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Even with protection, user traffic flows can be disrupted due to network failures that

are beyond the protection capability. One of the quantitative metrics to measure the

service quality in such a context is ‘‘availability’’. We study analytical models that

compute availability of upper-layer flows in two-layer networks with dedicated path

protection at either the upper or the lower layer. Our investigations reveal that existing

analytical models significantly overestimate availability requirements on lower-layer

links, and exaggerate upper-layer flow unavailability by treating correlated upper-layer

failures as being independent. In contrast, our proposed model takes into account such

correlations by tracing upper-layer failures to lower-layer root causes, thus greatly

relaxing unnecessary high-availability requirements on lower-layer links without

compromising the availability of upper-layer flows. In our simulation examples, using

the existing models, up to 66.6% and 89.2% of the total flows are overestimated on their

unavailability under dedicated path protection at the upper and the lower layer,

respectively. Moreover, the average unavailability redundancy built into these flows

is about 30% and 15% for protection at the upper and the lower layer, respectively.

Furthermore, we compare flow availability under the two protection schemes, and

show that given the same initial unprotected network states, protection at the lower

layer enjoys lower average flow unavailability than protection at the upper layer.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Aiming at improving network failure resilience and
providing reliable communication services, network pro-
tection is used as a proactive recovery procedure, where
spare capacity is reserved during the request setup to
tolerate a limited set of network failures, e.g., against
single fibre link failures in [1–3]. When a failure occurs
within a pre-defined set, a flow is fully protected by a
protection switchover mechanism, i.e., the flow maintains
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100% service recovery. However, when a failure occurs
outside of the pre-defined set, the flow becomes out of
service. A quantitative assessment of how well a flow is
protected in all network failures (both within and outside
of the protection scope) is the ‘‘flow availability’’ metric,
defined as a ratio of accumulated operating time of a flow
over its lifespan.

In two-layer networks, service protection for upper-
layer connections (i.e., flows) can be achieved by using
path-based protection at the upper or the lower layer
[1–3]. IP over optical networks adopt such a two-layer
architecture, where a point-to-point link at the IP layer
(i.e., the upper layer) is laid out as an end-to-end wave-
length connection at the optical layer (i.e., the lower
layer). In upper-layer protection, a flow is routed as a
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pair of upper-layer link-disjoint paths, which must also be
lower-layer link-disjoint. An upper-layer link is realized
as a single lower-layer path. In lower-layer protection, an
upper-layer link is laid out as a pair of link-disjoint lower-
layer paths, and a flow simply maintains a single upper-
layer path. In this paper, we focus on using dedicated path
protection against failures of lower-layer links, e.g., fibre
links in IP over optical networks. As our discussions are
immediately applicable to any layered structures charac-
terized by a packet-switched network overlaid on top of a
circuit-switched network, we will mainly use the terms
‘‘two-layer networks’’, ‘‘upper layer’’, and ‘‘lower layer’’
throughout the paper to be general. They are interchange-
able with ‘‘IP over optical networks’’, ‘‘logical/IP layer’’,
and ‘‘physical/optical layer’’, respectively.

Flow availability is a key attribute in a service level
agreement (SLA), a formal contract between a service
provider and a customer [4]. Flow availability in an SLA
specifies the maximum accumulated service outage time
a customer could expect over the service duration. On one
hand, higher flow availability generally requires more
costly network resources. Thus, flow unavailability over-
estimation means additional network costs in resource
allocation and/or high-availability equipment for meeting
a service guarantee. On the other hand, violations of flow
availability in SLAs result in financial penalties to service
providers, and have negative impacts on customer rela-
tionship. Therefore, a service provider relies on accurate
estimation of flow availability to provide just enough flow
availability, i.e., slightly above the flow availability
requirement in an SLA, with minimum network resources
to achieve maximum profit.

Different models were proposed to compute the avail-
ability of wavelength connections in optical networks, or
generally, the availability of lower-layer connections in
two-layer networks. These models employ either a series-
parallel reliability block diagram method [5–7] or a net-
work-wise Markov state-space method [8–10], which all
assume that fibre links fail independently. Since a fibre
link can carry multiple wavelength connections with the
support of Wavelength Division Multiplexing (WDM)
technology, one fibre link failure can lead to multiple
correlated upper-layer link failures. It is observed in the
Sprint backbone network that at least two logical links fail
in an optical failure event, and the number of concur-
rently failed links can go up to 10 in the same event [11].
Due to the strong correlation in upper-layer link failures, a
direct application of the abovementioned analytical mod-
els to upper-layer flows produces inaccurate results.
Specifically, by treating correlated upper-layer link fail-
ures as independent, current flow availability model in
[12–14] can significantly exaggerate flow unavailability,
imposing unnecessary high-availability requirements on
lower-layer links to satisfy a given flow availability value.

Apart from the previous works in [12–14], the work in
[15] discussed minimum failure-probability routing on a
special correlated link failure model, where in a shared
risk link group (SRLG) failure, links associated with the
SRLG fail independently with some probabilities (less
than one). Also, SRLG events are assumed to be mutually
exclusive in the sense that only one SRLG failure can occur
and exist in the network at a time. In the context of two-
layer networks, the notion of SRLG, however, is determi-
nistic. That is, in a lower-layer link failure, all lightpaths
that traverse the lower-layer link fail. In addition, except
the basic assumption on failure independence among
lower-layer links, we do not make any specific limits on
the number of lower-layer links that can fail concurrently
in the network. The work in [16] studied the availability
of logical topology in terms of connectivity while our
focus is on the availability of upper-layer flows.

In this paper, we propose analytical models to com-
pute flow availability in two-layer networks to address
the challenges arising from the fundamental differences
between link failures at the upper and the lower layers.
The key principle in tackling failure correlation is to
compute flow availability at the lower layer, where
lower-layer link failures are mutually independent in
our assumption. Our model only requires upper-layer
topology layout information, i.e., the mapping of upper-
layer links onto lower-layer paths. This mapping informa-
tion is typically available to tier-1 carriers, such as AT&T
[4,17] and Sprint [11], that own both layers of a backbone
network. We consider dedicated path protection since it is
the most widely deployed survivability scheme. Regard-
ing where the protection is deployed, we consider two
options: protection at the upper layer as today’s carrier
networks rely on the upper layer to provide survivability
services [4,17], and protection at the lower layer, which is
desirable for high-rate private line services [4]. The
analytical results using our models match the simulation
results much closer than the results using the existing
model [12–14]. Our proposed models constitute the
foundation for unavailability-minimized routing and una-
vailability-constrained routing. While we discuss flow
availability models in the context of two-layer networks,
the proposed approach is generally applicable to a class of
correlated failure scenarios, where correlations among
failures can be decomposed into a set of independent
root causes through a certain mapping method. Our
preliminary work on analytical model for protection at
the upper layer was presented in [18].

The remainder of this paper is organized as follows:
we present the network model with failure assumptions
in Section 2. We propose flow availability models for
protection at the upper and the lower layer in Sections 3
and 4, respectively, followed by numerical results in
Section 5. We conclude this paper in Section 6.
2. Network model

The lower-layer topology is represented by an undir-
ected graph Gl ¼ ðN l,LlÞ, where N l is the node set, and Ll is
the link set with links numbered from 1 to 9Ll9. Similarly,
the upper-layer topology is modeled as Gu ¼ ðN u,LuÞ. We
assume that each lower-layer node hosts no more than one
upper-layer node from one upper-layer topology [19]. In
other words, N u is a subset of N l, i.e., N uDN l. Let Du

denote a given set of user traffic flows that need to be
serviced, i.e., the upper-layer flow set.
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We characterize lower-layer link failures and repairs
with the following typical assumptions:
�
 Each lower-layer link has two states; that is, an up
(operating) state and a down (failed) state.

�
 All lower-layer links fail independently.

�
 Time to failure and failure repair time of lower-layer

link i follow negative exponential distributions with
the mean failure rate and the mean repair rate denoted
by li and oi, respectively.

�
 Each lower-layer link i has a steady-state availability

value Ai. The steady-state availability, or simply avail-
ability, represents the long-term probability that link i

is in the up state. The value of Ai is given by

Ai ¼
oi

oiþli
¼

MTTFi

MTTFiþMTTRi
, i 2 Ll, ð1Þ

where MTTFi ¼ 1=li and MTTRi ¼ 1=oi are the mean
time to failure (MTTF) and the mean time to repair
(MTTR) of link i, respectively.

�
 Let Ui denote the unavailability of lower-layer link i.

We have

Ui � 1�Ai51, i 2 Ll: ð2Þ
�
 In a lower-layer link failure, all lower-layer paths
traversing the link fail simultaneously.

�
 Protection is provided at either the upper layer or the

lower layer, but not both.

�
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Fig. 1. Illustration of dedicated path protection at the upper layer. The

number marked on a link indicates the link index. (For interpretation of

the references to color in this figure caption, the reader is referred to the

web version of this paper.)

Table 1
A survivable mapping for the two-layer

network in Fig. 1.

Upper-layer link Lower-layer path

1 (A–B) A–B

2 (A–C) A–E–C

3 (A–D) A–E–D

4 (B–C) B–C

5 (B–D) B–E–D

6 (C–D) C–D
A protection switchover does not cause any service
disruption.

3. Flow availability model for protection at the upper
layer

3.1. Survivable mapping for dedicated path protection at the

upper layer

When protection is deployed at the upper-layer, each
upper-layer link j is laid out as one single lower-layer path

hj. The upper-layer topology layout is described by the

interlayer link mapping matrix H¼ fhjg9Lu9�1 ¼ fyjig9Lu9�9Ll9,

where binary element yji equals one if upper-layer link j

uses lower-layer link i; equals zero otherwise.
To protect against single lower-layer link failures,

survivability requirement must be satisfied for mapping
upper-layer links to lower-layer paths: once the mapping

is made, for each upper-layer node pair, there exist at least

two paths that are link-disjoint at both the upper and the

lower layers. Obtaining such a survivable mapping
remains a challenge, since no known algorithm produces
a guaranteed survivable mapping. The design principle
proposed in [19] provides a mapping that ensures the
upper-layer topology connectivity in any single lower-
layer link failure. In theory, upper-layer topology con-
nectivity in all single lower-layer link failures does not
necessarily guarantee the existence of lower-layer link-
disjoint path pairs between any two upper-layer nodes
[20]. Interested readers may refer to Fig. 3 in [20] for an
illustrative example. However, references [3,21] and our
practice show that the latter property can be well satisfied
using the principle in [19].

We illustrate a survivable mapping obtained from [19]
for a simple example. A survivable mapping for the two-
layer network in Fig. 1 is given in Table 1, and is
represented by matrix H in (3).

H¼

1 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA

1

2

3

4

5

6

1 2 3 4 5 6 7 ð3Þ

3.2. Our proposed flow availability model

As we assume that link failures are mutually indepen-
dent at the lower layer, we propose to find out the set of
lower-layer links used by an upper-layer path, and build a
flow availability model at the lower layer.

Each flow s 2 Du maintains on the upper-layer topol-
ogy a working path rs ¼ fss

j g1�9Lu9 and a backup path
ss ¼ fts

j g1�9Lu9, where the j-th element of the vectors
equals one if the path traverses upper-layer link j; equals
zero otherwise. We denote the lower-layer layout of
working path rs and backup path ss by binary row vectors
qs ¼ frs

i g1�9Ll9 and 1s ¼ fBs
i g1�9Ll9, respectively, where the
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i-th element equals one if the corresponding path tra-
verses lower-layer link i at least once; equals zero other-
wise. Note that a working or a backup path can traverse a
lower-layer link multiple times [22]. An example is given
in Fig. 1, where a flow is routed on the upper-layer
topology with C-D as the working path (red solid line)
and C–A–D as the backup path (red dashed line). Con-
sidering the link mapping in (3), the actual routing of the
working and the backup paths on the lower-layer topol-
ogy is C–D (blue solid line) and C–E–A–E–D (blue dashed
line), respectively, where the backup path traverses
lower-layer link A–E twice. The key information that
vectors qs and 1s capture is whether or not a given
lower-layer link is used by the working or the backup
path, regardless of how many times the lower-layer link is
traversed. Consequently, elements rs

i and Bs
i can be

computed, respectively, as

rs
i ¼ u

X
j2Lu

ss
jyji

0
@

1
A, i 2 Ll,s 2 Du, ð4Þ

and

Bs
i ¼ u

X
j2Lu

ts
jyji

0
@

1
A, i 2 Ll,s 2 Du, ð5Þ

where
P

j2Lu
ss

jyji and
P

j2Lu
ts

jyji calculate the number of
times the corresponding path traverses link i, and u(x) is a
step function defined as

u xð Þ ¼
1 if xZ1,

0 if xo1,

(
ð6Þ

which equals one when argument x is no less than one,
and equals zero otherwise.

The failure independence on lower-layer links together
with the lower-layer link-disjointness of working and
backup paths enable simple flow availability formulations
using the series-parallel method. The series-parallel
method is suitable when a system can be characterized
by a combination of mutually independent serially and/or
parallelly structured subsystems, with each subsystem
further consisting of independent components. A serially
structured subsystem fails if any one of its components
fails. In contrast, a parallelly structured subsystem fails
only if all of its components fail. Our availability model for
flow s is given in Fig. 2(a) using a series-parallel block
diagram. Availability of working and backup paths of flow
s is computed, respectively, as

Au,w
s ¼

Y
i2Ll

A
rs

i

i ¼
Y
i2Ll

A
uð
P

j2Lu
ss

j
yjiÞ

i , s 2 Du, ð7Þ

and

Au,p
s ¼

Y
i2Ll

A
Bs

i

i ¼
Y
i2Ll

A
uð
P

j2Lu
ts

j
yjiÞ

i , s 2 Du, ð8Þ

where superscripts ‘‘u,w’’ and ‘‘u,p’’ refer to working and
backup paths at the upper layer, respectively.

The property of lower-layer link-disjointness of the
working and backup paths can be formulated as

rs
i þB

s
i r1, i 2 Ll,s 2 Du: ð9Þ
Then, unavailability of flow s is given by

Uu,f
s ¼ ð1�Au,w

s Þð1�Au,p
s Þ, s 2 Du, ð10Þ

where superscript ‘‘u,f ’’ refers to an upper-layer flow.

4. Flow availability model for protection at the lower
layer

4.1. Our proposed flow availability model

When protection is deployed at the lower layer, each
upper-layer link j is physically laid out as a working
lower-layer path lj ¼ fmj

ig1�9Ll9 and a link-disjoint backup
lower-layer path mj ¼ fnj

ig1�9Ll9. The i-th element of the
vectors equals one if the lower-layer path traverses
lower-layer link i; equals zero otherwise. As an illustrative
example, we provide a simple two-layer network in Fig. 3,
where upper-layer links A–B and B–D use lower-layer
paths A–B and B–D as their working paths, respectively,
with paths A–C–D–B and B–A–C–D as their corresponding
backup paths.

We model the flow availability using the state-space
modeling method, which partitions network states
according to lower-layer link failure scenarios. Each net-
work state corresponds to one lower-layer failure sce-
nario, where certain lower-layer links are down. The
occurrence of failure scenarios is mutually exclusive to
ensure that network states do not have overlaps in failure
events as shown in Fig. 4. Hence, the unavailability of a
flow is computed as the sum of the probabilities of
network states in which the flow is disrupted. Compared
with protection at the upper-layer and our proposed
model described in Section 3, protection at the lower
layer cannot be efficiently modeled using the series-
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parallel method, and requires a more complicated model-
ing and approximation method.

We employ the state-space method to derive the
proposed flow unavailability model by collecting network
state probabilities at the lower layer up to triple lower-
layer link failures. As it is computationally intractable to
enumerate all possible network states (i.e., failure scenar-
ios), a set of predominant network states with no more
than three lower-layer link failures is considered instead
based on the fact that probabilities of higher-order lower-
layer failures (i.e., failures of more than three lower-layer
links) are negligible. Our numerical results indicate that
considering only dual lower-layer link failures, which are
the first-order failure events to cause flow outages, are
not sufficient in unavailability calculation. Also note that
in single lower-layer failure states, dedicated path protec-
tion at the lower layer ensures the upper-layer flows to be
available.

Let Fii0 denote the network state that two lower-layer
links i and i0 (4 i) are down, and the rest of the lower-
layer links are up. The state probability of Fii0 is given by

pii0 ¼UiUi0
Y

i002Ll4i00ai,i0
Ai00 , i,i0 2 Ll,io i0: ð11Þ

Upper-layer link j fails in state Fii0 when one of links i and
i0 is on the working lower-layer path and the other on the
backup lower-layer path. Let fj

ii0
be a binary indicator,

which equals one if upper-layer link j fails in state Fii0 ;
equals zero otherwise. Thus, fj

ii0
is calculated as

fj
ii0
¼ mj

in
j
i0
þnj

im
j
i0

j 2 Lu, i,i0 2 Ll,io i0: ð12Þ

For triple lower-layer link failures, similar notations
are introduced. Let Fii0i00 denote the network state that
three lower-layer links i, i0ð4 iÞ and i00ð4 i0Þ are down, and
the other lower-layer links are up. The state probability of
Fii0 i00 is given by

pii0 i00 ¼UiUi0Ui00
Y

i0002Ll4i000ai,i0 ,i00
Ai000 ,

i,i0,i00 2 Ll,io i0o i00: ð13Þ

Let fj
ii0 i00

be a binary indicator, which equals one if upper-
layer link j fails in state Fii0 i00 ; equals zero otherwise.
Indicator fj

ii0i00
is calculated as

fj
ii0i00
¼ uðmj

iþm
j
i0
þmj

i00
Þ � uðnj

iþn
j
i0
þnj

i00
Þ,

j 2 Lu, i,i0,i00 2 Ll,io i0o i00, ð14Þ

where fj
ii0 i00

equals one when one of the three lower-layer
links i, i0 and i00 is on the working path of upper-layer link
j, and another one of them is on the backup path of link j;
equals zero otherwise.

When protection is enabled at the lower layer, each
flow s only maintains a working path rs at the upper
layer. To compute the flow unavailability with protection
at the lower layer and no protection at the upper layer, we
identify the network states, where flow s is down. Let js

ii0

denote a binary indicator, which equals one if flow s is
disrupted in network state Fii0 ; equals zero otherwise. We
have

js
ii0 ¼ u

X
j2Lu

ss
jf

j
ii0

0
@

1
A, s 2 Du, i,i0 2 Ll,io i0, ð15Þ

where
P

j2Lu
ss

jf
j
ii0

counts the number of upper-layer links
of flow s that fails in state Fii0 , and uðxÞ is the step function
defined in (6) to ensure that indicator js

ii0
equals one if

one or more upper-layer links of flow s fails in state Fii0 ;
equals zero otherwise. For example, in Fig. 3, both of the
upper-layer links A–B and B–D of flow 1, which is routed
along path A–B–D on the upper-layer topology, fail in
dual-failure state F24.

Similarly, we introduce binary indicator js
ii0 i00

, which
equals one if flow s is down in network state Fii0i00 ; equals
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zero otherwise. Indicator js
ii0i00

is given by

js
ii0 i00 ¼ u

X
j2Lu

ss
jf

j
ii0 i00

0
@

1
A,

s 2 Du, i,i0,i00 2 Ll,io i0o i00: ð16Þ

In Fig. 3 as an example, both of the upper-layer links A–B
and B–D of flow 1 fail in triple-failure states F124, and F234.

We estimate the unavailability of flow s as the sum of
the state probabilities that flow s is down, i.e.,

Uu,f
s ¼

X
i2Ll

X
i02Ll4i04 i

pii0 �js
ii0

þ
X
i2Ll

X
i02Ll4i04 i

X
i002Ll4i004 i0

pii0 i00 �js
ii0 i00 , s 2 Du, ð17Þ

where the first and the second terms on the right side of the
formula consider the contributions of dual and triple lower-
layer link failures, respectively. We ignore states for higher-
order failures of more than three lower-layer links.

4.2. Upper bound of flow unavailability

Strictly speaking, the proposed model in the previous
subsection provides a lower bound on flow unavailability
due to the truncation of more than three lower-layer link
failures. In certain cases, we are also interested in obtaining
a worst-case upper bound on flow unavailability, which can
be approximated by using the following proposed method.

The upper bound on unavailability of flow s, denoted by
U

u,f

s , can be estimated by adding the probability of quad-
ruple or more lower-layer link failures into the computed
unavailability Uu,f
s . This is a worst-case upper bound since

we assume that any quadruple or more lower-layer link
failure causes outage of flow s. In other words,

U
u,f

s ¼Uu,f
s þP3þ , s 2 Du, ð18Þ

where P3þ denotes the probability of network states with
quadruple or more lower-layer link failures. P3þ can be
computed as

P3þ
¼ 1�p0�

X
i2Ll

pi�
X
i2Ll

X
i02Ll4i04 i

pii0�
X
i2Ll

X
i02Ll4i04 i

X
i002Ll4i004 i0

pii0i00 , ð19Þ

where p0 denotes the probability of network state F0 that all
lower-layer links are up, and pi denotes the probability of
network state Fi that lower-layer link i is down, and all the
other lower-layer links are up. Probabilities of network states
F0 and Fi are given, respectively, by

p0 ¼
Y
i2Ll

Ai, ð20Þ

and

pi ¼Ui

Y
i02Ll4i0ai

Ai0 , i 2 Ll: ð21Þ

5. Numerical results

5.1. Simulation settings

We use two example networks to evaluate the accuracy
of flow availability estimations given by the proposed and
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the existing analytical models. The example networks, Net 1
and Net 2, are shown in Figs. 5 and 6, respectively. The
average nodal degrees of the lower-layer topologies are 2.56
and 3.65 for Net 1 and Net 2, respectively. Link lengths in
km are marked on the lower-layer topologies. As the typical
average nodal degree for carrier networks is 2.7 [23], results
on Net 1 can have more practical relevance.

We vary the failure rates of lower-layer links to test the
performance of the proposed flow availability model. Time to
failure and failure repair time of each lower-layer link follow
negative exponential distributions as assumed in Section 2.
The mean failure rate of a link is measured in FIT/km, where
1 FIT (failure in time) refers to 1 failure in 109 h. When the
link failure rate is 500 FIT/km, the MTTF of lower-layer
networks is 170.7 h and 68.5 h for Net 1 and Net 2,
respectively. The mean time to repair of a lower-layer link
is assumed to be 12 h. We simulate flow unavailability under
various link unavailability (i.e., link failure probabilities) using
a discrete-event simulator written in OPNET. The unavail-
ability of a flow is computed as the accumulated outage time
divided by the total simulation time. Different link unavail-
ability is set by varying the link failure rates. According to (1),
this is equivalent to varying the MTTR of links adopted in
[8,10]. We simulate the average flow unavailability up to a
bit over 10�3 as service providers usually work with flow
unavailability below 10�3 (i.e., availability of over ‘‘three
nines’’). The corresponding link failure rates are in the range
of several hundred FIT/km, which is on the same order of link
failure rate (312 FIT/km) observed in long-haul networks
according to Telcordia statistics [24].
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Fig. 6. Net 2 with 9 upper-layer nodes, 23 upper-layer lin
In our simulation, lower-layer links can fail with
arbitrary combination and of arbitrary order. This is
unlike the simulation method used in [9], which only
collects the outage time of dual-link failures, and ignores
the impact of more than two lower-layer links. In our
simulation, all possible failure scenarios that disrupt a
flow are counted in the outage time of the flow.
5.2. Flow availability with protection at the upper layer

We obtain a mapping of upper-layer links to lower-
layer paths using the link-path version of the ILP model
proposed in [19]. The link-path formulation can be found
in [25]. For each upper-layer link, we feed into the ILP
model up to 50 pre-calculated candidate paths, which are
generated by using the K shortest path algorithm based
on the lower-layer hop count metric.

We enumerate various path pairs for each upper-layer
node pair so that many possible routing solutions are taken
into consideration, and study the average unavailability
performance without being dominated by a small number
of particular path pairs. For each upper-layer node pair, 5
working paths and 5 lower-layer link-disjoint backup paths
associated with each working path are computed on the
upper-layer topologies, if they exist, by using the K shortest
path algorithm. The lower-layer hop counts of upper-layer
links are used as link costs on the upper-layer topologies.
The total numbers of flows calculated are 601, i.e., 9Du9¼
601, for Net 1, and 821, i.e., 9Du9¼ 821, for Net 2.
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ks, 17 lower-layer nodes, and 31 lower-layer links.
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Fig. 7. Average unavailability of multi-crossing flows on Net 1 with

dedicated path protection at the upper layer.

100 200 300 400 500 600 700
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
ve

ra
ge

 fl
ow

 u
na

va
ila

bi
lit

y 
(%

)

Mean link failure rate in FIT/km

Model in [12-14]
Proposed model
Simulation

Fig. 8. Average unavailability of multi-crossing flows on Net 2 with

dedicated path protection at the upper layer.
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5.2.1. Number of flows with overestimated unavailability

We identify flows with either working or backup path
traversing any lower-layer link more than once as ‘‘multi-
crossing flows’’, denoted by set

Mu ¼ s 2 Du i 2 Ll :
X
j2Lu

ss
jyji413

X
j2Lu

ts
jyji41

������
8<
:

9=
;: ð22Þ

The sizes of the flow sets are summarized in Table 2. The
size of setMu is found to be 400, which is around 66.6% of
the total flows, for Net 1, and 257, which is around 31.3%
of the total flows, for Net 2. The proportion of total flows
included in set Mu, i.e., 9Mu9=9Du9, on Net 1 is much
larger than that on Net 2 due to the sparser lower-layer
topology of Net 1 than that of Net 2. A sparser lower-layer
topology limits link mapping diversity, and causes more
overlapped mapping of upper-layer links on lower-layer
links. As a result, upper-layer paths are more likely to use
lower-layer links more than once. For flows outside of set
Mu, i.e., Du\Mu, there is no overestimation of unavail-
ability. We focus on flows in set Mu to compare the
accuracy of the existing and the proposed availability
models.

5.2.2. Extent of flow unavailability overestimation

We compare average flow unavailability obtained from
our proposed model and the existing model in [12–14]
with simulation results. Figs. 7 and 8 show the average
unavailability on Net 1 and Net 2, respectively. The data
are taken over all the flows in set Mu. We see that our
proposed model fits well with the simulation results:
nearly all the analytical results fall into the 95% con-
fidence intervals of the simulation results for Net 1; and
all are within the intervals for Net 2. This confirms the
accuracy of our proposed model. On the contrary, the
model in [12–14] gives much higher average unavailabil-
ity than the simulation results for both networks because
set Mu is formed by flows with overestimated unavail-
ability given by the existing model. More specifically, the
existing model builds flow availability upon the avail-
ability of upper-layer links by assuming independent
upper-layer link failures. The associated series-parallel
diagram is given in Fig. 2(b). However, since different
upper-layer links can share the same lower-layer link, if
an upper-layer path traverses a lower-layer link multiple
times as shown in Fig. 2(c), the availability of the lower-
layer link is counted the same number of times in the
existing model, and thus overbuilds the value of path
unavailability. Consequently, flow unavailability as a
product of working and backup path unavailability is
Table 2
Percentage of multi-crossing flows in total flows for protection at the

upper layer.

Example

network

Total

flows, i.e.,

9Du9

Number of multi-

crossing flows, i.e.,

9Mu9

Percentage of multi-

crossing flows in total

flows, i.e.,

9Mu9=9Du9� 100%

Net 1 601 400 66.6

Net 2 821 257 31.3
overestimated when any one of the two paths traverses
a lower-layer link more than once.

As a quantitative metric to characterize the overesti-
mation of flow unavailability in the existing model in
[12–14], we define the unavailability overbuild of flow s

as

Ou,f
s ¼

~U
u,f

s �Uu,f
s

Uu,f
s

� 100%, s 2Mu, ð23Þ

where ~U
u,f

s and Uu,f
s denote the flow unavailability com-

puted by the existing model and by our proposed model,
respectively. We observe that the average unavailability
overestimation is significant on both networks shown in
Fig. 9. For all the lower-layer link failure rates studied, the
average overbuild is constantly around 30% on Net 1 and
is around 28% on Net 2.

5.2.3. Distribution of flow unavailability overestimation

Fig. 10 takes a snapshot of the unavailability of
individual multi-crossing flows on Net 1. Link failure rate
is set to 600 FIT/km. We count the numbers of flows that
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are below, within, and above the 95% confidence ranges
for both models. The comparative results between our
proposed model and the model in [12–14] are 2 vs. 0 for
below the ranges, 374 vs. 36 for within the ranges, and 24
vs. 364 for above the ranges. We observe a significant
improvement of our proposed model over the model in
[12–14] in terms of per-flow unavailability accuracy.
Taking the flows in set Du\Mu into account, Fig. 12 shows
the proportions of all flows that are within, above, and
below the 95% confidence ranges. The comparative results
between our proposed model and the model in [12–14]
are 90.4% vs. 34.1% for within the ranges, 9.3% vs. 65.9%
for above the ranges, and 0.3% vs. 0% for below the ranges.

Similar improvement is also observed in Fig. 11, which
takes a snapshot of the unavailability of multi-crossing
flows on Net 2. Link failure rate is 400 FIT/km. We find
that with the model in [12–14], only 6 flows are within
the confidence intervals. The majority of 251 flows fall out
of the ranges with higher unavailability values. In con-
trast, by using our proposed model, unavailability of 249
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Fig. 10. Unavailability of multi-crossing flows on Net 1 with dedicated pa
flows falls within the 95% confidence intervals, and only 8
flows are above the confidence ranges. This again indi-
cates the accuracy gain of our proposed model over the
existing model in [12–14]. Fig. 13 shows a complete
picture of the proportions of all flows (i.e., flows in set
Du) that are within, above, and below the 95% confidence
intervals. The comparative results between our proposed
model and the model in [12–14] are 94.8% vs. 65.2% for
within the intervals, 5.2% vs. 34.8% for above the intervals,
and 0% vs. 0% for below the intervals.

5.3. Flow availability with protection at the lower layer

In the case of protection at the lower layer, each
upper-layer link is laid out as a pair of link-disjoint
lower-layer paths with minimum lower-layer hop counts.
Such a path pair is found through the link-disjoint short-
est pair algorithm in [26], which has polynomial compu-
tational complexity.

When the lower-layer path pair for each upper-layer
link is found, 10 shortest single paths per upper-layer
node pair are computed on the upper-layer topology
using the K shortest path algorithm with hop counts of
lower-layer path pairs serving as the upper-layer link
costs. The total numbers of flows generated on Net 1 and
Net 2 are both 360. These flows form sets Du on the
corresponding networks.

5.3.1. Number of flows with overestimated unavailability

Among the generated flows under study, we further
identify the flows that have multiple (Z2) upper-layer
links disrupted in the same dual-lower-layer-link-failure
state(s) as ‘‘multi-crossing flows’’, denoted by set

Qu ¼ s 2 Du i,i0 2 Ll,io i0 :
X
j2Lu

ss
jf

j
ii0
41

������
8<
:

9=
;: ð24Þ

Note that in (24) we use the first-order dual-failure
network states to select flows as numerical results show
that redundancy that exists only among the second-order
00 250 300 350 400
dentifier

th protection at the upper layer and link failure rate of 600 FIT/km.
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Fig. 11. Unavailability of multi-crossing flows on Net 2 with dedicated path protection at the upper layer and link failure rate of 400 FIT/km.
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Fig. 12. Proportion of all flows within, above, and below the 95%

confidence intervals of the simulation results on Net 1 with link failure

rate of 600 FIT/km and dedicated path protection at the upper layer.
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Table 3
Percentage of multi-crossing flows in total flows for protection at the

lower layer.

Example

network

Total

flows, i.e.,

9Du9

Number of multi-

crossing flows, i.e.,

9Qu9

Percentage of multi-

crossing flows in total

flows, i.e.,

9Qu9=9Du9� 100%

Net 1 360 321 89.2

Net 2 360 112 31.1
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triple-failure states has marginal effects on unavailability
calculation accuracy. The sizes of the flow sets are
summarized in Table 3. The set size of Qu is 321, which
is around 89.2% of the total flows, on Net 1, and is 112,
which is around 31.1% of the total flows, on Net 2. The
proportion of total flows involved in set Qu, i.e., 9Qu9=9Du9,
on Net 1 turns out to be much higher than that on Net 2.
Similar to the case of protection at the lower layer, this
can be explained by the sparser lower-layer topology of
Net 1 than that of Net 2. A sparser lower-layer topology
greatly reduces the diversity of link-disjoint lower-layer
path pairs. Hence, when the upper-layer links are laid out
in the form of lower-layer path pairs, they are more
intertwined on the lower-layer topology. Consequently,
upper-layer flows enjoy a much higher probability of
having multiple traversed upper-layer links failing in the
same lower-layer dual-failure states. For tidiness, we do
not show the availability results for flows in set Du\Qu,
but we confirm that though using different calculation
methods, flow unavailability computed by our model and
by the model in [12–14] are closely approximate to each
other, and agree well with the simulation results on both
networks. In the following, we focus on the flows in setQu

to compare the proposed and the existing models.

5.3.2. Extent of flow unavailability overestimation

Figs. 14 and 15 show the average unavailability taken
over all the flows in set Qu on Net 1 and Net 2,
respectively. Comparing the curves of the existing model
[12–14] with the simulation results, we see that results
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Fig. 14. Average unavailability of multi-crossing flows on Net 1 with
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given by [12–14] all fall above the 95% confidence inter-
vals of the simulation results. This is because set Qu is
composed of flows that have unavailability overestima-
tion with the existing model in [12–14], which relies on
the availability of upper-layer links and the implicit
assumption of independent upper-layer link failures to
approximate the flow availability. However, if multiple
upper-layer links of a flow fail in the same network state,
probability of the network state contributes to the flow
unavailability multiple times, thus leading to redundant
calculations by using the existing model. On the other
hand, when we use the proposed model to compute the
flow unavailability, we find that the results are very close
to the simulation results with all the average values
falling within the 95% confidence intervals. The accuracy
of our proposed model comes from the removal of
redundant unavailability calculations caused by the
existing model.

To further quantify the calculation redundancy of the
existing unavailability model in [12–14], we use the
unavailability overbuild metric defined in (23), where
set Mu is replaced by set Qu for the current context.
Clearly, a higher unavailability overbuild indicates more
redundancy computed by the existing model [12–14]. In
Fig. 16, we observe considerable average unavailability
overbuild on both networks. On Net 1, the average over-
build is above 15% under all lower-layer link failure rates,
and increases slowly as the failure rate gets higher.
Turning to Net 2, we see a similar increasing trend, but
at a more rapid pace. Specifically, moving from the link
failure rate of 200 FIT/km to 800 FIT/km, the average
unavailability overbuild increases from 17.1% to 20.2%
accordingly.
5.3.3. Justification of considering up to triple lower-layer

link failures

To justify the necessity of introducing triple lower-
layer link failures in unavailability calculations, we
include in Figs. 14 and 15 the average flow unavailability
curves computed by the proposed model which, however,
only considers dual-lower-layer-link-failure states. For
Net 1, we see that when link failure rates are not greater
than 600 FIT/km, calculations with dual-failure states are
still within the 95% confidence intervals of the simulation
results, but all of the computed values are below the
mean simulated values, and deviate more from the mean
simulated values as the failure rate increases. When the
link failure rate reaches 700 FIT/km and beyond, calcula-
tions with dual failures go below the confidence ranges,
and the gap to the simulation results becomes larger. The
above trend indicates that unavailability calculations
considering only dual-lower-layer-link-failure states can
be accurate when the link failure rate is low enough to the
extent that contributions of dual failures to flow unavail-
ability are dominant while the contributions of triple
failures are negligible. However, when the link failure
rate is high in the sense that contributions of dual failures
and triple failures to flow unavailability become compar-
able, considering only dual failures in unavailability
calculations becomes insufficient, and triple failures
should be included in the proposed model accordingly
as in (17). A similar trend is also observed on Net 2 with a
magnified effect. Specifically, calculation with dual
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failures is only accurate at link failure rate of 200 FIT/km.
For the rest of the failure rates studied (i.e., from 300 to
800 FIT/km), all of the calculations are far below the
confidence ranges of the simulation results. This is
because given the same link failure rate, the MTTF value
of the lower-layer topology on Net 2 is much lower than
that on Net 1 as discussed in the simulation settings. Or
equivalently, to reach the same MTTF value of the lower-
layer network, the link failure rate with Net 2 is much
smaller than that with Net 1. Moreover, one can see in
Fig. 15 that the disparity between the two results
becomes larger with the increase of the link failure rate.

In short, both Figs. 14 and 15 show the need to include
triple lower-layer failures in the proposed analytical
model particularly as the link failure rate gets higher.
On the other hand, we simulate the average flow unavail-
ability up to over 10�3, which corresponds to an average
availability level of less than 0.999 (‘‘three nines’’). We see
in both Figs. 14 and 15 that triple-failure coverage still
works well for that unavailability range with negligible
truncation errors. As service providers usually manage the
flow unavailability to be no greater than 10�3 (corre-
sponding to flow availability of no less than ‘‘three nines’’)
[5,27], we expect considering triple lower-layer link fail-
ures to be sufficient to deliver accurate calculations for
practical unavailability concerns.

5.3.4. Upper bound on flow unavailability

Figs. 14 and 15 also plot the upper bounds on flow
unavailability corresponding to our proposed models with
only dual lower-layer link failures and with up to triple
lower-layer link failures. Recall that our proposed model
provides a lower bound on flow unavailability in the strict
sense. We see that with only dual lower-layer failures, gaps
between the two bounds (i.e., the upper and the lower
bounds) as well as gaps between the upper bound and the
simulation results are both large on two networks, parti-
cularly for Net 2. By including triple lower-layer failures in
our proposed model, both gaps are narrowed. On Net 1,
both gaps become negligible. The two bounds are almost
identical to each other. This indicates a tight upper bound
0 50 100 150
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fl
ow

 u
na

va
ila

bi
lit

y 
(%

)

Flow

Fig. 17. Unavailability of multi-crossing flows on Net 1 with dedicated pa
on flow unavailability. On Net 2, both gaps are small when
the network failure rate is low, but increase considerably
as the network failure rate gets higher. In other words, the
upper bound gets loose with the increase of the network
failure rate. Moreover, we observe that flow unavailability
given by the existing model is very close to the upper
bound associated with our model considering only dual
lower-layer link failures on Net 1, and is higher than the
upper bound of our model with up to triple lower-layer
link failures on Net 2.

5.3.5. Distribution of flow unavailability overestimation

Fig. 17 takes a snapshot of the unavailability of multi-
crossing flows on Net 1 when link failure rate is 700 FIT/km.
It is encouraging to find that all the flow unavailability
computed by our model is within the 95% confidence
intervals of the simulation results. In contrast, by using
the model in [12–14], only 60 flows are within the
confidence ranges while the other 261 flows have their
unavailability overestimated with the values falling above
the ranges. To give a complete view, Fig. 19 shows the
proportions of all flows (i.e., flows in set Du) that are within,
above, and below the 95% confidence intervals. The com-
parative results between our proposed model and the
model in [12–14] are 100% vs. 27.5% for within the
intervals, 0% vs. 72.5% for above the intervals, and 0% vs.
0% for below the intervals.

A snapshot of the unavailability of multi-crossing
flows on Net 2 is given by Fig. 18. Link failure rate is set
to 500 FIT/km. For both models, we count the number of
flows whose unavailability values are below, within, and
above the confidence intervals of the simulation results.
The comparative results between our model and the
model in [12–14] are 1 vs. 0 for below the intervals,
111 vs. 23 for within the intervals, and 0 vs. 89 for above
the intervals. For flows whose unavailability values are
within the confidence intervals using both models, we
further calculate the percentage error between the
approximation value of the analytical results and the
mean value of the simulation results. The average percen-
tage errors taken over these flows are 1.98% for our model
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Fig. 18. Unavailability of multi-crossing flows on Net 2 with dedicated

path protection at the lower layer and link failure rate of 500 FIT/km.
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and 6.29% for the model in [12–14]. This means that even
for the flows whose analytical results are both within the
confidence intervals, our model matches the mean simu-
lated value closer than the model in [12–14]. Next, for a
complete picture, Fig. 20 shows the proportions of all
flows (i.e., flows in set Du) that are within, above, and
below the 95% confidence intervals. The comparative
results between our proposed model and the model in
[12–14] are 98.1% vs. 74.2% for within the intervals, 0% vs.
24.7% for above the intervals, and 1.9% vs. 1.1% for below
the intervals.

The per-flow unavailability results in both Figs. 17 and
18 further show that our proposed model outperforms the
existing model in [12–14] in terms of approximation
accuracy.

5.4. Flow availability comparison between two protection

schemes

Let us consider the following incremental network
design situation: assume that all the existing flows in a
two-layer carrier network are unprotected. Specifically,
each logical link is laid out as a single lower-layer path,
and each flow maintains a single path at the upper layer.
Now the network carrier would like to protect all the
flows by deploying in the network one and only one of the
two protection schemes, i.e., protection at the upper layer
or protection at the lower layer. An interesting question
is: which protection scheme provides better average flow
availability?

We perform case studies on Net 1 and 2. For each
upper-layer node pair, we generate only one flow, which
is routed over the shortest upper-layer path. The upper-
layer link cost is chosen to be the corresponding lower-
layer hop count. In the upper-layer protection scheme, a
shortest backup path which is lower-layer link-disjoint
with the working path is routed based on the same upper-
layer link cost metric. In the case of lower-layer protec-
tion, a link-disjoint lower-layer path with the shortest
hop count is routed to protect the working lower-layer
path of each logical link.

Figs. 21 and 22 show on the left axes the average
unavailability taken over all the flows on Net 1 and Net 2,
respectively. We see that on both networks, the average
flow unavailability with protection at the lower layer is
lower than that with protection at the upper layer. This
can be explained by the fact that replication at the
component level (i.e., at the lower layer for the upper-
layer links in our context) is more effective than replica-
tion at the system level (i.e., at the upper layer for the
upper-layer paths) [28]. For reference, we plot the average
unavailability of all the flows before protection on the
right axes of the figures.

6. Conclusions

In this paper, we studied analytical models for flow
availability in two-layer networks with dedicated path
protection. Specifically, we considered two protection
options, namely, protection at the upper layer, and protec-
tion at the lower layer. For both protection schemes, we
proposed new models that build the flow unavailability
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Fig. 21. Average flow unavailability on Net 1.
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Fig. 22. Average flow unavailability on Net 2.
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accurately at the lower layer, where link failures are
mutually independent, so that redundant calculations are
canceled out.

In simulation, we identify the flows whose unavail-
ability is overestimated using the existing models, which
compute the flow availability at the upper layer, where
link failures are correlated, by implicitly assuming failure
independence of upper-layer links. These identified flows
constitute 31.3% to 66.6% and 31.1% to 89.2% of the total
flows in the case of protection at the upper layer and
protection at the lower layer, respectively. The proportion
of the identified flows among the total flows shows a
lower-layer-topology-dependence property. In particular,
the proportion tends to be higher when the lower-layer
network topology becomes sparser.

Numerical results show that by using the existing
models, only 2.3% to 9.0% of the identified flows have
their unavailability values falling within the 95% confi-
dence intervals of the simulation results when protection
is deployed at the upper layer. In the case of protection at
the lower layer, the percentage ranges from 18.7% to
20.5%. In contrast, when the proposed flow unavailability
models are used to replace the existing ones, the corre-
sponding percentages are improved significantly to over
93.5% for protection at the upper layer and to over 99.1%
for protection at the lower layer. Moreover, even for the
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flows with both of the analytical results falling within the
confidence intervals, the analytical results of the proposed
models match the mean simulated values closer than
those of the existing models. To quantify the overestima-
tion property of the existing models, the unavailability
overbuild metric is introduced. Numerical results show
that the average unavailability overbuild for protection at
the upper layer and for protection at the lower layer is
over 28% and over 15%, respectively. Last, we compared
flow availability between the two protection schemes.
Numerical results show that given the same initial unpro-
tected network states, the average flow unavailability
deploying lower-layer protection is smaller than that
deploying upper-layer protection.
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