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Abstract

Purpose – The purpose of this paper is to present the benefits of using the Lagrangian relaxation
(LR) and subgradient methods in scenario studies for wavelength division multiplexing (WDM)
network planning. The problem of WDM network planning for a given set of lightpath demands in a
mesh topology network is to select lightpath routes and then allocate wavelength channels to the
lightpaths. In WDM network planning, a scenario study is to find out the network performance under
different lightpath demands and/or different network resource configurations.

Design/methodology/approach – A scenario study must solve a series of related static WDM
network planning problems. Each static WDM network planning problem is an optimization problem,
and may be formulated as an integer linear programming problem, which can be solved by the
proposed Lagrangian relaxation and subgradient methods. This paper uses the Lagrange multipliers
that are obtained from previous scenarios as initial Lagrange multiplier values for other related
scenarios.

Findings – This approach dramatically reduces the computation time for related scenarios. For small
to medium variations of scenarios, the method reduces the computation time by several folds. The
proposed method is the first method that effectively considers the relations between related scenarios,
and uses such relations to improve the computation efficiency of scenario studies in WDM network
planning.

Practical implications – The method improves the efficiency of a scenario study in WDM
network planning. By using it, many “what-if” type of scenario study questions can be answered
quickly.

Originality/value – Unlike other existing methods that treat each scenario individually, this method
effectively uses the information of the relation between different scenarios to improve the overall
computation efficiency.
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I. Introduction
The wavelength routed wavelength division multiplexing (WDM) technology is the
core of broadband networks. It provides huge bandwidth capacity with great network
control and management flexibility (Zheng and Mouftah, 2004; Mukherjee, 2006;
Ramaswami and Sivarajan, 1998). In wavelength routed WDM networks, each optical
fibre carries multiple wavelength channels. Each wavelength channel in the same fibre
uses a distinct wavelength. A WDM switch connects wavelength channels from its
incoming fibres to its outgoing fibres. The switching configuration of a WDM switch
can be changed through network control or management systems, which means that a
lightpath coming into a WDM switch can be switched to a selected outgoing fibre.
A lightpath consists of a chain of wavelength channels from a source node to a
destination node.

For a given set of static lightpath demands, the WDM network planning problem is a
combinatorial optimization problem, which requires a significant amount of computation
to obtain the optimal or a near-optimal solution (Zang et al., 2000; Dutta and Rouskas,
2000). First of all, because different lightpath demands compete for a common pool of
network resources, the resource allocation problem must be solved for the whole set of
lightpath demands, but not individually. When the number of lightpath demands and
network size grow, the computation becomes very difficult. Second, for each lightpath
demand, it is required to select a route through a mesh topology network and then select
wavelength channels along the route. In general, the above two problems are dependent,
and need to be solved together to obtain the optimal solution. These two problems
compose the routing and wavelength assignment (RWA) problem.

In WDM network planning, a scenario study is to find out the network performance
under different lightpath demands and/or different network resource configurations.
A scenario consists of a given set of lightpath demands and a predefined network
resource configuration. A scenario study must solve a series of related static WDM
network planning problems. For example, lightpath demands are varied to investigate
the impact of inaccurate traffic predication, traffic increase or decrease on the network
performance. For this purpose, different network resource configurations are
investigated to study the improvement of the network performance with incremental
network resource investment or the re-organization of existing network resources.
Although various computation methods for a single case WDM network planning were
proposed in the literature (Jaumard et al., 2007; Antonakopoulos and Zhang, 2007;
Banerjee and Mukherjee, 2000; Tornatore et al., 2002; Ozdaglar and Bersekas, 2003;
Saad and Luo, 2004), most of them are inefficient for scenario studies. They treat each
scenario individually, and do not use the relation between scenarios (Zang et al., 2000;
Krishnaswamy and Sivarajan, 2001; Wang et al., 2005).

In this paper, we present the benefits of using the Lagrangian relaxation (LR) and
subgradient methods in scenario studies for WDM network planning. The LR-based
method has shown its advantages in computing a near-optimal solution for a single
case WDM network planning problem (Zhang et al., 2004, 2008; Lee et al., 2004; Luh
et al., 1990; Lucena, 2006; Saad and Luo, 2004; Guan et al., 2007). We use the Lagrange
multipliers that are obtained from previous scenarios as initial Lagrange multiplier
values for other related scenarios. In this manner, our approach dramatically reduces
the computation time for related scenarios. For small to medium variations of
scenarios, our method reduces the computation time by several folds. Our proposed
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method is the first method that effectively considers the relations between related
scenarios, and uses such relations to improve the computation efficiency of scenario
studies in WDM network planning.

This paper is organized as follows. In Section 2, we present a model and
assumptions for a wavelength routed WDM network. In Section 3, we provide an
integer linear programming formulation of the static RWA problem. In Section 4, we
explain how the LR and subgradient methods are used to solve a single case WDM
network planning problem, followed by a proposal of using the Lagrange multipliers
that are obtained from previous scenarios to improve the efficiency of scenario study.
In Section 5, we present two examples of scenario studies and compare the
computation time savings. We conclude this paper in Section 6.

II. Network model and assumptions
Our network model consists of N nodes interconnected by E links. Each WDM switch
is considered as a node in the network model. The set V represents all the nodes in the
network. Each link has a pair of fibres, one for each direction. Each fibre has W
non-interfering wavelength channels. The link between nodes i and j is denoted by eij.
The cth wavelength channel on eij is denoted by wijc (0 , c # W). The set E represents
all the links in the network.

We use general mesh network topologies. They are not restricted to any particular
pattern. Different nodes may connect to different numbers of other nodes.

We allow wavelength conversion at switches. The number of wavelength
converters at different switches varies, and could be zero. Wavelength converters are
installed in a share-per-node manner, which means any input or output port may use a
wavelength converter, if one is available. If a switch has an available wavelength
converter, a lightpath travelling through the switch may use the wavelength converter
to change the wavelength; otherwise, a lightpath travelling through the switch must
use the wavelength channels with the same wavelength on both its input and output
fibres.

In this paper, we use static lightpath demands for WDM network planning purpose.
That means lightpath demands all arrive before the planning is conducted, and are all
known in advance for the planning. If a lightpath demand is accepted, resources will be
allocated to it for constructing a lightpath. A lightpath permanently uses the allocated
resources. The set L represents all lightpath demands. Our model allows more than one
lightpath being set up between a given node pair. The symbol ssdn denotes the nth
lightpath demand between the source-destination node pair (s,d ).

We assume all resource costs are known. The total cost of the resources that are
consumed by a lightpath is the summation of all the system modules and sub-systems
that the lightpath travels through. Since each lightpath uses exactly one transmitter at
its source and one receiver at its destination, for simplicity we do not count the costs of
transmitters and receivers. For illustration purpose, we only count the resource costs of
wavelength channels and converters.

We assume service charges for all lightpath demands are known. At the planning
stage, we assume the service charge for a lightpath demand is irrelevant to its
consumption of resources. A network operator uses the service charge of a lightpath
demand to determine whether accepting the demand is profitable.
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III. An integer linear programming formulation of the static RWA problem
We adopt a penalty-based objective function as in Zhang et al. (2008), wherein the
rejection of demands and the use of network resources are penalized. Since a certain
amount of potential revenue is lost when a request is rejected, the rejection penalty
equals the amount of its potential revenue. On the other hand, when a request is
accepted, its resource consumption is added as a penalty term in the objective function.
The resource consumption penalty is the cost of resources used by the lightpath
provisioned for the demand.

Our design objective is to minimize the function J, i.e.
A;D;F
minðJ Þ, where:

J ¼
ssdn[L

X
½ð1 2 asdnÞPsdn þ asdnCsdn� ð1Þ

For each demand ssdn, either the penalty of rejecting it (Psdn), or the penalty of using
resources (Csdn) to set up a lightpath is added to the objective function ( J ), depending
on ssdn’s admission status asdn. The value of asdn is zero, if ssdn is rejected and asdn is
one, if ssdn is admitted. Essentially, our design objective is to maximize the overall
profit, which is measured by the excess of revenue of providing services to demands
over the network resource cost. We will identify and accept profitable demands, while
reject non-profitable demands. After the optimization results for one scenario are
computed, the unused resources can be re-arranged or reduced to generate a new
scenario. By studying a sequence of scenarios, a proper configuration is obtained for a
given set of demands. Note that the design objective in the network planning is
different from that in the dynamic operation of an existing network. The latter one is to
maximize the utilization of existing resources to accommodate more demands. In the
latter case, the penalty of using resources is generally not considered, since the
resources are deployed already.

In addition to the design variables asdn ð;ssdn [ LÞ, we introduce the design
variables dsdnijc (;ssdn [ L, ;eij [ E , 0 , c # W ), representing the use of wijc by ssdn
and the design variables fsdn

i (;ssdn [ L, ;i [ V), representing the use of a
wavelength converter at node i by ssdn. If wijc is used by ssdn, dsdnijc equals one; otherwise,
dsdnijc equals zero. If a wavelength converter is used by ssdn, fsdn

i equals one; otherwise,
fsdn
i equals zero. We use vector A to denote the acceptance status of all demands,

vector D to denote their wavelength assignment and F to denote their use
of wavelength converters. We use V to denote all the design variables (A,D,F). For an
individual lightpath demand ssdn, we use Dsdn to denote its wavelength assignment and
Fsdn to denote its use of wavelength converters. Now we may define the cost of
resources Csdn as the cost of using wavelength channels and converters:

Csdn ¼
eij[E

X
0,c#W

X
dijd

sdn
ijc þ

i[V

X
oif

sdn
i ; ;ssdn [ L; ð2Þ

where:

dij – the cost of using wijc.

oi – the cost of using a wavelength converter at node i.
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The above static RWA problem must conform to the following constraints:
. Lightpath continuity constraints: if a demand is admitted, the lightpath assigned

to it has to be continuous along a path between the source-destination pair. Since
the assigned lightpath terminates at the two end nodes, we have:

j[V

X
0,c#W

X
dsdnijc 2

j[V

X
0,c#W

X
dsdnjic ¼

asdn if i ¼ s

2asdn if i ¼ d

0 otherwise

8>><
>>:

; ;ssdn [ L ð3Þ

. Wavelength channel exclusive usage constraints:

ssdn[L

X
dsdnijc # 1; ;eij [ E ; 0 , c # W ð4Þ

These constraints mean that each wavelength channel can only be used by one
lightpath.

. Transmitter, receiver and wavelength converter capacity constraints:

d[V

X
0,n#Nsd

X
asdn # Ts; ;s [ V ð5Þ

s[V

X
0,n#Nsd

X
asdn # Rd; ;d [ V ð6Þ

ssdn[L

X
fsdn
i # Fi; ;i [ V ð7Þ

The number of lightpaths originating from or terminating at a node must be no
more than the number of transmitters or receivers at the node. We assume that
all transmitters and receivers operate at any wavelength. The number of
transmitters at source node s is denoted by Ts. The number of receivers at
destination node d is denoted by Rd. The symbol Nsd is the number of lightpath
demands between (s,d ). The number of used converters at a node must be no
more than the number of installed converters at the node. The number of
wavelength converters at node i is denoted by Fi.

. Wavelength conversion constraints:

fsdn
j ¼

1 if ’m; k [ V and b – a; dsdnmja ¼ dsdnjkb ¼ 1

0 otherwise ;

8<
: ;j [ V ð8Þ

A wavelength converter at an intermediate node j is used only when different
wavelengths are assigned to ssdn for the incoming and outgoing signals at this
node.
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IV. Computation method
A. Solve the static RWA problem by the LR and subgradient methods
We use the LR and subgradient methods to solve the static RWA problem. By using
the LR framework, a dual problem (DP) can be derived from the primal problem

V
minðJ Þ.

A heuristic algorithm is used to obtain a feasible solution to the primal problem from
the solution to the Lagrangian DP. The achieved value of the Lagrangian DP is a
bound of the objective function in the primal problem. The key of solving the
Lagrangian DP is its decomposition into independent sub-problems, whose optimal
solutions can be easily obtained. Once the optimal solutions to the sub-problems are
computed, we use the subgradient method to solve the Lagrangian DP iteratively. The
overall algorithm is shown in Figure 1. When the algorithm converges, the optimized
Lagrange multipliers are obtained. In addition to the built-in nature of attempting to
respect the relaxed constraints in solving the Lagrangian DP, the heuristic algorithm
forces the violated constraints to be respected.

The Lagrangian DP is derived by relaxing the constraints that represent resource
limitations. Lagrange multipliers jijc, ps, ud and li are introduced in association with
the wavelength channel exclusive usage constraints in equation (4), transmitter,
receiver and wavelength converter capacity constraints in equations (5)-(7),
respectively. We use j, p, u and l to denote the vectors of Lagrange multipliers
(jijc), (ps), (ud) and (li), respectively. We use M to denote all the Lagrange multipliers (j,
p, u, l). The Lagrangian function L is defined as:

LðV ;M Þ ¼J ðV Þ þ
eij[E

X
0,c#W

X
jijc

ssdn[L

X
dsdnijc 2 1

0
@

1
Aþ

s[V

X
ps

d[V

X
0,n#Nsd

X
asdn 2 Ts

0
@

1
A

þ
d[V

X
ud

s[V

X
0,n#Nsd

X
asdn 2 Rd

0
@

1
Aþ

i[V

X
li

ssdn[L

X
fsdn
i 2 Fi

0
@

1
A

ð9Þ

Figure 1.
Schematic depiction of the

overall algorithm

Initialization

Solving the lagrangian DP

Subgradient method to
update lagrange

multipliers; update
other variables

Obtain a feasible RWA scheme by heuristic

Stopping criterion reached?

Yes

Stop

No

Solve each sub-problem independently

Compute duality gap
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We define the dual function q(M) as the infimum of L(V,M):

qðM Þ ¼
V

min½LðV ;M Þ� ð10Þ

The Lagrangian DP is
M$0
max½qðM Þ�, subject to the constraints in equations (3) and (8).

We use q* to denote Lagrangian DP’s optimal value. The corresponding optimal
Lagrange multiplier values are denoted by M * ¼ ðj*;p*; u*; l*Þ. The optimal value
of the Lagrangian DP is a lower bound to the primal problem (Bertsekas, 1999):

q*ðM *Þ ¼
V

min½LðV ;M *Þ� #
V

min½J ðV Þ� ð11Þ

Two important facts lead to our decomposition of the Lagrangian DP. The first fact is
the relations dsdnijc ¼ asdnd

sdn
ijc and fsdn

i ¼ asdnf
sdn
i . After removing the terms that are

independent of the decision variables, the dual function becomes equation (12). Refer to
Zhang et al. (2004, 2008) for the mathematical details. The second fact is that the
resource allocation to each lightpath is independent, because the resource usage
constraints in equations (4)-(7) are relaxed. The complex competition among lightpaths
for shared resources does not need to be considered when we allocate resources to
individual lightpaths. So, the dual function is composed of the summation of all
lightpath-level sub-problems, i.e.:

qðM Þ ¼
ssdn[L

X
SPsdn;

where SPsdn denotes the sub-problem that corresponds to ssdn. The lightpath
independence dramatically reduces the huge global problem space into partitioned
pieces of sub-problem space, where the optimal solutions to the decomposed
sub-problems can be computed using well-established existing algorithms. The global
optimal solution to DP is efficiently searched by the subgradient-based iterations:

qðM Þ ¼
V

min
ssdn[L

X
ð1 2 asdnÞPsdn þ asdn

eij[E

X
0,c#W

X
dsdnijc jijc þ dij

� �
0
@

2
4

8<
:

þ
i[V

X
fsdn
i ðli þ oiÞ þ ps þ ud

1
A

3
5
9=
;

ð12Þ

The optimal solution to SPsdn is computed by equation (13). SPsdn corresponds to ssdn’s
acceptance or rejection, and the associated RWA problem if it is accepted:

SPsdnðasdn;Dsdn;FsdnÞ ¼ asdn
min ð1 2 asdnÞPsdn þ asdn

Dsdn;Fsdn

min
eij[E

X
0,c#W

X
dsdnijc ðjijc þ dijÞ

0
@

2
4

þ
i[V

X
fsdn
i ðli þ oiÞ þ ps þ ud

1
A

3
5

ð13Þ

We solve SPsdn in equation (13) in two steps: lightpath routing, and decision of
acceptance or rejection. The first step is to solve the lightpath routing problem:
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Dsdn ¼
Dsdn;Fsdn

min
eij[E

X
0,c#W

X
dsdnijc ðjijc þ dijÞ þ

i[V

X
fsdn
i ðli þ oiÞ

8<
:

9=
;; ð14Þ

subject to the constraints in equations (3) and (8) for ssdn. We assign an auxiliary cost
(jijc þ dij) to wijc, and an auxiliary cost (li þ oi) to a wavelength converter in node i.
The optimal solution is computed by using the modified minimum cost semi-lightpath
algorithm in Zhang et al. (2004).

The second step is to solve the decision problem:

asdn
min½ð1 2 asdnÞPsdn þ asdnðDsdn þ ps þ udÞ� ð15Þ

If Psdn is greater than (Dsdn þ ps þ ud), then reject ssdn. On the contrary, if Psdn is
smaller, then accept ssdn (i.e. asdn ¼ 1). A tie is broken arbitrarily.

B. Convergence acceleration in a scenario study by reusing Lagrange multipliers
An important feature of using the LR and subgradient methods to solve the static RWA
problem is that the Lagrange multipliers of two similar scenarios are similar too. The
Lagrange multipliers preserve the “neighbourhood property”. When a new scenario is
in the neighbourhood of a previous one, the previous Lagrange multipliers produce a
good estimate for the new scenario. This property enables reusing Lagrange multipliers
to save computation time in scenario studies. To study a new scenario, instead of
solving a new optimization process starting from zero Lagrange multipliers, the
Lagrange multipliers obtained from the previous scenarios can be reused as
initialization points in searching for the optimized Lagrange multipliers. Such approach
reduces the time to reach the convergence of the algorithm in a scenario study.

The neighbourhood property is better preserved in the dual space than in the primal
space. For two similar scenarios, their solutions in the dual space, i.e. their optimized
Lagrange multipliers, are close to each other. But, their solutions in the primal space,
i.e. the demand acceptance and the RWA schemes for the accepted demands, may be
distant from each other. This property makes our method for a scenario study more
efficient than initializing the search of a new solution to a similar scenario in the
neighbourhood of the solution to the previous scenario. Therefore, our method is more
suitable for a scenario study than the methods that direct search in the primal space,
such as the Tabu search method (Wang et al., 2005).

The neighbourhood property of our method is mainly attributed to two factors:
solely relaxing carefully selected constraints to generate the DP, and the robustness of
the subgradient-based iterations. We only relax the constraints that represent resource
limitations, i.e. the wavelength channel exclusive usage constraints in equation (4),
transmitter, receiver and wavelength converter capacity constraints in equations
(5)-(7), respectively. The constraints that govern the RWA of individual lightpaths are
all strictly respected. The potential conflict of using the same resources by multiple
lightpaths is solved by the subgradient-based iterations, which has robust
convergence, i.e. the fluctuation of individual parameters does not affect the general
trend of the subgradient.
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V. Examples
In the first example, we study a series of scenarios where the lightpath demands
change in a fixed network resource configuration and network topology. We use the
Pan-European network with 28 nodes and 61 links (shown in Figure 2). The parameters
used in the example are Pij0 ¼ 1,000.0 for all lightpath demands, dij ¼ 5.0 for all links,
Fi ¼ 1, Ti ¼ Ri ¼ 18, oi ¼ 0, ti ¼ ri ¼ 0 for all nodes and W ¼ 16. We run the
heuristic algorithm once every five iterations to obtain a feasible solution. The
lightpath demands for the two scenarios are shown in Tables I and II. The second
scenario is a minor variation of the first one. The variations of the lightpath demands
from the first scenario to the second one are highlighted by italics numbers in Table II.

We compare the number of iterations required for the convergence of the
optimization process. When studying the second scenario, we use two different
schemes in initializing the Lagrange multipliers:

(1) Scheme-A (Zero Init). Initializing all the Lagrange multipliers to zeros.

(2) Scheme-B (Good Init). Initializing the Lagrange multipliers to the obtained
optimized Lagrange multipliers from the first scenario.

A dramatic difference on the convergence time is observed between the two initialization
schemes (shown in Figure 3). In Scheme-B, the computation almost reached the optimal
values after 40 iterations. In contrast, in Scheme-A, the optimization process does not
converge to a similar duality gap until after 400 iterations.

Figure 2.
Pan-European network
with 28 nodes and 61 links
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Our extensive simulation results show that the neighbourhood property is very robust.
We simulated variations of lightpath demands by 1, 5, 10 and 30 per cent. Our simulation
results show that even in the scenarios with relatively large variations of lightpath
demands, the previously obtained Lagrange multipliers are still a good estimate for a
new scenario, leading to a quick convergence. Another observation is that initializing
Lagrange multipliers to zero is generally better than initializing them randomly.
Thus, for the first scenario in a series, it is a wise choice to initialize them to all zero.

In a second example, we study a series of scenarios where the network resource
configuration changes in a fixed network topology with fixed lightpath demands. We
use the network topology shown in Figure 2 and the lightpath demands shown in
Table I. In the original network resource configuration (Case 1), the number of
wavelength channels on each link is 16. The achieved design objective is 119,788, with
a lower bound of 115,906. We study three other scenarios. In Case 2, we add two
wavelength channels to the six most critical links identified in Case 1, i.e. links 2, 4, 5,
49, 50 and 51. The Lagrange multipliers for the wavelength channels on these links are
significantly larger than for those on other links. The achieved design objective is
114,859, with a lower bound of 111,814. So, adding new resources at critical locations
improves the design objective. In Case 3, we add two wavelength channels to six
randomly selected non-critical links, e.g. 10, 17, 28, 33, 47 and 57. The achieved design
objective is 119,780, with a lower bound of 115,923. In Case 4, instead of adding

0 2 2 2 2 1 2 1 0 0 1 1 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0
2 0 2 1 1 2 0 0 0 1 2 0 0 0 0 0 1 2 2 1 1 0 0 0 0 2 0 2
2 2 0 1 2 2 1 0 0 0 1 1 0 0 0 0 1 2 2 2 2 1 0 0 2 0 1 1
2 1 2 0 1 0 2 2 0 1 1 1 0 0 0 1 2 2 1 2 1 1 1 0 1 1 0 0
2 2 2 1 0 2 1 0 1 2 1 0 1 0 0 0 1 0 0 2 2 2 0 2 0 2 0 1
0 2 1 0 2 0 0 2 2 1 2 0 1 1 2 1 0 0 1 0 0 2 1 0 2 0 2 2
2 1 1 0 1 2 0 0 0 0 1 1 0 0 2 0 0 2 2 0 0 0 0 0 0 1 0 2
1 2 1 2 0 0 0 0 0 2 0 0 0 0 0 2 0 1 2 2 0 2 0 0 2 1 1 1
0 0 0 0 0 2 0 1 0 2 1 0 2 2 1 1 0 0 0 1 1 2 2 2 0 1 2 2
0 0 1 0 2 2 1 0 2 0 0 0 2 2 1 0 1 0 1 0 1 2 2 1 0 0 2 2
0 1 0 1 0 1 0 0 1 2 0 2 1 1 2 1 0 0 0 0 2 1 1 1 0 2 0 0
0 1 0 0 0 1 2 1 0 1 1 0 0 0 1 0 2 0 0 1 0 0 0 2 0 1 0 2
0 0 0 1 0 2 1 0 0 2 1 0 0 2 2 1 1 0 0 1 1 2 2 2 1 2 0 0
0 0 0 1 0 0 0 2 2 0 0 0 2 0 0 1 0 0 0 0 0 1 2 2 2 1 0 0
0 0 0 0 0 0 1 2 1 1 0 1 2 1 0 0 1 0 0 1 1 2 2 0 2 0 1 0
0 0 1 1 1 0 0 2 1 0 0 0 1 1 1 0 0 0 0 0 0 2 0 1 1 1 0 0
1 0 0 1 1 1 0 1 0 2 1 2 0 0 2 1 0 0 0 2 0 1 1 0 1 0 0 2
0 2 2 2 2 1 2 1 0 1 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 1 0 0
0 1 2 2 1 0 2 1 0 0 0 0 0 0 0 0 1 2 0 2 2 2 0 0 0 1 0 1
2 1 2 1 2 2 0 0 0 2 0 2 0 0 0 1 0 1 1 0 2 1 0 0 2 0 2 0
2 1 1 0 2 0 1 0 1 0 0 1 1 0 0 2 1 2 2 0 0 1 0 2 0 0 2 0
0 0 0 1 1 0 1 0 2 0 2 0 0 1 1 1 1 1 1 0 0 0 2 0 2 0 0 2
0 2 1 0 0 2 0 2 2 0 2 0 2 2 2 0 2 0 0 1 0 1 0 2 0 2 0 1
0 2 1 0 0 1 0 2 2 1 0 0 2 0 0 2 2 0 0 0 2 0 0 0 2 1 1 0
0 0 0 1 1 0 1 0 0 2 2 0 0 2 2 0 1 0 0 0 1 2 2 2 0 0 0 0
1 2 0 0 2 2 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 2 2 0 1 0
1 2 2 1 1 0 2 0 0 0 1 0 0 2 1 0 1 1 2 1 1 1 1 0 1 2 0 2
1 2 2 0 0 2 1 2 0 0 0 1 0 0 0 1 0 1 1 2 0 0 1 2 0 1 0 0

Table I.
Initial lightpath demands

in the first network
planning session
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0 2 2 2 2 1 2 1 0 0 1 1 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0
2 0 2 1 2 2 0 0 0 1 2 0 0 0 0 0 1 2 2 1 1 0 0 0 0 2 0 2
2 2 0 1 2 2 1 0 0 0 1 1 0 0 0 0 1 2 2 2 2 1 0 0 2 0 1 1
2 1 2 0 1 0 2 2 0 1 2 1 0 0 0 1 2 2 1 2 1 1 1 0 1 1 0 0
2 2 2 1 0 2 1 0 1 2 1 0 1 0 0 0 1 0 0 2 2 2 0 2 0 2 0 1
0 2 1 0 2 0 0 2 2 1 2 0 1 1 2 2 0 0 1 0 0 2 1 0 2 0 2 2
2 1 1 0 1 2 0 0 0 0 1 1 0 0 2 0 0 2 2 0 0 0 0 0 0 1 0 1
1 1 1 2 0 0 0 0 0 2 0 0 0 0 0 2 0 1 2 2 0 2 0 0 2 1 1 1
0 0 0 0 0 2 0 0 0 2 1 0 2 2 1 1 0 0 0 1 1 2 2 2 0 1 2 2
0 0 1 0 2 2 1 0 2 0 0 0 2 2 1 0 1 0 1 0 1 2 2 1 0 0 2 2
0 1 0 1 0 1 0 0 1 2 0 2 1 1 2 1 0 0 0 0 2 1 1 1 0 2 0 0
0 1 0 0 0 1 2 1 0 1 1 0 0 0 1 0 2 0 0 1 0 0 0 2 0 1 0 2
0 0 0 1 0 2 1 0 0 2 1 0 0 2 2 1 1 0 0 0 1 2 2 2 1 2 0 0
0 0 0 1 0 0 0 2 2 0 0 0 2 0 0 1 0 0 0 0 0 1 2 2 2 1 0 0
0 0 0 0 0 0 1 2 1 1 0 1 2 1 0 0 1 0 0 1 1 2 2 0 2 0 1 0
0 0 1 1 1 0 0 2 1 0 0 0 1 1 2 0 0 0 0 0 0 2 0 1 1 1 0 0
1 0 0 1 1 1 0 1 0 2 1 2 0 0 2 1 0 0 0 2 0 1 1 0 1 0 0 2
0 2 2 2 2 1 2 1 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 1 0 0
0 1 2 2 1 0 2 1 0 0 0 0 0 0 0 0 1 2 0 2 2 2 0 0 0 1 0 1
2 1 2 1 2 2 0 0 0 2 0 2 0 0 0 1 0 2 1 0 2 1 0 0 2 0 2 0
2 1 1 0 2 0 1 0 1 0 0 1 1 0 0 2 1 2 2 0 0 1 0 2 0 0 2 0
0 0 0 1 1 0 1 0 2 0 2 0 1 1 2 1 1 1 1 0 0 0 2 0 2 0 0 2
0 2 1 0 0 2 0 2 2 0 2 0 2 2 1 0 2 0 0 1 0 1 0 2 0 2 0 1
0 2 1 0 0 1 0 2 2 1 0 0 2 0 0 2 2 0 0 0 2 0 0 0 2 0 1 0
0 0 0 1 1 0 1 0 0 2 2 0 0 2 2 0 1 0 0 0 1 2 2 2 0 0 0 0
1 2 0 0 2 2 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 2 2 0 2 0
1 2 2 1 1 0 2 0 0 0 1 0 0 2 1 0 1 1 2 1 1 1 0 0 1 2 0 2
1 2 2 0 0 2 1 2 0 0 0 1 0 0 0 1 0 1 1 2 0 0 1 2 0 1 0 0

Table II.
Changed lightpath
demands for the second
scenario

Figure 3.
Convergence time
comparison between
different initialization
schemes of Lagrange
multipliers
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resources, we reallocate two wavelength channels from each of the six non-critical links
to the six most critical links, i.e. from links 2, 4, 5, 49, 50 and 51 to links 10, 17, 28, 33, 47
and 57. The achieved design objective is 114,857, with a lower bound of 111,836. The
comparisons of convergence time between different initialization schemes for Cases 2-4
are shown in Figures 4-6. The convergences of the three scenarios with good
initialization are fairly quick.

Figure 5.
Convergence time

comparison between
different schemes of
Lagrange multiplier

initialization for Case 30 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16
× 104

Fe
as

ib
le

 in
te

rm
ed

ia
te

 v
al

ue
s

N = 28, Pijn = 1,000, W = 16, Fi = ∞, Ti = Ri = 18, dij = 5, oi = 0

Number of iterations

Best primal function value (J ) for zero init

Best dual function value (q) for zero init

Best primal function value (J ) for good init

Best dual function value (q) for good init

Figure 4.
Convergence time

comparison between
different schemes of
Lagrange multiplier

initialization for Case 2
0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16
× 104

Fe
as

ib
le

 in
te

rm
ed

ia
te

 v
al

ue
s

N = 28, Pijn = 1,000, W = 16, Fi = ∞ , Ti = Ri = 18, dij = 5, oi = 0

Number of iterations

Best primal function value (J ) for zero init

Best dual function value (q) for zero init

Best primal function value (J ) for good init

Best dual function value (q) for good init

Computation
method for

scenario studies

1643



VI. Conclusions
We proposed to use the LR and subgradient methods to solve the scenario study
problems in static WDM network planning. The optimized Lagrange multipliers that
are obtained from previous scenarios are used as initialization points for related
scenarios. In this way, the computation time for new scenarios is significantly reduced.
Our simulations show that when lightpath demands varies or network resource
configuration changes, by reusing previous Lagrange multipliers, the computation
time may be reduced by several folds. The superior computation time, together with
the good features of the LR and subgradient methods, such as being able to provide a
performance bound to evaluate the quality of the near-optimal solutions, make our
approach attractive in the practical “what-if” types of scenario studies in WDM
network planning.
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