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Abstract—The fact that wavelength conversion hardly im-
proves the performance of static routing and wavelength
assignment (RWA) in Wavelength Division Multiplexing (WDM)
networks has been observed in many previous studies. However,
other than simulation results, until now there was no formal proof
of such fact. In this paper, we formally prove that wavelength
conversion does not improve the Lagrangian bound of the static
RWA problem.

Index Terms—Wavelength division multiplexing, wavelength
conversion, routing and wavelength assignment, performance
bound.

I. INTRODUCTION

IN wavelength-routed WDM networks, a lightpath is
switched from an input fibre link to an output fibre link

in the optical domain. If wavelength conversion is available at
an intermediate WDM switch node, a lightpath may change
its wavelength by using a wavelength converter. Otherwise, a
lightpath must use the same wavelength.

The static RWA problem is to find out optimized RWA
schemes for all (or a selected subset of) lightpath requests
under certain design objectives. Once a lightpath uses a
wavelength channel on a given fibre link, other lightpaths
cannot use the same wavelength channel.

Previous studies revealed that wavelength conversion’s con-
tribution to the static RWA problem is minimal [1-12]. Com-
putations have shown that most likely, the use of wavelength
conversion can be avoided by re-arranging RWA schemes
since all lightpath requests are known in advance. However,
until now there was no formal proof of such fact.

In this paper, we prove that wavelength conversion does not
improve the Lagrangian bound of the static RWA problem.
This bound is obtained by solving the Dual Problem (DP),
which is generated by relaxing the original RWA problem (i.e.,
the primal problem) using the Lagrangian relaxation method
[13]. Since previous studies showed that such a bound can
be very close to the objective function value of the static
RWA problem [3], we can conclude that the difference of the
achieved objective function values between the cases with and
without wavelength conversion is very marginal.
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II. LAGRANGIAN BOUND OF THE STATIC RWA PROBLEM

A. A Formulation of the Static RWA Problem with and without
Wavelength Conversion

We formulate the static RWA problem as a penalty-
minimization problem. Two classes of the static RWA problem
are investigated. In the first class, wavelength conversion is
available at all nodes, while in the second class, no wavelength
conversion is available at any node. Similar formulations are
used for the two problems, except that in the second problem,
the number of wavelength converters at each node is limited
to zero.

Our network model consists of nodes interconnected by
fibres in an arbitrary mesh topology. Each fibre has W
wavelength channels. The fibre between nodes i and j is
denoted by eij . The cth wavelength channel on eij is denoted
by wijc (0 < c ≤ W ). The set E represents all fibre links
in the network. Each link has a pair of fibres, one for each
direction. The set V represents all the WDM switch nodes in
the network. ssdn denotes the nth lightpath request between
node pair (s, d). The set S represents all lightpath requests
over the network.

We use the same penalty-based objective function (primal
function) as [14], which efficiently formulates the design
objectives. Our objective function is thus min

A,Δ,Φ
(J), where

J =
∑

ssdn∈S

[(1 − αsdn) Psdn + αsdnCsdn] (1)

For each request ssdn, either the penalty of rejecting it
(Psdn), or the penalty of using resources (Csdn) to set up
a lightpath is added to the objective function (J), depending
on ssdn’s admission status αsdn. αsdn=0, if ssdn is rejected;
and αsdn=1, if ssdn is admitted.

In addition to the design variables A=(αsdn), we introduce
the design variables Δ=(δsdn

ijc ), where δsdn
ijc represents the use

of wijc by ssdn. If wijc is used by ssdn, δsdn
ijc equals one;

otherwise, δsdn
ijc equals zero. We use Δsdn for the wavelength

assignment of ssdn, i.e., (δsdn
ijc )sdn. The total cost of using

wavelength channels and wavelength converters is the cost of
ssdn, denoted by Csdn:

Csdn =
∑

eij∈E

∑
0<c≤W

dijδ
sdn
ijc +

∑
i∈V

oiφ
sdn
i , ∀ssdn ∈ S (2)

where dij is the cost of using wijc, oi is the cost of using a
wavelength converter at node i, φsdn

i is a 0-1 integer variable,
representing the use of a wavelength converter at node i by
ssdn. If a wavelength converter is used by ssdn, φsdn

i equals
one; otherwise, φsdn

i equals zero. We use Φsdn to denote
the assignment of the wavelength converters to ssdn (i.e.,(
φsdn

i

)
sdn

) and use Φ to denote (Φsdn).
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A solution to the static RWA problem min
A,Δ,Φ

(J) is denoted

by U = (A, Δ, Φ). Its optimal solutions are denoted by
U∗ = (A∗, Δ∗, Φ∗).The above problem must conform to the
following constraints,

a) Lightpath continuity constraints:
If a request is admitted, the lightpath assigned to it has to be
continuous along a path between the source-destination pair.

∑
j∈V

∑
0<c≤W

δsdn
ijc −

∑
j∈V

∑
0<c≤W

δsdn
jic =

⎧⎨
⎩

αsdn if i = s
−αsdn if i = d
0 otherwise

,

∀ssdn ∈ S (3)

b) Wavelength channel exclusive usage constraints:∑
ssdn∈S

δsdn
ijc ≤ 1, ∀eij ∈ E, 0 < c ≤ W (4)

c) Wavelength converter quantity constraints:∑
ssdn∈S

φsdn
i ≤ Fi ∀i ∈ V (5)

If wavelength converters are installed at a node, they are
configured in a shared-per-node manner [15], where any
input or output port may use a wavelength converter if
one is available. This configuration allows the best sharing
of wavelength converters. If wavelength converters do not
contribute to the optimization objective in this configuration,
it can be concluded that they do not contribute to the same
optimization objective in any other configuration. The number
of wavelength converters at node i is denoted by Fi. Note that
as long as Fi ≥ W × di, where di denotes the nodal degree
of node i, the number of converters can accommodate any
incoming traffic. The number of possibly used converters at a
node must be no more than the number of installed converters
at the node.

d) Wavelength conversion constraints:

φsdn
j =

{
1 if ∃m, k ∈ V and b �= a, δsdn

mja = δsdn
jkb = 1

0 otherwise
,

∀j ∈ V, j �= s, j �= d (6)

A wavelength converter at an intermediate node j is used
only when different wavelengths are assigned to ssdn for the
incoming and outgoing signals at this node.

B. A Bound of the Static RWA Problem Derived from its
Lagrangian Dual Problem

In this section, we will present a method to derive a bound
of the static RWA problem described in the previous section.
We use the Lagrangian relaxation method to derive a DP for
the static RWA problem.

We use the Lagrangian relaxation framework to derive a
Lagrangian DP from the static RWA problem min

U
(J), by

relaxing selected constraints. Lagrange multipliers ξijc and
λi are introduced in association with the constraints that
represent resource limitations, that is, the wavelength channel
exclusive usage constraints (4), and wavelength converter

quantity constraints (5), respectively. The vectors of Lagrange
multipliers (ξijc) and (λi) are denoted as ξ and λ, respectively.
The Lagrangian function L is defined as [13]:

L (U, ξ, λ) = J (U) +
∑

eij∈E

∑
0<c≤W

ξijc

( ∑
ssdn∈S

δsdn
ijc − 1

)

+
∑
i∈V

λi

( ∑
ssdn∈S

φsdn
i − Fi

)
, (7)

where ξ, λ ≥ 0. Note that L is a function of the Lagrange
multipliers m = (ξ, λ) and the design variables U .

The dual function q (m) is defined as the infimum of L.

q (m) = min
U

(L (m, U)) (8)

The Lagrangian DP is defined as max
m≥0

(q), subject to the

constraints (3) and (6). We use q∗ to denote the Lagrangian
DP’s optimal value. The corresponding optimal Lagrange
multiplier values are denoted by m∗ = (ξ∗, λ∗). The optimal
value of the Lagrangian DP is a lower bound of the primal
problem [13]:

q∗ (m∗) = min
U

(L (U, m∗)) ≤ min
U

(J (U)) (9)

Corresponding to the two classes of static RWA problems,
we derive two Lagrangian DPs, where in DP1, the number
of wavelength converters at each node is abundant; while in
DP2, the number of wavelength converters at each node must
be restricted to zero.

Both Lagrangian DPs can be decomposed to the sub-
problems, where each sub-problem corresponds to the RWA
problem of one lightpath requests. The readers are referred to
[14] for the solution details.

q (m) =
∑

ssdn∈S

min{
αsdn

Psdn (1 − αsdn) + αsdn min
Δsdn,Φsdn

∑
eij∈E

∑
0<c≤W

[
δsdn
ijc (ξijc + dijc) +

∑
i∈V

φsdn
i (λi + oi)

]
}

−
∑

eij∈E

∑
0<c≤W

ξijc −
∑
i∈V

λiFi (10)

subject to the constraints in (3) and (6). Note that in DP2,
φsdn

i = 0, ∀ssdn ∈ S, ∀i ∈ V .

III. WAVELENGTH CONVERSION’S IMPACT ON THE

BOUND OF THE STATIC RWA PROBLEM

We now prove that the bounds obtained from the previous
two Lagrangian DPs are the same, (qDP1)

∗ = (qDP2)
∗,

where (qDP1)
∗and (qDP2)

∗ denote the optimal values of DP1

and DP2, respectively. We consider a benchmark case where
oi = 0 and Fi ≥ W × di. From (10) and the definition of
Lagrange multipliers [13], any (qDP1)

∗ for the cases other
than the benchmark case must not be less than (qDP1)

∗ of the
benchmark case. We will prove that even in the benchmark
case, wavelength conversion does not improve the Lagrangian
bound of the static RWA problem. Thus, the same conclusion
applies to other wavelength converter configurations and cost
parameters. We start with four Lemmas.
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Lemma 1: In any of the optimal solutions (m∗, U∗) to DP1,
(λi)

∗ = 0, ∀i ∈ V .
Proof: Based on the definition of Lagrange multipliers

[13], we have (λi)
∗
( ∑

ssdn∈S

(
φsdn

i

)∗ − Fi

)
= 0,∀i ∈ V .

Because we assume the number of wavelength converters at
any node is abundant, the term

∑
ssdn∈S

(
φsdn

i

)∗ − Fi must be

strictly less than zero, ∀i ∈ V . Thus, (λi)
∗ = 0, ∀i ∈ V .

Lemma 2: In any of the optimal solutions (m∗, U∗) to DP1,
(ξij1)

∗ = (ξij2)
∗ = ... = (ξijW )∗, ∀eij ∈ E.

Proof: if 0 ≤ (ξijl)
∗

< (ξijk)∗, ∀eij ∈ E,∀k �= l, 0 <

k ≤ W , 0 < l ≤ W , then
(
δsdn
ijl

)∗
= 1 and

(
δsdn
ijk

)∗
= 0.

This is because from Lemma 1 and the zero cost assumption
of wavelength converters, we have (λi)

∗ + oi = 0, ∀i ∈ V .
From (10), ssdn’s least cost paths (Δsdn)∗ only include the
wavelength channel with the least cost on a given link eij ∈ E.
Thus, ssdn chooses wijl (i.e. , δsdn

ijl = 1), instead of wijk .

Since
(
δsdn
ijk

)∗
= 0, one of the optimal solutions satisfies

(ξijk)∗ = 0, ∀k �= l, 0 < k ≤ W , 0 < l ≤ W , which
contradicts the assumption 0 ≤ (ξijl)

∗
< (ξijk)∗.

Lemma 2 means that the Lagrange multipliers for the
wavelength channels on a given link must be the same in an
optimal solution to DP1. Otherwise, all lightpaths through the
link only use the least cost wavelength channels.

Lemma 3: At least one of the optimal solutions to DP1

satisfies Φ∗ = 0.
Proof: If

(
φsdn

j

)∗
= 1, because there exist m, k ∈

V and b �= a that satisfy
(
δsdn
mja

)∗ =
(
δsdn
jkb

)∗
= 1, then by

letting ssdn use wjka, instead of wjkb, we get an optimal
solution that satisfies

(
φsdn

j

)∗ = 0. Lemma 2 ensures that this
change satisfies all the constraints but does not influence the
optimal value q∗. So the obtained solution is also one of the
optimal solutions to DP1.

Lemma 3 means that even though wavelength conversion is
available at no cost, at least one of the optimal solutions to
DP1 does not use the conversion.

Lemma 4: qDP1 ≥ qDP2 .
Proof: In (10), because

∑
i∈V

φsdn
i (λi + oi) ≥ 0, we have

qDP1 ≥ qDP2 for the same ξ.
Lemma 4 means that regardless of the value of Lagrange

multipliers λ, for the same value of the Lagrange multipliers
ξ, the value of DP1 must be no less than the value of DP2.

With the above lemmas, we now prove our final theorems:
Theorem 1: An optimal solution

(
(mDP1)

∗
, (UDP1)

∗) to
DP1 where (ΦDP1)

∗ = 0 is an optimal solution to DP2.
Proof: If a DP2’s optimal solution

(
(mDP2)

∗
, (UDP2)

∗),
where (λDP2)

∗ = 0 and (ΦDP2)
∗ = 0, satisfies

qDP2

(
(mDP2)

∗ , (UDP2)
∗) < qDP2

(
(mDP1)

∗ , (UDP1)
∗),

then for the left side, because (λDP2)
∗ = 0 and

(ΦDP2)
∗ = 0, we get qDP2

(
(mDP2)

∗
, (UDP2)

∗) =
qDP1

(
(mDP2)

∗ , (UDP2)
∗); for the right side, using Lemma

4, we get qDP2

(
(mDP1)

∗
, (UDP1)

∗) ≤ (qDP1)
∗. Thus, we

get qDP1

(
(mDP2)

∗
, (UDP2)

∗)
< (qDP1)

∗, which means(
(mDP2)

∗
, (UDP2)

∗) produces a better dual value of DP1 than(
(mDP1)

∗
, (UDP1)

∗) does. This contradicts the assumption
that

(
(mDP1)

∗ , (UDP1)
∗) is an optimal solution to DP1.

Theorem 1 means that if an optimal solution to DP1 does
not use wavelength conversion, it is an optimal solution to
DP2.

Theorem 2: (qDP1)
∗ = (qDP2)

∗.
Proof: From Lemmas 1 and 3, we get∑

i∈V

(
φsdn

i

)∗ ((λi)
∗ + oi

)
=

∑
i∈V

(λi)
∗
Fi = 0 in (10).

Thus, (qDP1)
∗ = (qDP2)

∗.

IV. CONCLUSIONS

We proved that wavelength conversion does not improve
the Lagrangian bound of the static RWA problem. Although
it is not a direct proof that wavelength conversion does
not improve the quality of the solutions to the static RWA
problem, it implies that in solving the static RWA problem
the contribution of wavelength conversion is very marginal,
since the bound is very close to the achieved objective function
value in most cases. Our results should apply to dynamic RWA
problems that allow free rearrangement or removal of existing
lightpaths.
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