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Extensive previous studies confirmed that wavelength conversion may only marginally improve the solu-
tions to the static Routing and Wavelength Assignment (RWA) problem. This means that, for the static
RWA problem, certain RWA schemes that do not use wavelength conversion can achieve a performance
almost as good as the one from the best RWA scheme. Previous research work on sliding scheduled RWA
problems, where a given set of lightpath demands are allowed to slide within their time windows, has
also indicated in limited simulation results that the benefit of using wavelength conversion is marginal.
However, the observation cannot be conclusive without the solid mathematical proof. We are thus moti-
vated to investigate whether schedule sliding really requires wavelength conversion to achieve a better
performance. In this paper, we prove that wavelength conversion does not improve the Lagrangian bound
of the sliding scheduled RWA problem. In most test cases, this bound is very close to the best achieved
objective function value. Our proof implies that, for those cases, the improvements achieved by making
use of wavelength conversion are very marginal.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Wavelength continuity is one of the key issues for the research
and operation of wavelength–routed wavelength division multi-
plexing (WDM) networks. Without wavelength conversion, a light-
path must use a chain of wavelength channels with the same
wavelength on all the fibre links along its route. Using wavelength
converters at intermediate switching nodes, a lightpath may con-
sist of wavelength channels with different wavelengths at different
fibre links. However, in general, wavelength converters are expen-
sive, and thus should only be used if the operating efficiency of a
WDM network can be significantly improved.

The benefit of using wavelength conversion has been exten-
sively studied for various network operating scenarios. For exam-
ple, when all lightpath demands are given in advance, which
forms the static RWA problem, previous studies concluded that
wavelength conversion only slightly improves the network operat-
ing efficiency [1–12]. In Ref. [13], we proved that Lagrangian
bounds do not change for the static RWA problem, even if abun-
dant wavelength converters are installed on all switching nodes.

However, only limited simulation results were published in the
literature about the benefit of using wavelength conversion in the
sliding scheduled RWA problem, in which the source, destination and
duration of all lightpath demands are given in advance, but all
lightpaths are allowed to slide within their respective earliest
starting and latest ending time slots. Resource provisioning for sur-
vivable WDM networks under a sliding scheduled traffic model
was studied in [14]. Please note that we used the term ‘sliding’
to indicate that our formulation allows the starting time of the
lightpath to slide with a certain penalty. However, the regular ‘ac-
cept-or-not’ scheduling is just a special case of this formulation by
setting the sliding penalty to infinitely large and the sliding win-
dow size to be 1. Simulation results of heuristic algorithms showed
that wavelength conversion only slightly reduced the required
number of wavelength channels in the entire network. In [15],
computation results from integer linear programing models for
survivable traffic grooming of scheduled demands showed that re-
source utilization at the logical level was only slightly improved
(sometimes too little to be observed) by allowing wavelength con-
version. It was observed that wavelength conversion enabled light-
paths to use shorter routes. This indicates that by re-arranging the
RWA schemes and scheduling of lightpaths (since all lightpath de-
mands are known in advance), the benefit of using wavelength
conversion to improve wavelength channel utilization is reduced.
In [16], provisioning sub-wavelength multicast sessions with flex-
ible scheduling over WDM networks was studied. Its simulation re-
sults of heuristic algorithms showed that the benefit of using
wavelength conversion to reduce traffic blocking is much smaller
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for scheduled unicast traffic than for scheduled multicast traffic. In
our opinion, the reason is that re-arranging the RWA schemes and
scheduling for unicast traffic is much easier to achieve than that for
multicast traffic, when wavelength conversion is unavailable. As
the computation results shown in Table 1 ([17]), the wavelength
conversion only slightly improved the solutions for the scheduled
RWA problem. Note that the parameter F denotes the number of
wavelength converters installed on each node. Specifically, F = 0
means no converter at all, while F = 4 means abundant of wave-
length converters. The other parameters W, ysdn, rsdn, and dij, repre-
sent, respectively, the number of wavelengths, the earliness
penalty coefficient, the lateness penalty coefficient and the cost
of a wavelength channel. The readers are referred to [17] for the
detailed explanation for these parameters. We observed that no
matter how we change the values of the other parameters, the
Lagrangian (LR) bounds of the achieved optimization objectives re-
mained almost unchanged regardless of using wavelength conver-
sion or not, while the objective values have only marginal
improvements. Please note that the improvements are so small
that they are normally buried under the ‘noise’ of the randomness
from the heuristic algorithm, i.e., we cannot derive any conclusion
about the real impact on the primal problem.

In Ref. [18], lightpath rerouting strategies in WDM networks
under scheduled traffic was studied. The authors made an assump-
tion that no wavelength conversion was allowed, based on their
expectation that efficient rerouting schemes might compensate
the absence of wavelength converters so that lightpath blocking
would not increase much. Unfortunately, neither numerical results
nor formal proofs were provided to support such ‘‘expectation’’. So
far, it largely remains a suspicion or a speculation that wavelength
conversion only marginally improves the solutions to the sched-
uled RWA problem.

Therefore, we are motivated to further investigate whether
schedule sliding requires wavelength conversion to achieve a bet-
ter performance. Comparing with the static RWA problem, the
scheduled RWA problem has an extra time dimension. Essentially,
the scheduled RWA problem combines the static RWA problem
and a scheduling problem, and thus is much more complicated in
formulation and mathematical solution. However, we are able to
identify similarities to the static RWA problem after proper math-
ematical manipulations. In this paper, we study the scheduled
RWA problem by comparing two cases: the model with abundant
wavelength converters, and the model without any wavelength
converter. We will prove that the Lagrangian bound cannot be im-
proved by adding abundant wavelength converters.

Since the solution to the original problem has exponential com-
plexity and it is thus computationally impossible to obtain the ex-
act optima even for a medium-size network [17], we need to apply
some near-optimal solution with a reasonable computation
Table 1
Using wavelength conversion to improve the achieved design objective and LR
bounds [17].

Parameters Results

W ysdn rsdn dij F LR bound Objective value

12 49 24 4 4 9122 9256
0 9146 9414

8 49 24 4 4 10165 11178
0 10174 11762

10 49 24 4 4 9263 10005
0 9287 10330

10 49 24 8 4 17820 17862
0 17829 17922

12 20 20 4 4 9278 9781
0 9288 10145

12 20 20 8 4 17723 17882
0 17726 17942
complexity. At the same time, generating the lower bound would
be an additional advantage. For this purpose, the Lagrangian relax-
ation method is employed to generate the dual problem (DP) by
relaxing the original scheduled RWA problem (i.e., the primal prob-
lem). A Lagrangian bound, which yields a lower bound to the pri-
mal problem, is obtained by solving the DP optimally [19].
Compared with the primal problem, the solution to the DP is
straightforward and has polynomial complexity. Since the DP has
relaxed constraints (from the primal problem), its solution is nor-
mally infeasible for the primal problem. We usually apply a simple
heuristic algorithm with polynomial complexity to ‘map’ the dual
solution back to the primal problem to obtain a near-optimal fea-
sible solution. The subgradient method is often used to maximize
the DP iteratively to obtain a better solution in the dual space,
while the feasible solution is generated in each iteration by apply-
ing the heuristic mapping algorithm. The users are referred to [17]
for the detailed description of the LR optimization framework. In
this paper, we are focusing only on the Lagrangian bound, since
we need to prove it to be constant with respect to the availability
of wavelength converters. Please note that our objective function is
non-linear as opposed to most of the linear formulations in the
area.

Please note that the computation results and the observations
have already been described in Ref. [17], while in this paper, we
aim at providing the mathematical proof to support our observa-
tion in Ref. [17].

This paper is organized as follows: In Section 2, we provide a
formulation of the scheduled RWA problem. In Section 3, a bound
of the scheduled RWA problem is derived from its Lagrangian dual
problem. In Section 4, we describe two cases: in one case, wave-
length conversion is used in a special way; while in the other case,
no wavelength conversion is used. We prove that the Lagrangian
bound for the first case is not better than that for the second case
in Section 5. In Section 6, we explain duality gaps. Then, in Sec-
tion 7, the implications on resource requirements and acceptance
of lightpath demands are exploited. We conclude this paper in
Section 8.
2. A formulation of the scheduled RWA problem

2.1. Notations

Our network model consists of N nodes interconnected by E fi-
bres in an arbitrary mesh topology. Each fibre has W wavelength
channels. The fibre between nodes i and j is denoted by eij. The
cth wavelength channel on eij is denoted by wijc (0 6 c < W). The
set E represents all links in the network. Each link has a pair of fi-
bres, one for each direction. The set V represents all the WDM
switch nodes in the network. sh is used to denote the hth lightpath
demand. The set S represents all lightpath demands. Note that
N = |V|. We consider a total number of Z time slots. Th denotes a
constant holding time of sh. We assume using wavelength channel
wijc for one time slot costs one unit, and then set the relative cost of
using a wavelength converter at any node for one time slot to a
constant R.

2.2. Design variables

We list the input parameters in Table 2 and design variables
(i.e., decision variables) of our formulated problem in Table 3.

2.3. Design objective

We use the same penalty-based objective function (i.e., primal
function) as [17], which can efficiently formulate the design



Table 2
Input parameters of our formulated problem.

dij The cost of using a wavelength channel on link between node i and
j for one time slot

oi The cost of using a wavelength converter on node i for one time slot
W The number of wavelengths used in the network
sh The hth lightpath demand
S All lightpath demands, i.e., S = {sh}
Th The holding time of lightpath sh

bh; b0h
� �

The desired window of starting time for sh, 0 6 bh 6 b0h < Z
F The number of wavelength converters installed on each node
N The number of nodes in the network
Ph The penalty coefficient for rejecting sh

Z Total number of time slots of our scheduling problem
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objectives. Thus, we want to minimize the objective function J over
all feasible solutions of the primal problem, that is to find min

v2V
fJg;

where

JðVÞ ¼
X
sh2S

ð1� ahÞPh þ ahðCh þ EhÞ½ � ð1Þ

For each lightpath demand sh, either the penalty of rejecting it
(Ph), or the penalty of using resources (Ch) to set up the lightpath
and its timing violation (Eh) is added to the objective function (J),
depending on sh’s admission status ah. If the scheduling of light-
path sh respects its timing requirement, Eh = 0; otherwise, we as-
sign Eh with a certain penalty value. Specifically,

Eh ¼
EPhðbhÞ if bh < bh

0 if bh 6 bh 6 b0h
TPhðbhÞ if bh > b0h

8><
>: ;

where EPh(bh) stands for earliness penalty and TPh(bh) stands for
tardiness penalty, both of which can be either constants or func-
tions with increasing values as bh deviates from the window [bh, b0h].

The total cost of using wavelength channels and wavelength
converters is the cost of sh, denoted by Ch:

Ch ¼
X

bh6t<ðbhþThÞ

X
eij2E

X
06c<W

dh
ijct þ R�

X
i2V

/h
it

0
@

1
A; sh 2 S ð2Þ
2.4. Design constraints

The above problem must conform to the following constraints.
Table 3
Design variables of our formulated problem.

ah Lightpath demand sh’s admission status. If sh is admitted, ah = 1; if sh is rejecte
A Admission status of all lightpath demands, i.e., A = (ah)

dh
ijct Lightpath sh’s usage of wavelength channel wijc at time slot t. If sh uses wijc at

Dh The RWA scheme of sh, i.e., all the dh
ijct for a given h

D The RWA schemes for all lightpaths, i.e., D = (Dh)
bh The starting time slot of lightpath sh

B The scheduling for all lightpaths, i.e., B = (bh)

/h
it Lightpath sh’s usage of a wavelength converter at node i at time slot t. If sh use

/h The assignment of wavelength converters at all nodes to sh, i.e., all the /h
i for g

/ The assignment of wavelength converters to all lightpaths, i.e., U = (Uh)
V The set composed of all the feasible solutions to the primal problem, i.e., the s
m A feasible solution to the primal problem
Vr The set composed of all the feasible solutions to the relaxed problem, i.e., the
m� Optimal solutions to the scheduled RWA problem, i.e., v⁄ = (A⁄,B⁄,D⁄,U⁄). Note

without the star superscript
(a) Lightpath conservation constraints: A lightpath must be
continuous along a path from its source to its destination.
d, ah = 0

time slo

s a wav

iven h

et of sol

set of so
that we
X
j2V

X
06c<W

dh
ijct�

X
j2V

X
06c<W

dh
jict

¼
ah if bh 6 t< ðbhþThÞ; i is the source node of sh

�ah if bh 6 t< ðbhþThÞ; i is the destination node of sh

0 otherwise

8><
>: ;

sh 2 S; 06 t< Z

ð3Þ
(b) Wavelength channel exclusive usage constraints: A wave-
length channel can only be used by no more than one
lightpath.
X
sh2S

dh
ijct 6 1; eij 2 E; 0 6 c < W; 0 6 t < Z ð4Þ
(c) Wavelength converter quantity constraints: The number
of used converters at a node must be no more than the num-
ber of installed converters at the node.
X
sh2S

/h
it 6 F; i 2 V ; 0 6 t < Z ð5Þ
(d) Wavelength conversion constraints: For any time slot, a
wavelength converter at an intermediate node j is used,
when different wavelengths are assigned to sh for the incom-
ing and outgoing portions of the lightpath at this node.
/h
jt ¼

1 if 9m; k 2 V and b–a; dh
mjat ¼ dh

jkbt ¼ 1
0 otherwise

(
;

j 2 V ;0 6 t < Z ð6Þ
(e) Lightpath persistency constraints: During the lifespan of sh,
its RWA scheme must remain the same for all time slots.
dh
ijcx ¼ dh

ijcy; sh 2 S; eij 2 E; bh 6 x < ðbh þ ThÞ; bh

6 y < ðbh þ ThÞ ð7Þ
Note that together with constraints (b), the allocation of wave-
length converters /h

jt remains the same, too.
3. Lagrangian dual problem and bounds of the scheduled RWA
problem

3.1. Lagrangian dual problem (DP)

We use the Lagrangian relaxation framework to derive a
Lagrangian DP from the primal problem min

v2V
fJg. We relax the

primal problem’s constraints that represent resource limitations
t t, dh
ijct ¼ 1; otherwise, dh

ijct ¼ 0

elength converter at node i at time slot t, /h
it ¼ 1; otherwise, /h

it ¼ 0

utions fulfilling constraints a, b, c, d, and e

lutions fulfilling constraints a, d, and e
denote optimal solutions with the star superscript and feasible solutions
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(i.e., the wavelength channel exclusive usage constraints (b), and
the wavelength converter quantity constraints (c)) and then add
items corresponding to the relaxed constraints into the objective
function via Lagrange multipliers. We introduce Lagrangian multi-
pliers nijct (eij 2 E, 0 6 c < W; 0 6 t < Z) in association with the
wavelength channel exclusive usage constraints (b), and Lagrang-
ian multipliers kit (i 2 V, 0 6 t < Z) in association with the wave-
length converter quantity constraints (c). The vectors of Lagrange
multipliers (nijct) and ðkitÞ are denoted as n and k, respectively. Thus,
the objective function of the primal problem is transformed into
the Lagrangian function L [19]:

LðV ; n; kÞ ¼ JðVÞ þ
X
eij2E

X
06c<W

X
06t<Z

nijct

X
sh2S

dh
ijct � 1

 !

þ
X
i2V

X
06t<Z

kit

X
sh2S

/h
it � F

 !
ð8Þ

The Lagrangian relaxation of the primal problem is defined as
min
v2V
fLðv;mÞg with parameters of the Lagrange multipliers

m ¼ ðn; kÞ, subject to constraints (a), (d) and (e).
For m ¼ ðn; kÞP 0; the Lagrangian relaxation of the primal

problem minv2VfLðv ;mÞg provides a lower bound to the primal
problem minv2VfJg. This fact may be explained as follows: (1) a fea-
sible solution to the primal problem is a feasible solution to the
Lagrangian relaxation of the primal problem; (2) for any feasible
solution v to the primal problem and with any Lagrange multipliers
m P 0; we have Lðv;mÞ 6 J; and thus minv2VfLðv ;mÞg 6 minv2VfJg;
for all m P 0.

Among the lower bounds provided by the Lagrangian relaxation
of the primal problem, we are interested in finding the best lower
bound for the primal problem, which can be formulated as the
Lagrangian DP:

max
mP0
fqðmÞg; ð9Þ

subject to the constraints in (a), (d) and (e). The Lagrangian DP
(9) is relative to the constraints (b) and (c). The dual function is de-
fined as q(m).

There are a large but finite number of feasible solutions to the
primal problem, over which when the Lagrangian function is min-
imized, we obtain the dual function q(m) defined as the infimum of
the Lagrangian function L:

qðmÞ ¼min
v2Vr
fLðv ;mÞg; m P 0 ð10Þ

The optimal value of the Lagrangian DP (denoted by q⁄) is the
best lower bound of the primal problem [19]. The corresponding
optimal Lagrange multiplier values are denoted by m� ¼ ðn�; k�Þ.
We thus have

q�ðm�Þ ¼min
v2Vr
fLðv ;m�Þg 6min

v2V
fLðv ;m�Þg 6 min

v2V
fJg ð11Þ

The Lagrangian DP has the following properties:

� The solution space of the Lagrangian DP is dimensioned by the
Lagrangian multipliers corresponding to the relaxed constraints
in the primal problem together with the original variables of the
primal problems;
� The dual function is concave over its solution space, which is

convex [19, proposition 5.1.2], resulting in the applicability of
more efficient solution methods, such as sub-gradient based
methods.

3.2. Decomposition of the Lagrangian DP

The Lagrangian DP can be decomposed into sub-problems,
where each sub-problem corresponds to the scheduled RWA prob-
lem of one lightpath demand.
qðmÞ ¼
X
sh2S

min
ah

½ð1� ahÞPh þ ahDh�
� �

�
X
eij2E

X
06c<W

X
06t<Z

nijct

�
X
i2V

X
06t<Z

kitF; ð12Þ

where

Dh ¼min
bh

Eh þmin
Dh ;Uh

X
eij2E

X
06c<W

X
bh6t<ðbhþThÞ

dh
ijctðnijct þ 1Þ

2
4

8<
:

þ
X
i2V

X
bh6t<ðbhþThÞ

/h
itðkit þ RÞ

#)
;

subject to the constraints in (a), (d) and (e), which contains the
exact same form as the Shortest Path Algorithm for Wavelength
Graph (SPAWG) proposed in [22,23]. We can thus simply apply
SPAWG to obtain the optimum for min

Dh ;Uh

½�� and then obtain the min-

imal bh among all possible time slots. Please note that SPAWG is
essentially a shortest path algorithm on a wavelength graph
(WG) [22,23].

Now, we define two important parameters of using a resource.
Both parameters are functions of the starting time slot of using the
resource (denoted by b) and the duration of using the resource (de-
noted by T).

The accumulative dual cost n
_

b;T
ijc of using wavelength channel wijc

(eij 2 E, 0 6 c < W) is defined as:

n
_

b;T
ijc ¼

X
b6t<ðbþTÞ

ðnijct þ 1Þ; eij 2 E; 0 6 c < W: ð14Þ

The accumulative dual cost k
_

b;T
i of using a wavelength converter

on node i (i 2 V) is defined as:

k
_

b;T
i ¼

X
b6t<ðbþTÞ

ðkit þ RÞ; i 2 V ð15Þ

We can thus simplify the representation of Dh as

min
bh

Eh þmin
Dh ;Uh

X
eij2E

X
06c<W

dh
ijc;bh

n
_

bh ;Th
ijc þ

X
i2V

/h
j;bh

k
_

bh ;Th
i

2
4

3
5

8<
:

9=
; ð16Þ

Note that due to the lightpath persistency constraints (e), the
design variables dh

ijct and /h
jt do not change over the lifespan of

lightpath sh. So we use their values at the starting time slot to
represent their values, i.e., dh

ijct ¼ dh
ijc;bh

and /h
jt ¼ /h

j;bh
; bh 6 t <

ðbh þ ThÞ.

4. Lagrangian bounds of the scheduled RWA problems with and
without wavelength conversion

To study the impact of wavelength conversion, we will derive
Lagrangian bounds of the scheduled RWA problems with and with-
out wavelength conversion. Then in the next section, we will prove
that the Lagrangian bound cannot be improved by wavelength con-
verters for the same network and lightpath demands.

We derive the Lagrangian bound of the scheduled RWA problem
with wavelength conversion for a benchmark case that has three
properties:

� Wavelength conversion is available at all nodes. The number of
wavelength converters at a node is set to such a large constant
number that there are more than enough for all lightpaths at
any node to use one. We denote this large constant number as F;
� Wavelength converters are installed in a share-per-node man-

ner [20], in which any input lightpath may use any available
wavelength converter before entering any output port. This is
the best sharing structure of wavelength converters;
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� The cost of using any wavelength converter is set to zero (i.e.,
R = 0).
For this benchmark case, the Lagrangian dual problem of the
scheduled RWA problem with wavelength conversion is denoted
as DP1.

Without wavelength conversion, the Lagrangian bound of the
scheduled RWA problem may be derived from a baseline case, in
which wavelength conversion is unavailable at all nodes. The
Lagrangian dual problem of the scheduled RWA problem without
wavelength conversion is denoted as DP2. Note that in DP2,
/h

it ¼ 0, sh 2 S, i 2 V, 0 6 t < Z.
When we prove that wavelength conversion does not improve

the Lagrangian bound even for the benchmark case, our conclu-
sions are able to be extended to other configurations and cost
values of wavelength converters. This can be explained by the
non-negative requirements of Lagrange multipliers and Dh in Eq.
(13), and the formulation of the Lagrangian DP in Eq. (12). The
Lagrangian bound for the case other than the benchmark case can-
not be less than that for the benchmark case.

5. Wavelength conversion’s impact on the Lagrangian bounds of
the scheduled RWA problems

We now prove that the lower bounds of the two Lagrangian DPs
presented above are the same, i.e., ðqDP1

Þ� ¼ ðqDP2
Þ�, where ðqDP1

Þ�

and ðqDP2
Þ� denote the optimal values of DP1 and DP2, respectively.

Lemma 1. In any of the optimal solutions (m⁄, v⁄) to DP1, ðkitÞ� ¼ 0,
i 2 V.

Proof. When we ignore the integer constraints for the design vari-
ables v, the Lagrange multiplier theory [19, Chapter 3, proposition
3.3.6, pp.327] proves that for the optimal solution v⁄ of the
Lagrangian function (8), there always exist Lagrange multipliers
m⁄ that satisfy:

Lðm�;v�Þ ¼ 0 ð17Þ

Then we have ðkitÞ�
P

sh2Sð/
h
itÞ
� � F

� �
¼ 0 (i 2 V, 0 6 t < Z). Because

we assume the number of wavelength converters at any node is
abundant, the term

P
ssdn2Sð/

sdn
it Þ

� � F must be strictly less than zero,

i 2 V, 0 6 t < Z. Thus, ðkitÞ� ¼ 0, i 2 V, 0 6 t < Z. h

Lemma 2. In any of the optimal solutions (m⁄, v⁄) to DP1, k
_

b;T
i

� ��
¼ 0,

i 2 V.
Proof. Put Lemma 1 and the zero-cost assumption of wavelength
converters in DP1 into the definition of accumulative dual cost

k
_

b;T
i in Eq. (15), we have k

_
b;T
i

� ��
¼ 0, i 2 V. h
Table 4
Computation results using various topologies and traffic matrices [17].

Network settings T

Network N E W

NSFNET 14 21 12 2
14 21 4 1
14 21 7 1

A random network 22 35 10 3
22 35 6 2
22 35 8 2

European network 28 61 8 4
28 61 10 6
28 61 4 2
28 61 12 8

Average duality gap (%)
Lemma 2 implies that a change from the resource quantity
does not impact the optimization objective if there is abundance
of it.

Lemma 3. In any of the optimal solutions (m⁄, v⁄) to DP1, for given b

and T, n
_

b;T
ij0

� 	�
¼ n

_
b;T
ij1

� 	�
¼ n

_
b;T
ij2

� 	�
¼ . . ., eij 2 E, T P 1; 0 6 b

< ðZ � TÞ.

Proof. If 0 6 n
_

b;T
ijl

� ��
< n

_
b;T
ijk

� ��
, eij 2 E, T P 1; 0 6 b < ðZ � TÞ, k – l,

0 6 k < W , and 0 6 l < W , then, we can see from Eq. (16) that sh’s
least-cost paths (Dh)⁄ only include the wavelength channel with
the lowest cost on any link eij 2 E that sh is routed through. Thus,
wijl is chosen, instead of wijk, i.e., ðdh

ijlxÞ
� ¼ 1 and ðdh

ijkxÞ
� ¼ 0. Note

that according to the lightpath persistency constraints described
in Eq. (7), wijl is used by sh starting from time slot b and for a dura-
tion of T time slots. Since ðdh

ijkxÞ
� ¼ 0, we are able to find one of the

optimal solutions that satisfies n
_

b;T
ijk

� ��
¼ 0, k – l, 0 6 k < W , and

0 6 l < W , which contradicts the assumption that

0 6 n
_

b;T
ijl

� ��
< n

_
b;T
ijk

� ��
. h

Lemma 3 means that for any given b and T, the summation of
Lagrange multipliers for all the wavelength channels on a given
link must be the same in an optimal solution to DP1. Otherwise,
all lightpaths routed through the link would only use the least-cost
wavelength channels.

Lemma 4. At least one of the optimal solutions to DP1 satisfies U⁄ = 0.
Proof. If ð/h
jxÞ
� ¼ 1, due to the existence of m; k 2 V and b – a that

satisfies dh
mjax

� ��
¼ dh

jkbx

� ��
¼ 1, we can then obtain an optimal

solution that satisfies /h
jx

� ��
¼ 0, by letting sh use wjka, instead of

wjkb. In this way, the requirement of using a wavelength converter
at node j is eliminated. Lemma 3 ensures that this change satisfies
all the constraints, but does not influence the optimal value q⁄. So
the obtained solution is also one of the optimal solutions to
DP1. h

Lemma 4 means that despite the fact that the zero-cost wave-
length conversion is available, plus some optimal solution to DP1

uses the wavelength conversion, we are able to find at least one
optimal solution to DP1 not using wavelength conversion. Specifi-
cally, an optimal solution of the scheduled RWA problem does
not have to use wavelength conversion.

Theorem 1. ðqDP1
Þ� 6 ðqDP2

Þ�.
otal number of demands J q Duality gap (%)

31 11653 11344 2.72
05 5379 5081 5.86
65 8198 8035 2.03
52 18278 17641 3.61
11 11015 10715 2.80
63 13708 13346 2.72
03 19421 19162 1.35
05 28180 27222 3.52
01 9673 9217 4.95
07 37837 35434 5.43

3.50
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Proof. From Lemmas 2 and 4, we can see that there always exists
an optimal solution ðmDP1 Þ

�
; ðvDP1 Þ

�� �
to DP1 where ðkDP1 Þ

� ¼ 0 and
ðUDP1 Þ

� ¼ 0, which means ðmDP1 Þ
�
; ðvDP1 Þ

�� �
satisfies all the con-

straints of DP2, and is thus a solution to DP2. Thus,
ðqDP1

Þ� ¼ qDP2
ððmDP1 Þ

�
; ðvDP1 Þ

�Þ. Since the optimal solution to DP2

is at least as good as the solution ððmDP1 Þ
�; ðvDP1 Þ

�Þ, we have
qDP2
ððmDP1 Þ

�
; ðvDP1 Þ

�Þ 6 ðqDP2
Þ�. So we have ðqDP1

Þ� 6 ðqDP2
Þ�. h

Theorem 1 means that if an optimal solution to DP1 does not use
any wavelength conversion, this solution is a solution to DP2 too. In
another word, the optimal solution to DP2 should generate a bound
at least better (i.e., greater) than the bound from this solution.

Now we proceed to prove ðqDP1
Þ� P ðqDP2

Þ�.

Lemma 5. For an optimal solution (m⁄, v⁄) to DP2, for given b and T,

n
_

b;T
ij0

� 	�
¼ n

_
b;T
ij1

� 	�
¼ n

_
b;T
ij2

� 	�
¼ . . ., eij 2 E, T P 1; 0 6 b < ðZ � TÞ.
Proof. Conceptually, since there is no wavelength conversion
available in DP2, the WDM network can be considered as layered
planes. Each layer (i.e., a wavelength plane) is a separate network
and corresponds to exactly one wavelength. Every wavelength
plane is independent of each other, but is identical. The Lagrangian
multiplier of each wavelength channel on the same fibre should
thus be identical too.Specifically, we can start with an assumption
that in an optimal solution, consider a link (say link (i, j)) that has
different Lagrangian multiplier values for its wavelength channels.
For any wavelength channel c, if we consider its capacity (currently
set to constant 1 in constraints (4)) as a continuous variable (note
that it does not need to be integer), and we have

ðnijctÞ� ¼ �
dðqDP2

Þ�

dCijct

(see [21]). If we have another wavelength channel d that has differ-
ent Lagrangian multiplier value

ðnijdtÞ� ¼ �
dðqDP2

Þ�

dCijdt
:

It means that by increasing the capacity of Cijct and Cijdt by dCijct and
dCijdt, we will result in different optimized values of ðqDP2

þ dqDP2
Þ�.

This contradicts the fact that wavelength channels c and d are iden-
tical (i.e., cannot be distinguished). h
Theorem 2. ðqDP1
Þ� P ðqDP2

Þ�.
Proof. From Lemma 5, we can see that at least an optimal solution
to DP2 can construct a solution to DP1 by assigning
ððmDP2 Þ

�
; ðvDP2 Þ

�Þ to ðmDP1 ;vDP1 Þ while setting ðkDP1 Þ
� ¼ 0 and

ðUDP1 Þ
� ¼ 0. Specifically, for the dual function qDP1

ðmÞ (see Eq.
(10)), Lemma 5 ensures that this assignment satisfies all the con-
straints of DP1, since the Lagrangian multipliers of wavelength
channels on the same link all have the same value. We can thus
set ðUDP1 Þ

� ¼ 0 with min
vDP2

2V
fJg still holds without violating any con-

straint, since using the wavelength conversion to switch to any
other wavelength channel on the same link would result in the
same dual value (see Lemmas 3 and 4 for the detailed conditions
of not using wavelength conversion). Similar to Theorem 1, we
have ðqDP1

Þ� P ðqDP2
Þ�. h
Theorem 3. ðqDP1
Þ� ¼ ðqDP2

Þ�.
Proof. This is a natural derivation from Theorems 1 and 2. h

With Theorem 3, the optimum of DP1 is proven to be the same
as DP2. In other words, the optimum of the scheduled RWA prob-
lem cannot be improved by wavelength conversion.
6. Duality gaps

A gap may exist between the optimal value of the Lagrangian DP
(denoted by q⁄) and the optimal value of the primal problem. This
means that, although the optimal value of the Lagrangian DP is the
best lower bound of the primal problem, the optimal values of the
Lagrangian DP and the primal problem may not be identical. Such a
gap is called a duality gap.

In practice, only near-optimal solutions are obtained for both
the Lagrangian DP and the primal problem, due to limitations on
the computational time and efforts. As long as the duality gap be-
tween a near-optimal value of the Lagrangian DP and the best
achieved value of the primal problem is controlled below a thresh-
old (e.g., 5–10% of the best achieved value of the primal problem),
we are satisfied that a feasible solution to the primal problem is
obtained with a reasonably good quality. The quality of the ob-
tained solution is readily evaluated by the duality gap between a
near-optimal value of the Lagrangian DP and the best achieved va-
lue of the primal problem.

Relatively small duality gaps between a near-optimal value of
the Lagrangian DP and the best achieved value of the primal prob-
lem were reported in the Figs. 9, 11 and 14 in [17]. The results for
various topologies and traffic matrices are also shown in Table 4
[17], which indicates that in most cases, the duality gap is less than
5% (sometimes <1%). The meaning of the tight duality gap is two-
fold: (1) the near-optimum solutions are within a very close range
from the LR bounds, which does not change by adding wavelength
conversion. The improvement (by adding wavelength conversion)
on these near-optimum solutions can thus be only marginal; (2)
since the optimal solution lies in-between the obtained objective
value and the LR bound and since the LR bound is proven not to
be affected by adding wavelength conversion, its impact on the
optimum solution is also limited by the tight duality gap. Intui-
tively, the duality gap can be considered as a ‘noise’ added on
top of the LR bound and since the LR bound is constant, the impact
from the wavelength conversion on the optimal solution cannot be
higher than the ‘noise-level’. Please note that in our computation
examples, we noticed that the duality gap is quite independent
of the network topology or the network traffic pattern and we do
not observe any obvious trend as the topology/traffic pattern
changes.
7. Implications on resource requirements and acceptance of
lightpath demands

The implications of our conclusion may be viewed from two
complementary perspectives: resource requirements to accommo-
date a given number of lightpath demands; and acceptance/rejec-
tion of lightpath demands under a given amount and configuration
of resources.

With or without wavelength conversion, similar amount of re-
sources are required to accommodate a given number of lightpath
demands. Our conclusion is consistent with the previous work in
[14,15]. In Fig. 7 of [15], from an integer linear programing formu-
lation, the maximum amount of resources used during any time
slot (in terms of the weighted hop count at the logical level) were
computed and shown to be almost identical in wavelength-
continuous (i.e., without wavelength conversion) and wavelength-
convertible (i.e., with wavelength conversion) networks. Results
for different traffic models (low/medium/high demand overlap,
or holding time unaware) followed a similar pattern, regardless
of the network size. In Figs. 8–10 of [14], using a heuristic algo-
rithm, the total required number of wavelength channels on all
links to accommodate all lightpath demands was shown similar
for the cases with or without wavelength conversion. Larger
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discrepancies between the cases with or without wavelength con-
version were observed in the results from heuristic algorithms
than from integer linear programing, because wavelength conver-
sion tends to offer more flexibility in most heuristic algorithms.

With or without wavelength conversion, lightpath demands are
accepted at a similar ratio, under a given amount and configuration
of resources. Our conclusion is in agreement with existing results
in [16,17]. In Fig. 13 of [16], the rejection ratios to lightpath de-
mands were similar for the cases ‘‘Opaque_Unicast’’ (equivalent
to lightpaths with wavelength conversion) and ‘‘AllOptical_Unicast’’
(equivalent to lightpaths without wavelength conversion). In
Table 7 of [17], the numbers of rejected scheduled sliding lightpath
demands (SSLDs) were similar in each pair of compared cases. Note
that considering the total number of SSLDs being 286 as shown in
Table 6 of [17], the differences of rejected numbers of SSLDs were
quite small for the cases with or without wavelength conversion,
and such differences may be partially attributed to the randomness
of the heuristic algorithm.
8. Conclusions

We proved that wavelength conversion does not improve the
scheduled RWA problem’s Lagrangian bound, which is obtained
using the Lagrangian relaxation method on the scheduled RWA
problem. Although it was not a direct proof that wavelength con-
version does not improve the quality of the solutions to the sched-
uled RWA problem, the result implied that in solving the scheduled
RWA problem, the contribution of wavelength conversion is very
marginal, since the bound is very close to the achieved objective
function value in most cases. Please note that similar results have
been obtained for various traffic patterns and for other network
topologies as shown in Table 8 of [17].

The practical implications of our conclusion may be explained
from two aspects: with or without wavelength conversion, similar
amount of resources are required to accommodate a given number
of scheduled lightpath demands; and scheduled lightpath de-
mands are accepted at a similar ratio, under a given amount and
configuration of resources.
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