are numbered from 1 to 9N 9
and from 1 to 9L9, respectively. Due to the full mesh
connectivity, 9L9¼ 9N 9ð9N 9�1Þ=2. For simplicity, we also
refer to a link between node i and node j by ði,jÞ.

The physical optical network is represented as
GO ¼ ðN O,LOÞ in the similar fashion. Each physical link
fails independently. We assume that each logical node is
assigned to one and only one physical node, and logical
nodes from the same VLB network are assigned to
different physical nodes. Thus, the number of logical
nodes in one VLB network should be no greater than that
of the physical optical nodes, i.e., 9N 9r9N O9. The
assumption is typical for virtual network embedding [1].
Note that logical nodes from different VLB networks can
be mapped to the same physical node.

In the following, we identify the failure scenarios
where a VLB network cannot achieve 100% throughput
under certain valid traffic matrices due to link congestion.
Such a network state is referred to as a down state.
To gain sufficient insights, we will first review the
capacity allocation results given in the previous literature,
starting with the no protection case.
2.1. Capacity without protection

Let lij denote the traffic demand from node i to node j.
Assume that each logical node has ingress/egress capacity r.
A valid traffic matrix is one that follows the access limit, i.e.,X
j2N ,jai

lijrr, i 2 N , ð1Þ

X
i2N ,iaj

lijrr, j 2 N : ð2Þ

If protection is not considered, the ingress/egress capacity
decides the capacity on each logical link. Specifically, the
capacity on a link is the sum of the maximum traffic load in
the first hop and the second hop. In the first hop, ingress
traffic from node i to node j0, i.e., lij0 , is equally split, and
then sent to all 9N 9 nodes (including node i with loopback).
Thus, the maximum load on link ði,jÞ is maxf

P
j02N ,j0ai

lij0=9N 9g ¼ r=9N 9. As a result of the first hop forwarding,
node j receives traffic from any node i0 to any node j0 ðai0Þ

with rate li0 j0=9N 9. Among them, traffic that terminates at
node j is

P
i02N ,i0ajli0 j=9N 9rr=9N 9, which is obviously

within the egress limit of node j. More importantly, the
total traffic destined for node j0 is

P
i02N ,i0aj0li0j0=9N 9. This

amount of traffic is forwarded from node j to the destination
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node j0 in the second hop. Due to the routing symmetry, we
know immediately that the load on link ði,jÞ for the second
hop forwarding is

P
i02N ,i0ajli0j=9N 9, with a maximum value

of r=9N 9. Therefore, the minimum capacity required on any
link ði,jÞ for 100% throughput is 2r=9N 9. For more discus-
sions on this conclusion, see [4].
2.2. Capacity with single logical link failure protection

The key idea of the above two-hop routing is that
every traffic demand lst is balanced over 9N 9 paths
between s and t, with 9N 9�2 two-hop paths and 2 one-
hop paths (i.e., the direct link ðs,tÞ weighted as two paths).
When there are link failures, the number of paths
between s and t can be reduced. The original demand
share on the disrupted paths will be evenly assigned to
the remaining paths. This causes load increase on the
surviving logical links. Specifically, the work in [4]
showed that given a failure scenario f, the maximum load
on a surviving link ði,jÞ is given by

cijðf Þ ¼max
2r

Pijðf Þ
,

�
r � max

j02N ,j0ai,j

Ajj0 ðf Þ

Pij0 ðf Þ
þ max

i02N ,i0ai,j

Ai0 iðf Þ

Pi0 jðf Þ

 !)
,

i,j 2 N , iaj, ð3Þ

where Pi0 j0 ðf Þ denotes the number of remaining paths
between i0 and j0, and Ai0 j0 ðf Þ denotes the direct connectiv-
ity between i0 and j0. Indicator Ai0j0 ðf Þ equals one if link
i0,j0
� �

is up; equals zero otherwise. Once a failure scenario
is given, both Pi0 j0 ðf Þ and Ai0 j0 ðf Þ are deterministic and
known. Clearly, the load on link ði,jÞ comes from three
part as shown in Fig. 1: (1) traffic demand from node i to
node j delivered through the one-hop path; (2) traffic
demand from node i to node j0 ðai,jÞ delivered over link
Fig. 1. Load on logical link ði,jÞ.
ði,jÞ in the first hop through a two-hop path; and (3) traffic
demand from node i0 ðai,jÞ to node j delivered over link
ði,jÞ in the second hop through a two-hop path. Among
these source–destination pairs, Eq. (3) indicates that the
maximum load on link ði,jÞ is reached when the maximum
demands (i.e., r) are generated for the pair that has the
minimum number of remaining paths, provided that
link ði,jÞ is on one of these remaining paths. Note
that Eq. (3) is backward-compatible with the no
protection case.

By maximizing load cijðf Þ over single logical link fail-
ures yields the minimum capacity required on link ði,jÞ,
which is calculated in [4] as

cij ¼
r

9N 9�2
þ

r

9N 9
, i,j 2 N , iaj: ð4Þ

Due to the symmetry in failure scenarios, the capacity
allocated on logical links is uniform. The capacity on link
ði,jÞ is fully utilized under the network state illustrated in
Fig. 2, where link ði,j0Þ ðj0ajÞ fails, and traffic demands
from i to j0 and from i0 ði0aiÞ to j are r.
2.3. Identifying failure scenarios with network congestion

The calculation of our availability model requires a
clear identification of network up states and down states.
For a VLB network that tolerates a limited set of failure
scenarios, network can be in down states when failures
occur outside of the predefined set. However, as capacity
allocation on logical links is for the worst case matching
the highest load watermark among the predefined failure
set, even when failures occur outside of the set, there can
be possibility that the allocated capacity still guarantees
100% network throughput.
Fig. 2. Network state where capacity on logical link ði,jÞ can be fully

utilized under single logical link failures.
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Based on the background discussions in the previous
two subsections, we establish the following theorem to
identify network down states.

Theorem 1. For a VLB network that tolerates single link

failures with the capacity allocation in (4), any additional

link failures will cause network congestion under certain

valid traffic matrices.

Proof. We start with the case of dual link failures. A
second failure can happen on two link locations with
respect to the first one: (1) links that have a common
node with the first failed link; and (2) links that do not.
For both cases, we give an example of link capacity
violation.

In the case that the two failed links have a node in
common, consider the network state in Fig. 3(a) for
illustration. Let ði,jÞ and ði0,jÞ be the two failed links with
common node j. Let k be any node other than i, i0, or j. We
will show that the load on link ði,kÞ exceeds its capacity.
Fig. 3. Network states under dual logical link failures. (a) Two failed

links have a common node. (b) Two failed links do not have a

common node.
As discussed before, traffic demands that may introduce
load to link ði,kÞ must either originate from node i or
terminate at node k. In other words, link ði,kÞ must be
either on the first hop or the second hop of one of the
paths that carry these demands. Consider the traffic
demands from i to j which originates from node i, and
from i0 to k which terminates at node k. As link ði,jÞ is on
the one-hop path i�j, and link ði0,jÞ is on the two-hop path
i�i0�j, the number of operating paths between i and j is
reduced to 9N 9�3, given the two failed links. (Note that
the one-hop path is counted as two paths because it is the
degenerated path of both path i�i�j and path i�j�j.)
Similarly, due to the failure of two-hop path i0�j�k, the
number of operating paths between i0 and k is reduced to
9N 9�1. Among these remaining paths, link ði,kÞ is on the
first hop of path i�k�j between i and j, and is on the
second hop of path i0�i�k between i0 and k. Thus, when
traffic demands from i to j and from i0 to k are both r,
which forms a valid traffic matrix, load on link ði,kÞ is
r=ð9N 9�3Þþr=ð9N 9�1Þ. The link load exceeds the allo-
cated capacity given in (4) since

r

9N 9�3
þ

r

9N 9�1

 !
�

r

9N 9�2
þ

r

9N 9

 !

¼
r

ð9N 9�3Þð9N 9�2Þ
þ

r

ð9N 9�1Þ9N 9
40, 9N 9Z4:

In the second case that the two failed links do not have
a common node, we illustrate the network state in
Fig. 3(b). Let ði,jÞ and ði0,j0Þ be the two failed links. We
will show that the load on link ði,j0Þ exceeds its capacity.
Again the demands that have impact on link ði,j0Þ either
originate from node i or terminate at node j0. Consider the
traffic demands from i to j and from i0 to j0. Due to the
failure of one-hop paths i�j and i0�j0, the number of
surviving paths are 9N 9�2 for both traffic demands.
Consider link ði,j0Þ, which is on the first hop of path
i�j0�j and the second hop of path i0�i�j0. When traffic
demands from i to j and from i0 to j0 are both r, load on link
ði,j0Þ is 2r=ð9N 9�2Þ. The link load violates the capacity
limit given in (4) since

2r

9N 9�2
�

r

9N 9�2
þ

r

9N 9

 !
¼

2r

ð9N 9�2Þ9N 9
40, 9N 9Z4:

Clearly, for any more than two logical link failures, the
number of paths between source–destination pairs is
further reduced to amplify congestion on the surviving
links. Note that there can be multiple failure scenarios
that disconnect the VLB network, these scenarios are
considered as extreme cases of network congestion that
throughput among the disconnected node islands is 0%. &

Theorem 1 suggests that for a VLB network that

tolerates single link failures, network is in up states when

and only when there are no more than one logical link

failures. This constitutes our foundation to compute net-

work availability next.



W. Ni et al. / Optical Switching and Networking 10 (2013) 274–289 279
3. Network availability under independent logical link
failures

In this section, we consider the special case that each
logical link in a VLB network fail independently with
probability p. In a two-layer context, this is the case
where a VLB network is embedded onto a set of optical
nodes that have full mesh connectivity among them, and
each logical link is mapped to the direct link (i.e., one-hop
path) that connects the corresponding host nodes. We
develop the following accurate availability model.

According to Theorem 1, network up states are
(1)
Fig.
All the logical links are up;

(2)
 Only one logical link fails.
Thus, network availability can be computed as the sum of
these state probabilities which are mutually exclusive.

Specifically, let X0 denote the event that all the logical
links are up. Let X1 denote the event that 1 logical link
fails, and the rest of the logical links are up. Probabilities
of events X0 and X1 are given, respectively, by

PðX0Þ ¼ ð1�pÞ9L9, ð5Þ

and

PðX1Þ ¼ 9L9pð1�pÞ9L9�1: ð6Þ

Thus, network unavailability (complementary to network
availability) is computed as

PðSÞ ¼ 1�PðX0Þ�PðX1Þ

¼ 1�
X1

i ¼ 0

9L9
i

 !
pið1�pÞ9L9�i, ð7Þ

where S denotes the event that network is down.
Fig. 4(a) shows the network unavailability plotted on

logarithmic axes. We see that the curves are almost
parallel straight lines. This indicates that network una-
vailability grows in proportion to physical link unavail-
ability. Interestingly, when the physical link unavailability
is below 10�5, network unavailability is even lower than
the unavailability of a single physical link. This is because
when logical link failures are independent, a VLB network
is down when at least two physical links fail, which are
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4. Network unavailability under independent logical link failures. (a) Ver
high-order failure events at the optical layer. This greatly
reduces the unavailability of a VLB network.

Also, for a given physical link unavailability, we see
that network unavailability increases with the increase in
the number of logical nodes, but at a slower pace as the
number of logical nodes gets larger. The latter trend can
be clearly observed in Fig. 4(b), which plots the network
unavailability against the number of logical nodes.

4. Network availability under correlated logical link
failures

In this section, we deal with the case of correlated
logical link failures. We develop a model that can provide
upper and lower bounds on network availability up to
arbitrary tightness required. Similar to the independent
case in the previous section, we first compute, or more
precisely, bound the probabilities of network up states,
and then bound the network availability through the sum
of them. Unlike the independent case, the model proposed
here is general, and it assumes that physical link failure
probabilities are known but not necessarily equal. Also, it
is immediately applicable to the independent case.

4.1. Bounds on PðX0Þ

Let El denote the event that link l fails. Let El be the
complementary of El, denoting the event that link l is up.
Recall that X0 denotes the event that all the links are up.
Thus, we have

X0 ¼
\
l2L

El: ð8Þ

Consequently, probability of event X0 can be expressed as

PðX0Þ ¼ 1�PðX 0Þ ¼ 1�P
[
l2L

El

 !
, ð9Þ

where X 0 is the complementary event of X0. In (9),
probability of the union of events E1 to El can be bounded
by using the inclusion/exclusion formula [22]. Thus,
probability of event X0 can be lower and upper bounded,
respectively, by

PðX0ÞZ1�Z1ðLÞþZ2ðLÞ�Z3ðLÞþ . . .�Zm0 ðLÞ, ð10Þ
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and

PðX0Þr1�Z1ðLÞþZ2ðLÞ� . . . þZm00 ðLÞ, ð11Þ

where ZmðLÞ ð1rmr9L9Þ denotes the sum of joint failure
probabilities of m logical links, and m0 and m00 are odd and
even positive integers, respectively. Clearly, larger m0 and
m00 yield a smaller gap between lower and upper bounds.
However, the number of terms in ZmðLÞ (i.e., ð9L9m Þ) also
becomes excessive, leading to significant extra computa-
tional complexity. Therefore, values of m0 and m00 should
be chosen wisely. As two logical link failures are the first-
order failures that cause a network down state, joint
failure probabilities of two logical links should be
included in both (10) and (11) to yield acceptable bounds.
In other words, the minimum values for m0 and m00 are 3
and 2, respectively. More generally, if in the worst case m̂

logical link failures constitute any of the first-order
upper-layer failures, values of m0 and m00 in (10) and
(11) should be no smaller than m̂. This is the typical case
in a two-layer setting, where multiple logical links can fail
in one single physical link failure.

For simplicity, we start with the case of m0 ¼ 3 and
m00 ¼ 2 to derive an availability model, and extend the
model to consider larger values later in this section. With
m0 ¼ 3 and m00 ¼ 2, the derived model assumes that at
most two logical links fail in any single physical link
failure, i.e., m̂ ¼ 2. Specifically, we first focus on

PðX0ÞZ1�Z1ðLÞþZ2ðLÞ�Z3ðLÞ, ð12Þ

and

PðX0Þr1�Z1ðLÞþZ2ðLÞ, ð13Þ

where Z1ðLÞ, Z2ðLÞ, and Z3ðLÞ are the sum of joint failure
probabilities of one, two, and three logical links, respec-
tively. They are expressed as follows:

Z1ðLÞ ¼
X
l2L

PðElÞ ¼
X9L9
l ¼ 1

PðElÞ, ð14Þ

Z2ðLÞ ¼
X
l2L

X
l02L,l04 l

PðElEl0 Þ ¼
X9L9�1

l ¼ 1

X9L9
l0 ¼ lþ1

PðElEl0 Þ, ð15Þ

Z3ðLÞ ¼
X
l2L

X
l02L,l04 l

X
l002L,l004 l0

PðElEl0El00 Þ

¼
X9L9�2

l ¼ 1

X9L9�1

l0 ¼ lþ1

X9L9
l00 ¼ l0 þ1

PðElEl0El00 Þ: ð16Þ

Once the node and link mapping is given, PðElÞ, PðElEl0 Þ,
and PðElEl0El00 Þ can be computed based on the link-to-
lightpath mapping information and the failure probabil-
ities of physical links. In Appendix A, we propose a general
calculation method.

4.2. Bounds on PðX1Þ

Recall that X1 denotes the event that 1 logical link fails,
and the rest of the logical links are up. Unlike the case in
Section 3, here we assume that failure probabilities of
logical links can be different and correlated. Therefore, we
have to address each failure scenario separately. Let Xk

1 be
the more specific event that logical link k fails, and the
rest of the links in Lk ¼L\fkg are up. As events
X1

1,X2
1, . . . ,X

9L9
1 are mutually exclusive, probability of event

X1 can be found through

PðX1Þ ¼
X9L9
k ¼ 1

PðXk
1Þ: ð17Þ

To calculate PðXk
1Þ, we introduce Yk

1 to denote the event
that links in Lk are up. The difference between events Yk

1

and Xk
1 is that event Yk

1 is regardless of the state of link k

while link k fails in event Xk
1, i.e., Xk

1 ¼ Yk
1Ek. On the other

hand, if link k is up in the event of Yk
1, then all the links are

up, yielding the occurrence of event X0. In other words,
Yk

1Ek ¼ X0. Thus, probability of event Yk
1 can be written as

PðYk
1Þ ¼ PðYk

1EkÞþPðYk
1EkÞ

¼ PðX0ÞþPðXk
1Þ, k 2 L: ð18Þ

Rearranging (18) yields

PðXk
1Þ ¼ PðYk

1Þ�PðX0Þ, k 2 L: ð19Þ

Eq. (19) indicates that probability of event Xk
1 can be

calculated once the probability of event Yk
1 is established.

Therefore, we show next how the value of PðYk
1Þ can be

computed.

4.2.1. Bounding PðYk
1Þ

Bound calculations of PðYk
1Þ are similar to those of

PðX0Þ. Using the inclusion/exclusion formula, we obtain
the lower bound on PðYk

1Þ as

PðYk
1ÞZ1�Z1ðLkÞþZ2ðLkÞ�Z3ðLkÞ, k 2 L: ð20Þ

Introducing (14), (15), and (16) into (20) yields

PðYk
1ÞZ1�Z1ðLÞþPðEkÞ

þZ2ðLÞ�
X9L9

l0 ¼ kþ1

PðEkEl0 Þ�
Xk�1

l ¼ 1

PðElEkÞ

�Z3ðLÞþ
X9L9�1

l0 ¼ kþ1

X9L9
l00 ¼ l0 þ1

PðEkEl0El00 Þ

þ
Xk�1

l ¼ 1

X9L9
l00 ¼ kþ1

PðElEkEl00 Þþ
Xk�2

l ¼ 1

Xk�1

l0 ¼ lþ1

PðElEl0EkÞ, k 2 L:

ð21Þ

Similarly, upper bound on PðYk
1Þ is expressed as

PðYk
1Þr1�Z1ðLÞþPðEkÞ

þZ2ðLÞ�
X9L9

l0 ¼ kþ1

PðEkEl0 Þ�
Xk�1

l ¼ 1

PðElEkÞ, k 2 L: ð22Þ

4.2.2. Bounding PðXk
1Þ

Introducing bounds on PðX0Þ and PðYk
1Þ into (19), we

establish the lower and upper bounds for PðXk
1Þ, respec-

tively, as

PðXk
1Þ ¼ PðYk

1Þ�PðX0Þ

ZPðEkÞ�
X9L9

l0 ¼ kþ1

PðEkEl0 Þ�
Xk�1

l ¼ 1

PðElEkÞ
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�Z3ðLÞþ
X9L9�1

l0 ¼ kþ1

X9L9
l00 ¼ l0 þ1

PðEkEl0El00 Þ

þ
Xk�1

l ¼ 1

X9L9
l00 ¼ kþ1

PðElEkEl00 Þþ
Xk�2

l ¼ 1

Xk�1

l0 ¼ lþ1

PðElEl0EkÞ,

k 2 L, ð23Þ

and

PðXk
1Þ ¼ PðYk

1Þ�PðX0Þ

rPðEkÞ�
X9L9

l0 ¼ kþ1

PðEkEl0 Þ�
Xk�1

l ¼ 1

PðElEkÞþZ3ðLÞ,

k 2 L: ð24Þ

4.2.3. Bounding PðX1Þ

Applying (23) and (24) to (17) yields

PðX1Þ ¼
X9L9
k ¼ 1

PðXk
1Þ

Z

X9L9
k ¼ 1

PðEkÞ�
X9L9�1

k ¼ 1

X9L9
l0 ¼ kþ1

PðEkEl0 Þ

�
X9L9
k ¼ 2

Xk�1

l ¼ 1

PðElEkÞ�
X9L9
k ¼ 1

Z3ðLÞ

þ
X9L9�2

k ¼ 1

X9L9�1

l0 ¼ kþ1

X9L9
l00 ¼ l0 þ1

PðEkEl0El00 Þ

þ
X9L9�1

k ¼ 2

Xk�1

l ¼ 1

X9L9
l00 ¼ kþ1

PðElEkEl00 Þ

þ
X9L9
k ¼ 3

Xk�2

l ¼ 1

Xk�1

l0 ¼ lþ1

PðElEl0EkÞ

¼ Z1ðLÞ�2Z2ðLÞ�ð9L9�3ÞZ3ðLÞ, ð25Þ

and

PðX1Þ ¼
X9L9
k ¼ 1

PðXk
1Þ

r
X9L9
k ¼ 1

PðEkÞ�
X9L9�1

k ¼ 1

X9L9
l0 ¼ kþ1

PðEkEl0 Þ

�
X9L9
k ¼ 2

Xk�1

l ¼ 1

PðElEkÞþ
X9L9
k ¼ 1

Z3ðLÞ

¼ Z1ðLÞ�2Z2ðLÞþ9L9Z3ðLÞ: ð26Þ
Fig. 5. NSFNET with 14 nodes and 21 links. The average node degree is 3.
Inequalities (25) and (26) give lower and upper bounds on
the probability of event X1, respectively.

4.3. Availability model

With the derived bounds on PðX0Þ and PðX1Þ, network
unavailability is lower and upper bounded, respectively, by

PðSÞ ¼ 1�PðX0Þ�PðX1Þ

ZZ2ðLÞ�9L9Z3ðLÞ, ð27Þ

and

PðSÞ ¼ 1�PðX0Þ�PðX1Þ

rZ2ðLÞþð9L9�2ÞZ3ðLÞ: ð28Þ

Note that the availability model is for the case where one
single physical link failure can bring down at most two
logical links.

4.3.1. Extensions to arbitrary ZmðLÞ
Once a VLB network is overlaid onto an optical network,

physical link sharing can cause multiple, say in the worst
Prague
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Fig. 7. COST239 with 11 nodes and 26 links. The average node degree

is 4.73.
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case m̂, logical links to fail simultaneously in one single
physical link failure. In this case, m̂ logical link failures
become part of the first-order upper-layer failure events.
Accordingly, we will need to include joint failure probabil-
ities of m̂ logical links in our availability model to deliver
nontrivial bounds.

So far we have considered the case of m̂ ¼ 2 with m0 ¼ 3
and m00 ¼ 2. Taking one step forward, if m̂ ¼ 3, the mini-
mum values of m0 and m00 become 3 and 4, respectively.
This tightens the upper bound on PðX0Þ in (13). Following
the same derivation process as m̂ ¼ 2, lower and upper
bounds on network availability are given, respectively, by

PðSÞZZ2ðLÞ�2Z3ðLÞ�ð9L9�3ÞZ4ðLÞ, ð29Þ

and

PðSÞrZ2ðLÞ�2Z3ðLÞþ9L9Z4ðLÞ: ð30Þ

To be general, if m̂ is an even positive integer with
2rm̂r9L9, m0 and m00 take the values of m̂þ1 and m̂,
respectively. Network unavailability is lower and upper
bounded, respectively, by

PðSÞZ
X̂m
k ¼ 2

ð�1Þkðk�1ÞZkðLÞ�9L9Zm̂þ1ðLÞ, ð31Þ

and

PðSÞr
X̂m
k ¼ 2

ð�1Þkðk�1ÞZkðLÞþð9L9�m̂ÞZm̂þ1ðLÞ: ð32Þ
Table 1
Run time (in s) of our model for physical link unavailability at 10�3.

# of logical nodes 4 5

NSFNET m0 ¼ 3, m00 ¼ 4 0.2 1.0

m0 ¼ 5, m00 ¼ 4 – 2.2a

SMALLNET m0 ¼ 3, m00 ¼ 4 – 1.3

m0 ¼ 5, m00 ¼ 4 – 2.5a

COST239 m0 ¼ 3, m00 ¼ 4 – –

m0 ¼ 5, m00 ¼ 4 – –

a Unavailability results are not given in the paper.
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Fig. 8. Failure correlation over NSFNET in terms of the number of failed

logical links in single physical link failures.
On the other hand, if m̂ is an odd positive integer with
3rm̂r9L9�1, m0 and m00 take the values of m̂ and m̂þ1,
respectively. Network unavailability is lower and upper
bounded, respectively, by

PðSÞZ
X̂m
k ¼ 2

ð�1Þkðk�1ÞZkðLÞ�ð9L9�m̂ÞZm̂þ1ðLÞ, ð33Þ

and

PðSÞr
X̂m
k ¼ 2

ð�1Þkðk�1ÞZkðLÞþ9L9Zm̂þ1ðLÞ: ð34Þ

Once the node and link mapping is given, value of m̂ is
determined, and the minimum values of m0 and m00 are
determined accordingly. This is basically how m0 and m00

are chosen in our numerical study.

5. Numerical results

We evaluate the proposed availability model over three
representative optical topologies shown in Figs. 5–7. Given a
VLB network, logical nodes are randomly assigned to optical
nodes. Logical links are mapped to the shortest lightpath
between the associated optical nodes. If there are multiple
shortest lightpaths with equal cost, ties are broken randomly.

Once a VLB network is embedded, we count for a
physical link the number of lightpaths it carries, which
corresponds to the number of simultaneously failed logical
links in a single physical link failure. The maximum number
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Fig. 9. Network unavailability over NSFNET with m0 ¼ 3 and m00 ¼ 4.
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observed is assigned to m̂, which further decides the
minimum values of parameters m0 and m00. For simplicity,
we assume homogeneous physical link unavailability to
compute the availability model. Our availability model is
implemented in MATLAB R2011a, which runs on a Dell
Inspiron 620 desktop with Intel Core i5-2310 processor
(2.90 GHz) and 8 GB memory.

Figs. 8, 11, and 14 show the number of simultaneously
failed logical links in single physical link failures. We see that
physical link sharing leads to correlated logical link failures
even for a VLB network with a small number of logical nodes.
This indicates that once a VLB network is embedded, it is only
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Fig. 11. Failure correlation over SMALLNET in terms of the number of

failed logical links in single physical link failures.
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Fig. 10. Network unavailability over NSFNET. (a) 4 logical nodes, m̂ ¼ 2. (b) 5 lo
partially protected against first-order (i.e., single) physical
link failures. This immediately raises the network unavail-
ability as shown later. Moreover, we observe that multiple
logical link failures become more predominant with the
increase in the number of logical nodes. This is because
the number of logical links increases at a more rapid pace,
which considerably increases the physical link sharing
opportunities.

Figs. 10, 13, and 16 show the bounds on network
unavailability. We see that with the minimum values of
m0 and m00, network unavailability is well bounded in
most cases. The lower and upper bounds are closely
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approximate to each other when the number of logical
nodes is small and physical link unavailability is low. Gaps
between the two bounds become larger as the physical link
unavailability gets higher. In most cases, the two bounds
are still close to each other, maintaining small gaps. How-
ever, as the number of logical nodes gets larger at the same
time, the combined effects can cause the two bounds to be
distant to each other. In particular, the lower bound can
become negative and trivial. This is observed in Figs. 10(d),
13(d), 16(c), and 16(d), with physical link unavailability at
10�3. In these cases, we increment the value of m0 or m00 by
two to tighten the bounds with joint failure probabilities of
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Fig. 14. Failure correlation over COST239 in terms of the number of

failed logical links in single physical link failures.
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Fig. 13. Network unavailability over SMALLNET. (a) 5 logical nodes, m̂ ¼ 2. (b) 6
more logical links. In the cases of Figs. 10(d), 13(d), and
16(c), this immediately restores the tightness of the two
bounds with small gaps between them. It is also interesting
to note that although the lower bounds before increment
are trivial, the corresponding upper bounds are only slightly
higher than those after increment. In the rest case of
Fig. 16(d), the two bounds after increment are still distant
to each other by an order of magnitude, which indicates the
need to further increase m0 or m00.

On the other hand, if m0 and/or m00 is smaller than the
minimum value required, both bounds become loose
as shown in subfigures (c) and (d) of Figs. 10, 13, and 16.
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The lower bounds are negative and trivial. The upper
bounds are an order of magnitude higher than the exact
value, which is no greater than the tight upper bounds
given with the minimum required m0 and m00.

Moreover, for a VLB network with 5 logical nodes,
we compare the network unavailability under independent
logical link failures in Fig. 4(a) and under correlated logical
link failures in Figs. 10(b) and 13(a). We observe that failure
correlation deteriorates the network unavailability by several
orders of magnitude. For low physical link unavailability at
10�7, network unavailability increases by five orders of
magnitude from below 10�12 to above 10�7. For high
physical link unavailability at 10�3, network unavailability
also increases from below 10�4 to over 10�3. This indicates
that failure correlation has very strong negative effects on
network unavailability. Physical link sharing turns multiple
logical link failures which are originally high-order failure
events to first-order failure events. If these multiple logical
link failures are not tolerated, a VLB network is down in first-
order failures. This significantly degrades the network una-
vailability. If, on the other hand, a VLB network is designed to
tolerate all first-order failures, the number of concurrent
logical link failures to consider in the worst case, i.e., m̂, is
typically very large due to the sparse physical topology at the
optical layer and the full mesh connectivity at the IP layer.
Tolerating m̂ arbitrary logical link failures leads to significant
capacity over-provisioning on links as the work in [4] shows
that the capacity efficiency holds only when m̂ is small, and
when m̂ is large, the required capacity goes up exponentially.
In this case, the works in [23,24] suggest that link capacity is
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Fig. 16. Network unavailability over COST239. (a) 6 logical nodes, m̂ ¼ 2. (b) 7 l
designed for a set of logical link failure scenarios rather than
m̂ arbitrary logical link failures to provide better tradeoffs
between capacity efficiency and network availability. Speci-
fically, each single physical link failure corresponds to one
logical link failure scenario, and all single physical link
failures are taken into account to form the set of logical link
failure scenarios to protect against. How this new design
affects network availability requires future research.

In Figs. 9, 12, and 15, we plot the network unavail-
ability against the number of logical nodes. We observe
that network unavailability increases with the number of
logical nodes. This trend is clearly delineated when the
lower and upper bounds are close to each other at low
physical link unavailability.

Given the same VLB networks, Fig. 17 compares the
network unavailability over different physical topologies.
We see that network unavailability decreases as the average
node degree of physical topologies increases, particularly for
the case of 6 logical nodes. This is because a higher average
node degree indicates a higher network connectivity, which
can potentially reduce the physical link sharing opportunities,
and thus the failure correlation among logical links. This
trend is observed in Fig. 18, which shows that among all
single physical link failures, the proportion of failures that
cause multiple simultaneous logical link failures becomes
less predominant as the average node degree goes higher.
Accordingly, the probability that more than one logical
link fails becomes lower, leading to reduced network una-
vailability. However, we also note that the decrease in
network unavailability is rather limited. This can be
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ogical nodes, m̂ ¼ 2. (c) 8 logical nodes, m̂ ¼ 3. (d) 9 logical nodes, m̂ ¼ 3.
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Fig. 17. Network unavailability over different physical topologies. (a) 6 logical nodes. (b) 7 logical nodes.
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explained by the fact that although physical network con-
nectivity increases as a result of increase in the average node
degree of physical topologies, it is still very sparse compared
with the full mesh connectivity at the IP layer. Consequently,
failure correlations among logical links (and thus the prob-
ability that more than one logical link fails) are mainly
determined by the dense connectivity of VLB networks (i.e.,
the number of logical nodes). A slight increase in optical
network connectivity does not help much in reducing the
physical link sharing and thus the network unavailability,
particularly when the number of logical nodes gets larger. In
Fig. 17, we observe that when the number of logical nodes
increases from 6 to 7, the decrease in network availability
becomes even smaller over different physical topologies. In
particular, the network unavailability is almost the same on
SMALLNET and COST239.

Table 1 gives the run time of our model when the
physical link unavailability is 10�3. The run time corre-
sponds to the unavailability results shown in Figs. 8–18.
Note that as the value of physical link unavailability does not
affect the run time, run time for other values of physical link
unavailability is about the same. To give a more complete
picture, we present more run time results by increasing the
value of m0. These results are denoted as footnote (a) in the
table. Note that the run time includes that for computing
joint failure probabilities of logical links given in Appendix A.
Our observations are as follows: (1) for the same physical
topology, m0, and m00, the run time increases with the number
of logical nodes. This is because the terms of joint failure
probabilities of logical links to be computed increase as the
number of logical nodes grows; (2) for the same physical and
logical topologies, the run time increases considerably for
higher value of m0. This is because when the value of m0

increases, our model needs to compute the complete set of
joint failure probabilities of m0 logical links to obtain the
corresponding sum; and (3) for the same logical topology, m0,
and m00, the run time increases with the number of fiber links
in the physical topology. This is because the calculation of
joint failure probabilities of logical links involves computing
more terms with the increase in the number of physical links.
6. Conclusions and future work

We studied VLB networks over optical networks from
the availability viewpoint. Protection in a VLB network is
fundamentally different from the traditional protection
schemes due to its unique routing mechanism to support
highly variable IP traffic. Moreover, physical link sharing
in a two-layer context leads to multiple correlated logical
link failures. These factors prohibit the use of conven-
tional connection-level availability definition and the
related analytical methods. In this paper, we proposed
an availability model to compute the probability that a
VLB network is congestion-free to accommodate all valid
traffic matrices. As a first step, we focus on VLB networks
that tolerate single logical link failures. We proved that
failure of any two or more logical links causes the net-
work not to be supportive to certain valid traffic matrices,
resulting in a network down state. This property enables a
simple yet accurate identification of network up states
and down states. Based on this, we developed a net-
work availability model, where joint failure probability
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of logical links is used to represent failure correlation
resulting from physical link sharing.

Numerical results show that with a proper truncation
level, our model provides upper and lower bounds on
network availability up to arbitrary tightness as required.
More importantly, we find that once a VLB network is
embedded, correlation among logical link failures is so
strong that even a single physical link failure can break a
large number of logical links. This effect is significantly
exaggerated with the increasing number of logical nodes
(or equivalently, the increasing number of logical links)
and on sparser optical network connectivity. Conse-
quently, network unavailability degrades drastically by
several orders of magnitude in comparison to the inde-
pendent logical failure counterpart, which assumes a
standalone single-layer setting. On the other hand, strong
correlation indicates that in a two-layer setting tolerating
single physical link failures is equivalent to tolerating
logical link failures up to a great number, which, however,
goes far beyond the regime where spare capacity alloca-
tion is efficient. This removes one great advantage of VLB
networks.

Our work suggests from the availability viewpoint that
for backbone network applications, the number of logical
nodes in a VLB network should be kept small to avoid
strong failure correlation to further maintain the capacity
efficiency at the IP layer. Future work includes: (1)
availability analysis for VLB networks that tolerate kZ2
arbitrary logical link failures, a given set of logical link
failure scenarios, or a combination of logical node and link
failures; (2) finding the optimal VLB network mapping
that maximizes the network availability; and (3) avail-
ability analysis for VLB networks with physical links that
are subject to shared risk link group failures.
Fig. A1. Physical layout (i.e., lightpath routing) of two logical links l and l0 .
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Appendix A. Computing joint failure probabilities of
logical links

There are basically two methods for connection-level
availability calculation: series–parallel reliability block
diagram method [14–16,25] and Markov state–space
method [17–19,25].

Series–parallel method is suited when a system can be
characterized by a combination of mutually-independent
serially and/or parallelly structured subsystems, with
each subsystem further consisting of independent com-
ponents. A serially-structured subsystem fails if any one
of its components fails. In contrast, a parallelly-structured
subsystem fails only if all of its components fail. Series–
parallel method enables simple, fast, and accurate avail-
ability calculations. In the following subsections, we will
employ this method to compute the failure probability of
one logical link and the joint failure probability of two
logical, both of which can be modeled by series and/or
parallel block diagrams. However, there are many com-
plex systems that cannot be represented in such a form,
which is the case with joint failure probability of three or
more logical links. In this instance, we resort to the more
general state–space method.

State–space method partitions network states according
to failure scenarios. Each network state corresponds to one
failure scenario, where certain physical links are down. The
partitioned failure scenarios are mutually exclusive to ensure
that network states do not contain the same failure event.
Hence, the unavailability of a system, such as a lightpath, is
computed as the sum of the probabilities of network states in
which the system is down. In Appendix A.3, we will use this
method to compute the joint failure probability of three
logical links as an example. Joint failure probability of more
logical links can be developed in the same fashion. Also,
failure probability of one logical link and joint failure prob-
ability of two logical links can be derived using the state–
space method, which, however, requires more computational
cost than its series-parallel counterpart, and thus is not
recommended for use.

A.1. Failure probability of one logical link

In an IP-over-optical architecture, each logical link l is
laid out as a lightpath, which can be represented by
binary row vector hl ¼ fylig1�9LO9. Binary element yli equals
one if logical link l uses physical link i; equals zero
otherwise. Lightpaths are typical series systems formed
by a sequence of physical links, which fail independently
in our assumption. Thus, failure probability of logical link
l is computed immediately as

PðElÞ ¼ 1�
Y
i2LO

ð1�piÞ
yli , l 2 L, ðA:1Þ

where pi denotes the failure probability of physical link i.

A.2. Joint failure probability of two logical links

The layout of two logical links, i.e., two lightpaths, can be
characterized by shared links and the link–disjoint part as
shown in Fig. A1. Two logical links fail concurrently if any one
of the shared links fails, or if in the link–disjoint part both
lightpaths fail. Consequently, the system can be modeled at
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the highest level as a series structure consisting of the shared
link part and the link–disjoint part. The shared part is further
represented as a series subsystem consisting of common
physical links used by both logical links. The link–disjoint
part is modeled as a parallel subsystem with two arms
associated with the two logical links. Each arm consists of
physical links that come from the associated logical link, and
are not used by the other logical link. Thus, failure probability
of two logical links can be expressed as

PðElEl0 Þ ¼ 1�AS
ll0 ½1�ð1�AD,l0

l Þð1�AD,l
l0
Þ�, l,l0 2 L, lo l0, ðA:2Þ

where AS
ll0 denotes the availability of the shared link part, and

AD,l0

l and AD,l
l0

denote the availabilities of the arms formed by
logical links l and l0, respectively, in the link–disjoint part.
Availabilities AS

ll0 , AD,l0

l , and AD,l
l0

are given, respectively, by

AS
ll0 ¼

Y
i2LO

ð1�piÞ
yliyl0 i , l,l0 2 L, lo l0, ðA:3Þ

AD,l0

l ¼
Y
i2LO

ð1�piÞ
ylið1�yl0 iÞ, l,l0 2 L, lo l0, ðA:4Þ

and

AD,l
l0
¼
Y
i2LO

ð1�piÞ
ð1�yliÞyl0 i , l,l0 2 L, lo l0, ðA:5Þ

where yliyl0 i equals one if physical link i is used by both
logical links; equals zero otherwise, and ylið1�yl0iÞ and
ð1�yliÞyl0 i equal one if physical link i is used by one logical
link but not by the other; equal zero otherwise.
A.3. Joint failure probability of three logical links

When the number of logical links goes beyond two, the
corresponding physical layout cannot be modeled simply
by series–parallel structures. One of such examples can be
found in Fig. A2. In this case, the state–space method is
employed instead, where network states are enumerated
according to physical link failure scenarios. However, a
complete enumeration of network states is computation-
ally intractable as the number of all possible failure
scenarios, although finite, is on the order of 29LO9. Thus,
we consider a limited but predominant set of network
states with no more than three physical link failures. Our
numerical studies show that probabilities of higher-order
failures (i.e., failures of more than three physical links) are
extremely low for nation-wide networks, and are negli-
gible to the computational accuracy.

Specifically, let Fi denote the network state that physical
link i fails, and the other physical links are up. Let p̂i denote
Fig. A2. Physical layout (i.e., lightpath routing) of three logical links l, l0 ,

and l00 .
the corresponding probability, which can be computed as

p̂i ¼ pi

Y
i02LO ,i0ai

ð1�pi0 Þ, i 2 LO: ðA:6Þ

Similarly, we have

p̂ii0 ¼ pipi0
Y

i002LO ,i00ai,i0
ð1�pi00 Þ, i,i0 2 LO, io i0, ðA:7Þ

and

p̂ii0i00 ¼ pipi0pi00
Y

i0002LO ,i000ai,i0 ,i00
ð1�pi000 Þ, i,i0,i00 2 LO, io i0o i00, ðA:8Þ

where p̂ii0 denotes the probability of network state Fii0 that
physical links i and i0 fail, and the other physical links are up,
and p̂ii0 i00 denotes the probability of network state Fii0 i00 that
physical links i, i0, and i00 fail, and the other physical links
are up.

Next, we identify among Fi, Fii0 , and Fii0i00 the states
where three logical links fail concurrently. For network
state Fi, three logical links fail if physical link i carries all
of them. Let fll0 l00

i be a binary indicator, which equals one if
logical links l, l0, and l00 fail in state Fi; equals zero
otherwise. Thus, fll0 l00

i can be computed as

fll0l00

i ¼ yli � yl0i � yl00i, l,l0,l00 2 L, lo l0o l00, i 2 LO: ðA:9Þ

Similarly, we define fll0l00

ii
0 to be a binary indicator,

which equals one if logical links l, l0, and l00 fail in state
Fii0 ; equals zero otherwise. Indicator fll0 l00

ii
0 can be found

through

fll0l00

ii
0 ¼ uðyliþyli0 Þ � uðyl0 iþyl0i0 Þ � uðyl00 iþyl00 i0 Þ,

l,l0,l00 2 L, lo l0o l00, i,i0 2 LO, io i0, ðA:10Þ

where all three logical links fail if each logical link
traverses at least one of the two physical links. Function
u(x) is a step function defined as

uðxÞ ¼
1 if xZ1,

0 if xo1,

(
ðA:11Þ

which equals one when argument x is no less than one;
equals zero otherwise.

For network state Fii0 i00 , we introduce binary indicator
fll0l00

ii0i00 , which equals one if logical links l, l0, and l00 fail in
Fii0 i00 ; equals zero otherwise. As all three logical links fail in
state Fii0i00 if each of them traverses at least one of the three
physical links, we have

fll0l00

ii
0
i00
¼ uðyliþyli0 þyli00 Þ � uðyl0iþyl0 i0 þyl0 i00 Þ � uðyl00iþyl00i0 þyl00 i00 Þ,

l,l0,l00 2 L, lo l0o l00, i,i0,i00 2 LO, io i0o i00: ðA:12Þ

Then, joint failure probability of logical links l, l0, and l00

is simply the sum of the probabilities of network states
where all three logical links are down, i.e.,

PðElEl0El00 Þ ¼
X
i2LO

p̂if
ll0l00

i þ
X
i2LO

X
i02LO ,i04 i

p̂ii0f
ll0l00

ii0

þ
X
i2LO

X
i02LO ,i04 i

X
i002LO ,i004 i0

p̂ii0 i00f
ll0 l00

ii0 i00 ,

l,l0,l00 2 L, lo l0o l00: ðA:13Þ

For joint failure probability of four or more logical
links, the same calculation process can be followed with
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more logical link terms included to compute the binary
indicators in network states Fi, Fii0 , and Fii0 i00 .
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