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Abstract. In Wavelength Division Multiplexing (WDM) networks, the huge capacity of wavelength channels is generally much
larger than the bandwidth requirement of individual traffic streams from network users. Traffic grooming techniques aggregate
low-bandwidth traffic streams onto high-bandwidth wavelength channels. In this paper, we study the optimization problem of
grooming the static traffic in mesh Synchronous Optical Network (SONET) over WDM networks. The problem is formulated as
a constrained integer linear programming problem and an innovative optimization objective is developed as network profit optimi-
zation. The routing cost in the SONET and WDM layers as well as the revenue generated by accepting SONET traffic demands
are modelled. Through the optimization process, SONET traffic demands will be selectively accepted based on the profit (i.e., the
excess of revenue over network cost) they generate. Considering the complexity of the network optimization problem, a decom-
position approach using Lagrangian relaxation is proposed. The overall relaxed dual problem is decomposed into routing and
wavelength assignment and SONET traffic routing sub-problems. The subgradient approach is used to optimize the derived dual
function by updating the Lagrange multipliers. To generate a feasible network routing scheme, a heuristic algorithm is proposed
based on the dual solution. A systematic approach to obtain theoretical performance bounds is presented for an arbitrary topology
mesh network. This is the first time that such theoretical performance bounds are obtained for SONET traffic grooming in mesh
topology networks. The optimization results of sample networks indicate that the proposed algorithm achieves good sub-optimal
solutions. Finally, the influence of various network parameters is studied.

Keywords: WDM networks, SONET-over-WDM networks, traffic grooming, traffic engineering, routing and wavelength assign-
ment, network profit optimization, Lagrangian relaxation

1 Introduction

The design of wavelength-routed Wavelength
Division Multiplexing (WDM) networks employs
a two-step approach [1]. In the first step, a vir-
tual topology is designed for traffic that is directly
carried over lightpaths [2, 3] and each traffic
flow is routed onto the designed virtual topol-
ogy. In this paper, we study the SONET-over-
WDM architecture, so the electrical domain traffic
is Time Division Multiplexing (TDM) based.

∗Corresponding author.

A lightpath is a dedicated optical connection
using non-overlapping frequency or Wavelength
Channels (WCs). The SONET frames are car-
ried transparently from the source to the desti-
nation of a lightpath. The electrical processing
of SONET frames only happens at the source
and destination of a lightpath. In the second
step, point-to-point virtual links obtained from
the first step are routed as lightpaths onto phys-
ical fibres and each lightpath is assigned to WCs.
If wavelength converters are used, a lightpath
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may change wavelength along its route. The
second step is called Routing and Wavelength
Assignment (RWA) in the literature. Such two-
step approaches were effective for early-deployed
WDM networks, because at that time RWA
was independent of the virtual topology design.
Although two-step approaches reduce the com-
plexity of design and optimization, they do not
yield the best network resource utilization.

Integrated design approaches are required to
improve the network resource utilization. This
is of particular interest to the new generation
WDM networks, e.g., WDM networks consisting
of network elements (nodes) capable of manip-
ulating SONET traffic. Such new nodes inte-
grate switching and add-drop multiplexing in the
optical domain with SONET traffic multiplexing,
de-multiplexing, and grooming in the electrical
domain [4,5]. Grooming means the aggregation
of low bandwidth SONET connections onto high
bandwidth lightpaths.

As an integrated design approach, SONET
traffic grooming in WDM networks has received
considerable attention recently [4–12]. Traffic
grooming consists of four sub-problems, which
are not necessarily independent: (1) determining
the virtual topology of lightpaths over a fibre
network; (2) routing SONET traffic onto the vir-
tual topology; (3) routing the lightpaths over
the fibre network; and (4) performing wavelength
assignments to the lightpaths. Traffic grooming
is studied for two scenarios, i.e., static network
planning and dynamic network operation. Sta-
tic traffic patterns are used in network plan-
ning, which means all SONET traffic requests
are given in advance. The design and optimiza-
tion method proposed in this paper is for net-
work planning. In the network operational stage,
SONET traffic requests arrive one after another.
The best effort has to be made to provide ser-
vice to as many traffic requests as possible with
given network resources [4,13–18], but solutions
must also be provided for various issues, such as
the capacity fairness issue [19] and reconfiguring
wavelength assignments for new traffic patterns
[20].

The majority of research on traffic grooming
in SONET-over-WDM networks is based on the
ring topology because of its relevance to the
established SONET networks and its simplicity in

analysis [9,21–28]. Different traffic models (e.g.,
uniform or arbitrary distribution, all-to-all or all-
to-one, distance dependent, etc.), network archi-
tectures (e.g., uni-directional or bi-directional
rings, no hub, single or multiple hubs, etc.) and
switching capability (i.e., whether traffic can be
switched over from one WC to another) have
been extensively studied. A number of heuristic
algorithms were proposed and theoretical bounds
on performance were discovered for ring net-
works [8,29,30]. Theoretical bounds were also
discovered for other regular topologies such as
the star or tree topology [31,32]. However, emerg-
ing SONET-over-WDM networks are increasingly
deployed using the mesh topology due to its
unprecedented efficiency [33]. Traffic grooming
for the mesh topology is very challenging and
only a few recent publications reported such
research [10,16,34–42]. Although heuristic algo-
rithms have been proposed and the efficiency of
the heuristics has been demonstrated for a prac-
tical scale network [34], it is still an open issue as
to how close the results obtained from the heu-
ristics are to the optimal results, i.e., what is the
theoretical bound of the performance metrics. So
far no theoretical performance bound is available
yet [43]. Thus, we have conducted our research
on the mesh topology, and one of our contri-
butions in this paper is the systematic approach
to obtain the theoretical performance bounds for
any mesh topology and algorithms will be pro-
posed to achieve this performance objective.

The traffic grooming problem is NP-complete,
and the numbers of variables and equations
increase drastically with the number of nodes and
links in a network. Thus, the traffic grooming
problem requires dramatic amounts of time to
solve for large networks. For practical scale net-
works, the traffic grooming problem formulated
as the Integer Linear Programming (ILP) cannot
be directly solved by ILP solver package software
such as CPLEX [44]. Even for a small sample net-
work of six nodes and eight links, CPLEX cannot
compute the optimal solution due to high com-
putational complexity, and the result presented
in [34] is actually a sub-optimal solution by ter-
minating the optimization process after a period
of computational time. The optimization method
we will propose in this paper can achieve better
results for the same network within reasonable
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computational time. Such results will be presented
in Section 6 in this paper and compared with
the reported results obtained with CPLEX. Our
method has the potential for solving large-scale
traffic grooming problems.

Most previous studies were conducted based
on the assumption that all traffic requests should
be accepted and tried to directly or indirectly
minimize the network cost [23,24,45]. Simply
accepting all traffic requests is not a practical
approach. Network cost optimization needs to
be related to the revenue generated by accept-
ing traffic demands. Although the optimization
objective used in [34] modelled the revenue as
the weighted network throughput, the cost for
accepting traffic demands is not considered. As a
result, maximizing the weighted network through-
put does not mean the real profit is maximized,
because the profit is the excess of revenue over
cost. Multi-objective optimization was applied to
the traffic grooming problem in [46], where max-
imizing traffic throughput and minimizing the
number of transceivers or lightpaths are modelled
as two competing objectives. However, their rela-
tion to the network profit are not revealed. A
new optimization objective will be proposed in
this paper, which contains terms including both
the revenue and cost, thus the potential profit
generated by accommodating traffic demands can
be optimized. The new optimization objective will
be elaborated in Section 2.

Lagrangian Relaxation (LR) and subgradient
methods have been successfully employed to solve
the RWA problem [47–49]. Compared to the
exponential complexity of CPLEX, LR and sub-
gradient methods have polynomial complexity
as long as the solution to all the sub-prob-
lems of the relaxed dual problem is polynomial,
thus can be used to solve the RWA problem
for fairly large networks. Theoretical bounds are
generated, and at the same time, feasible solu-
tions satisfying constraints are obtained [50]. A
Lagrangian-based heuristic algorithm was pro-
posed for traffic grooming in WDM networks [51].
However, the physical topology was not consid-
ered, so the constraints from the physical config-
uration were neglected. Essentially, the problem
has been simplified to a virtual topology design
problem, which as discussed early on, does not

necessarily result in the best network utilization
when separately solved with the RWA problem.

In this paper, we study the design and optimiza-
tion problem of traffic grooming in mesh SONET-
over-WDM networks. An innovative optimization
objective is proposed to consider both the reve-
nue generated by accepting traffic demands and
the actual network resource cost for providing ser-
vices to the accepted traffic demands. The profit is
maximized as opposed to either minimizing net-
work cost or maximizing network throughput in
other studies. An LR-based optimization method
is presented to solve the network profit maximi-
zation problem for SONET-over-WDM networks.
Theoretical bounds are derived for the optimiza-
tion problem. A systematic approach is developed
to obtain theoretical bounds as well as feasible
solutions, which provide acceptable sub-optimal
results. Such optimization approach is generic and
may be applied to arbitrary topologies. This paper
is organized as follows. In Section 2, the net-
work profit optimization objective is presented
for SONET traffic grooming in mesh wavelength-
routed WDM networks. In Section 3, the network
model and assumptions are introduced. Then, the
problem is formally formulated in Section 4. A
solution based on LR and subgradient methods is
proposed in Section 5. The numerical results are
presented with comparisons to published results in
Section 6. Section 7 contains the conclusions.

2 Design and Optimization Objective

Two types of optimization problems have been
studied for traffic grooming under static traffic
patterns. The first optimization type is to mini-
mize network cost [21,28]. In minimizing network
cost, a given static traffic matrix is completely
satisfied and the optimization objective is to use
minimal network resources to provide services to
all traffic demands. Fundamentally, minimizing
network cost is to allocate network resources to
match a given set of traffic demands. Various
cost functions are adopted, e.g., [7,28]. For exam-
ple, the total number of lightpaths is used as a
cost function [7], which represents the total cost
of transmitters and receivers, as well as wave-
length switching fabric. Another cost function
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is the total capacity of SONET switches [7],
which represents the cost of electrical multiplex-
ing, de-multiplexing and switching, and indirectly
represents the cost of transmitters and receiv-
ers. Similarly, the maximum number of light-
paths terminating/originating at a node serves as
another cost function, which reflects the cost of
transmitters and receivers, as well as the cost of
SONET switches.

The second optimization type is to maximize
network throughput [34]. In maximizing network
throughput, a given network has such limited
resources that not all given traffic demands can
be accepted, and therefore the optimization objec-
tive is to maximize the total traffic that is carried
by the network. Essentially, to maximize net-
work throughput is to prioritize traffic demands
based on how efficient the traffic demands can
be provisioned and only the traffic demands
that most efficiently use network resources are
accepted. Maximizing the total network through-
put implicitly evaluates the efficiency of traffic
flow provisioning. A variation of maximizing net-
work throughput is network revenue optimiza-
tion, where the network revenue is modelled as
a weighted network throughput [34], or based
on service differentiation for lightpath protec-
tion [52]. Since for a given network, the total
network cost is fixed, maximal network revenue
will lead to maximal network profit. However,
it is difficult to study the impact of network
cost factors to the overall network profit, because
the network cost factors are not explicitly mod-
elled. In maximizing network throughput, it is still
unknown whether providing service to a certain
traffic demand is profitable or not. The reason is
that an arbitrarily selected network configuration
will unlikely match a given traffic matrix and such
miss-matching has two negative impacts. In some
cases, non-profitable traffic demands are accepted
because the given network resources are abundant.
It is also possible that potential profitable traf-
fic demands cannot be accepted because the given
network resources are less than necessary. By add-
ing small amounts of network resources with rela-
tively low cost, the potential profitable traffic can
be actually accepted to generate profit. Unfortu-
nately, the network throughput optimization does
not provide clues for improving network configu-

rations, i.e., no guide is provided for adding net-
work resources.

The ultimate goal for minimizing network cost
and maximizing network throughput is to max-
imize network profit. Optimizing either network
cost or network throughput separately cannot
achieve the goal. For example, in the network
cost minimization, the assumption that all traf-
fic demands should be satisfied is questionable
with respect to the profit objective. Some traffic
demands may be costly and no efficient pro-
visioning plan exists for them. To provide ser-
vice to them is an excessive burden to the
whole network, and the revenue generated from
them cannot recover the provisioning cost. Such
non-profitable traffic demands should be rejected
instead of being accepted regardless of the provi-
sioning cost. On the other hand, network through-
put optimization may not achieve the profit
objective, either, because the implicit evaluation
for the network resource utilization of traffic
demands may not reflect the cost factor. So far,
no study has been reported to link the minimizing
network cost and maximizing network throughput
so that network profit can be maximized.

In this paper, we propose a model for network
profit, which bridges the gap between the min-
imizing network cost and maximizing network
throughput. We assume two factors are defined
first: the predicted traffic matrix and the expected
revenue for each traffic demand. The predicted
traffic matrix is defined in the form of traffic
demands between node pairs. The expected reve-
nue for a traffic demand is the estimated charge
for providing service to the traffic demand. Using
static network planning, every traffic demand
can be identified whether it is profitable or not.
Profitable traffic demands will be accepted and
an optimized provisioning plan will be arranged.

The following are some notes on our design
and optimization objective:

1. Representation of the revenue generated by
a traffic demand: In order to incorporate
the revenue factor into the network cost
function, we will use the revenue penalty for
rejecting a traffic demand. The amount of
revenue penalty is the same as the amount
of revenue the traffic demand will generate
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if it is accepted. With this modification, the
actual optimization objective will be to min-
imize the summation of the revenue penalty
and the total network cost. This objective
is in fact minimizing the profit loss, which
is equivalent to maximizing profit. For the
total network cost, a direct measurement of
network cost needs to be used as opposed
to any of the previously used indirect cost
functions. This is because the network cost
has to be measured by a monetary value
and will be added to the revenue penalty.
This paper adopts a virtual unit for cost,
revenue and profit, which is proportional to
the dollar unit.

2. Handling non-profitable traffic demand: If
the profit situation for a traffic demand
is marginal, i.e., close to break-even, it
may be re-considered. This can be done
by adjusting the estimated charge after the
first round of network planning, when the
overall situation of the network becomes
clearer than at the beginning. Hence the
charge can be estimated more accurately.

3. Limiting network capacity: Because of
the extremely high complexity associated
with the integrated design of SONET-over-
WDM networks, we simplify the problem
by fixing the network capacity. The network
capacity is set to a limited level such that
not all traffic demands can be accommo-
dated. After the LR-based optimization, a
subset of traffic demands will be identified
as high profitable traffic. A series of trials
will then be made by adjusting the network
capacity, i.e., by adjusting the number
of transmitters, receivers and wavelength
converters at some selected nodes, and the
number of WCs in each fibre. The results
will be presented in Section 6.

4. Difference between identifying the profit
situation of a traffic demand in the static
network planning and in the dynamic net-
work operational stage: The philosophy we
use to create the new design and optimiza-
tion objective is that no such traffic demand
should be accepted when it is known to
be non-profitable before the network is
built. However, after the network is built
and all network resources are deployed, the
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Fig. 1. An integrated SONET-over-WDM node.

dynamic network operational stage should
adopt a different strategy for accepting or
rejecting traffic demands. This is because
the objective is changed to generate as
much revenue as possible with existing
network resources. How to utilize spare
network resource is beyond the scope of
this paper.

3 Network Model and Assumptions

The network model used in this paper consists
of integrated SONET-over-WDM nodes as shown
in Fig. 1. In the optical domain, WCs in the
input fibres are de-multiplexed and then switched
to either receivers for optical-to-electrical conver-
sion, or wavelength converters, or output fibres.
All the transmitters and receivers are tuneable to
any wavelength used in the network. If there is
any wavelength converter (some nodes may not
have any such wavelength converter at all), it
would operate at the full wavelength range, i.e., it
can convert any input wavelength to any output
wavelength. The formulation of the wavelength
converter structure can be found in [47]. The trans-
mitters, receivers and wavelength converters are
assumed to be set up in a share-per-node struc-
ture, so that the least number of such components
is required to achieve the same performance [53].

In addition, we make the following assump-
tions:

1. SONET-over-WDM nodes are intercon-
nected in a mesh topology.
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2. In the SONET layer, the switching fabric
has unlimited multiplexing, de-multiplexing
and time slot exchanging capability. The
granularity of traffic requests can be any
of the Synchronous Transport Signal (STS)
or the Optical Carrier (OC) levels of 1, 3,
12 or 48, i.e., having a bit rate of 51.84,
155.52, 622.08 or 2488.32 Mbps. A traffic
demand may be groomed with other traffic
and rounded up to any granularity of OC-3,
OC-12 or OC-48.

3. The capacity of SONET switching fabric is
unlimited.

4. One fibre connects a pair of neighbour
nodes. Every WC on fibres can carry opti-
cal signals travelling in both directions, i.e.,
all WCs are bi-directional.

5. Full-range wavelength conversion is used.
Therefore, each input wavelength can be
converted into any possible output wave-
length if a wavelength converter is available.

6. A traffic demand must be handled as its
entirety, and cannot be split.

7. All nodes are equipped with wavelength
switching capability. However, the SONET
switching capability is optional. When
SONET switching is not available at a
node, we set the number of transmitters
and receivers at that node to zero.

8. We assume all fibres use the same number
of wavelengths and denoted as W.

4 Problem Formulation

4.1 Notations
The following notations are used in the rest of
the paper. For better understanding the nota-
tions, we organize them into three categories:

Optical transmission domain:
N node count of the network;
i, j two end nodes of a fibre;
ei j fibre between nodes iand j ;
ni j WC count on the fibre ei j ;
wi jc the cth WC on the fibre ei j . With-

out losing generality, the WCs on
all fibres with the same index c are
assumed to carry the same wavelength,

and this wavelength is referred to as the
wavelength c;

di jc cost of the WC wi jc;
c j cost of a wavelength converter at node j ;
r j cost of a receiver at node j ;
t j cost of a transmitter at node j ;
(V,E) bi-directional graph representing the

physical WDM network, with V stand-
ing for nodes and E standing for fibres.

Optical switching domain:
s,d source and destination nodes of a

lightpath;
ssdn the nth lightpath between a node pair

(s,d);
M lightpath set, i.e., {ssdn};
Nsd maximum number of lightpaths

between node pair (s,d);
C bandwidth of a lightpath, measured

by the number of OC-1 or STS-1
channels. In this paper, the band-
width of a lightpath is OC-48, so
C =48;

Dsdn total network resource cost
of ssdn , which is defined as

αsdn

(
rd+ts+∑

(i, j)

∑
0<c≤ni j

di jcδ
sdn
i jc+

∑
j

c jφ
sdn
j

)
.

In this paper, only the cost of trans-
mitters, receivers, wavelength con-
verters and wavelength channels is
modelled;

Fi number of wavelength converters at
node i ;

Ti number of transmitters at node i ;
Ri number of receivers on node i ;
Qsdn dual routing cost for the lightpath

ssdn ;
(Vv ,Ev ) unidirectional graph representing the

virtual WDM network topology, with
Vv standing for the electrical switches at
nodes and Ev standing for all the unidi-
rectional lightpaths that could be set up;

αsdn admission status of the lightpath ssdn ,
which equals to one, if the lightpath ssdn

is set up; zero otherwise;
δsdn

i jc usage of the WC wi jc by the lightpath
ssdn , which equals to one, if the light-
path ssdn goes through the WC wi jc;
zero otherwise;
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φsdn
j usage of wavelength converters, which

equals to one, if a wavelength con-
verter is used by the lightpath ssdn at
node j ; zero otherwise;

A set of the admission status of all light-
paths, i.e., {αsdn};

� set of the wavelength assignment for

all lightpaths, i.e.,
{
δsdn

i jc

}
;

Φ set of the wavelength converter assign-

ment for all lightpaths, i.e.,
{
φsdn

j

}
.

Electrical switching domain:
x pqz the zth traffic demand between node

pair (p,q);
p,q endpoint nodes of a traffic;
E pqz total electrical routing cost of the

traffic x pqz , which is defined as∑
(s,d)

∑
0<n≤Nsd

Vpqzυ
pqz
sdn ;

Vpqz coefficient for the electrical routing cost
of the traffic x pqz ;

v
pqz
sdn usage of the lightpath ssdn by the traffic

x pqz , which equals to one, if the traffic
x pqz goes through ssdn ; zero otherwise;

G pqz bandwidth of the traffic x pqz , which is
measured by the equivalent number of
OC-1 / STS-1 channels, i.e., G pqz ∈
{1,3,12,48};

Ppqz penalty coefficient for rejecting the traf-
fic demand x pqz ;

Rpqz dual routing cost of the traffic x pqz ;
γpqz admission status of the traff1ic x pqz ,

which equals to zero, if the traffic x pqz

is rejected; one otherwise;
Y set of use of lightpaths by all traffic, i.e.,{

v
pqz
sdn

}
;

Ypqz set
{
υ

pqz
sdn

}
pqz , representing the routing

of the traffic x pqz ;
Γ set of admission status of all traffic, i.e.,{

γpqz
}
;

Z pq maximum number of traffic demands
between node pair (p, q). Note that Z pq

not necessarily equals Zqp, i.e., traffic
demands may be asymmetric;

4.2 Formulation of the Optimization Objective
and Constraints
As discussed before, our objective function is to
minimize the profit loss, which is equivalent to

maximize the profit. We can see objective function
contains composed of three parts: the first summa-
tion is the penalty of rejecting traffic demands; the
second summation is the cost associated with the
electrical domain for routing traffic demands; and
the third summation is the cost associated with the
optical domain for setting up lightpaths.

Objective Function:

min
A,�,Φ,Γ,Y

{J }, with

J ≡
∑
(p,q)

∑
0<z≤Z pq

PpqzG pqz(1−γpqz)

+
∑
(p,q)

∑
0<z≤Zsd

E pqz +
∑
(s,d)

∑
0<n≤Nsd

Dsdn (1)

Constraints:
The constraints are organized into two parts.

(A) Relation between lightpaths and the
optical transmission network

There are five constraints to be considered:

• Lightpath flow continuity constraint: Light-
path continuity means every lightpath has
to be continuous from source to destina-
tion. Thus, the balance of entering and exit-
ing lightpaths at all intermediate nodes does
not change. Only at the source and desti-
nation nodes, the lightpath adds the num-
ber of entering and exiting lightpaths by one,
respectively. So, we have∑

j

∑
0<c≤ni j

δsdn
i jc −

∑
j

∑
0<c≤ni j

δsdn
jic =




αsdn if i = s,

−αsdn if i =d, ∀(s,d), 0<n ≤ Nsd

0 otherwise.

(1a)

• Wavelength conversion constraint: A wave-
length converter at an intermediate node j
is used only when different wavelengths are
assigned to the lightpath ssdn for the incom-
ing and outgoing WCs at node j .

φsdn
j =




1, if ∃ m >0, k ≤ N ,b �= c,

δsdn
mjb = δsdn

jkc =1

0, otherwise

(1b)
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• WC capacity constraint: This constraints
stipulate that no more than one lightpath
may be routed through a WC in either
direction.∑
(s,d)

∑
0<n≤Nsd

δsdn
i jc ≤1, ∀(i, j), 0< c ≤ni j

(1c)

• Wavelength converter capacity constraint:
The number of converters used in one node
cannot exceed the number of available
converters, because of the share-per-node
wavelength converter configuration (Fig. 1).∑

(s,d)

∑
0<n≤Nsd

φsdn
j ≤ Fj , ∀ j (1d)

• Transmitter and receiver capacity con-
straint: The total number of transmitters
and receivers used on a node cannot exceed
the corresponding number of transmitters
and receivers installed on this node.

∑
j

∑
0<c≤ns j

∑
d

∑
0<n≤Nsd

δsdn
s jc ≤ Ts, ∀s (1e)

∑
i

∑
0<c≤nid

∑
s

∑
0<n≤Nsd

δsdn
idc ≤ Rd , ∀d (1f)

The parameters Ti , Ri represent, respectively, the
number of transmitters and receivers on switch
i . Constraints (1e) and (1f) confine that at most
Nsd ≤min(Ts, Rd) lightpaths can be set up between
source–destination pair (s,d). However, in the
optimal solution, it is very unlikely that Nsd will
go very close to min (Ts, Rd), because if the light-
paths between (s,d) occupy too many of the trans-
ceivers and other resources, the lightpaths between
s–d, and other switches will likely be blocked and
eventually limit the number of the traffic demands
being routed through the network.

From our computation experience, Nsd ≤ 1
2 min

(Ts, Rd) is adequate enough for most of the net-
work examples to obtain very good near-optimal
result. Although not required, we usually set Ti

and Ri to the same value.

(B) Relation between traffic flows and lightpaths
There are two such constraints:

• Traffic flow continuity constraint: The expla-
nation of these constraints is similar to the
lightpath flow continuity constraints (1a).∑

d

∑
0<n≤Nsd

v
pqz
sdn −

∑
d

∑
0<n≤Nds

υ
pqz
dsn

=



γpqz if s = p,
−γpqz if s =q, ∀(p,q), 0< z ≤ Z pq

0 otherwise.
(1g)

• Lightpath capacity constraint: The total traf-
fic being routed through a lightpath should
be less than the capacity of the lightpath.∑

(p,q)

∑
0<z≤Zsd

υ
pqz
sdn G pqz ≤Cαsdn,

∀(s,d), 0<n ≤ Nsd (1h)

5 Solution Method and Analysis

5.1 Overview of the Solution Framework
The traffic grooming problem is comprised of
the RWA (routing and wavelength assignment)
and the electrical traffic routing sub-problems,
which are very complicated by themselves and
closely coupled to each other. It is thus very diffi-
cult to obtain a good solution considering both
sub-problems at the same time. We shall apply
the LR method to decouple and solve the two
sub-problems independently. Similar to the pric-
ing concept in the marketplace, the LR method
can replace “hard” coupling constraints by “soft”
prices for the use of resources [50].

In the traffic grooming problem, lightpath
capacity is the primary constraint, because it
should be less than the capacity of a WC and on
the other hand, more than the aggregated traf-
fic onto it. The Lagrange multipliers in the LR
method will serve as the “prices” for lightpaths
to use optical transmission resources, and the
“prices” for traffic to use the lightpaths. The mul-
tipliers are updated iteratively to reflect eventually
the criticality of the resources. The integration of
the RWA and electrical traffic routing sub-prob-
lems will be realized by adjusting the multipliers at
the outer loop, and the two problems are solved
independently as inner problems. This solution
framework greatly simplifies the solution method
without losing the consideration of the interaction
of the two sub-problems. Note that our approach
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is different from other approaches which, while
separating the RWA and electrical traffic rout-
ing sub-problems for simplicity, lose the interac-
tion between the two sub-problems. In our solu-
tion method, although the two sub-problems are
separated in solving the inner problem, they are
always associated in the outer loop.

In our LR framework, some constraints of
the original optimization problem (1) (i.e., the
primal problem) are relaxed and a dual prob-
lem is created by using Lagrange multipliers.
The derived dual problem is then decomposed
into independent RWA and electrical traffic rout-
ing sub-problems, and solved independently by
the Revised Minimum Cost Lightpath (RMC-
SLP) and the Revised Shortest Path Algorithm
(RSPA). The optimal solution to the dual prob-
lem is a lower bound for the primal problem [50].
Since in transforming the original optimization
problem into the dual problem, some constraints
are relaxed, the solution to the dual problem
is generally an infeasible solution to the primal
problem, which mean some constraints are vio-
lated. We therefore propose a heuristic algorithm
to obtain a feasible solution based on the dual
solution. The subgradient method [50] will be
used in updating Lagrange multipliers. Solving
the sub-problems becomes the inner process with
regard to updating the multipliers, which can be
thought of as an outer loop process. The overall
structure of the algorithm will be given in Section
5.6.

5.2 Application of the LR (Lagrangian
Relaxation) Method
According to the LR method, we should relax
the WC capacity constraint (1c), converter capac-
ity constraint (1d), transmitter capacity constraint
(1e) and lightpath capacity constraint (1h), by
introducing Lagrange multipliers ζi jc, λ j , ηs and
κsdn , respectively. This leads to the following
Lagrangian dual problem, denoted as DP.

max
ξ,λ,η,θ≥0

q

= min
A,�,Φ,Γ,Y



∑
(p,q)

∑
0<z≤Z pq

PpqzG pqz
(
1−γpqz

)

+
∑
(p,q)

∑
0<z≤Zsd

E pqz +
∑
(s,d)

∑
0<n≤Nsd

Dsdn

+
∑
(i, j)

∑
0<c≤ni j

ξi jc


∑

(s,d)

∑
0<n≤Nsd

δsdn
i jc −1




+
∑

j

λ j


∑

(s,d)

∑
0<n≤Nsd

φsdn
j − Fj




+
∑

s
ηs


∑

j

∑
0<c≤ns j

∑
d

∑
0<n≤Nsd

δsdn
s jc − Ts




+
∑
(s,d)

∑
0<n≤Nsd

κsdn


∑

(p,q)

∑
0<z≤Zsd

v
pqz
sdn G pqz

−Cαsdn




 (2)

subject to the constraints (1a), (1b), (1f) and (1g).
After regrouping the relevant terms, our DP

can be written as:

min
A,�,Φ,Γ,Y



∑
(s,d)

∑
0<n≤Nsd


Dsdn +

∑
(i, j)

∑
0<c≤ni j

ξi jcδ
sdn
i jc

+
∑

j

λ j φ
sdn
j +

∑
j

∑
0<c≤ns j

ηsδ
sdn
s jc

−Cκsdnαsdn




+
∑
(p,q)

∑
0<z≤Zsd


∑

(s,d)

∑
0<n≤Nsd

κsdnυ
pqz
sdn G pqz

+E pqz + PpqzG pqz
(
1−γpqz

)

−
∑
(i, j)

∑
0<c≤ni j

ξi jc −
∑

s
ηs Ts −

∑
j

λ j Fj




(3)

Because the last three terms are independent of
the decision variables, the problem can be simpli-
fied as:

min
A,�,Φ,Γ,Y



∑
(s,d)

∑
0<n≤Nsd


Dsdn +

∑
(i, j)

∑
0<c≤ni j

ξi jcδ
sdn
i jc

+
∑

j

λ j φ
sdn
j +

∑
j

∑
0<c≤ns j

ηsδ
sdn
s jc −Cκsdnαsdn




+
∑
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0<n≤Nsd

κsdnυ
pqz
sdn G pqz
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+E pqz + PpqzG pqz
(
1−γpqz

)

 (4)

which is referred to as RP (the Relaxed Prob-
lem).

By using the fact that δsdn
i jc = αsdnδsdn

i jc , φsdn
j =

αsdnφsdn
j , υ

pqz
sdn = γpqzυ

pqz
sdn , and using constraint

(1a), we can rewrite the problem RP as:

min
A,�,Φ,Γ,Y



∑
(s,d)

∑
0<n≤Nsd


αsdn


Dsdn +

∑
(i, j)

∑
0<c≤ni j
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sdn
i jc
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∑
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(
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)
δsdn
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j

(
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)
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∑
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∑
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pqz
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=
∑
(s,d)

∑
0<n≤Nsd
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asdn

{
αsdn

[
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�sdn ,Φsdn
(Qsdn)−Cκsdn

]}

+
∑
(p,q)

∑
0<z≤Zsd

min
γpqz

[
γpqz min

Ypqz

(
Rpqz

)+(1−γpqz
)

Ppqz G pqz

]

(5)

where Qsdn = ∑
(i, j)

∑
0<c≤ni j

(
ξi jc +di jc

)
δsdn

i jc +∑
j

(
λ j + c j

)
φsdn

j + ηs + ts + rd , Rpqz = ∑
(s,d)∑

0<n≤Nsd
v

pqz
sdn

(
κsdnG pqz + Vpqz

)
.

In this step, we can see that Equation (5) con-
sists of two independent parts. The first minimi-
zation is over the variables in the optical domain
(A,�,Φ), while the second minimization is over
the variables in the electrical domain (Y, Γ ). This
important feature leads to the separation of the
sub-problems to be solved below.

5.3 Solving the Sub-Problems

5.3.1 The Decomposition of the Dual Problem
Since the first and second summations in Equa-
tion (5) are independent of each other, we can
separate the problem into two independent sub-
problem sets: a set of RWA sub-problems, one
for each lightpath; a set of electrical traffic rout-
ing sub-problems, one for each traffic demand.

(A) RWA Sub-problems (RWAS):
Considering the optical domain subproblems in

Equation (5), we have∑
(s,d)

∑
0<n≤Nsd

min
asdn

{
αsdn

[
min

�sdn ,Φsdn
(Qsdn)−Cκsdn

]}
,

subject to the constraints (1a),(1b) and (1f), where

Qsdn =
∑
(i, j)

∑
0<c≤ni j

(
ξi jc +di jc

)
δsdn

i jc +
∑

j

(
λ j + c j

)
φsdn

j +ηs + ts + rd .

Without considering the constraint (1f), we can
now decompose the RWAS to |A| sub-problems

min
asdn

{
αsdn

[
min

�sdn ,Φsdn
(Qsdn)−Cκsdn

]}
each of

which corresponds to one lightpath. We shall use
RWAsdn to denote the sub-problem in RWAS
corresponding to the lightpath ssdn . Note that
Qsdn represents the minimum routing cost for the
lightpath ssdn .

(B) Electrical Traffic Routing Sub-problems
(ETRS):

Considering the electrical domain subproblems
in equation (5), we have

∑
(p,q)

∑
0<z≤Zsd

min
γpqz

[
γpqz min

Ypqz

(
Rpqz

)
+ (

1−γpqz
)

PpqzG pqz
]
,

subject to constraints (1g), where Rpqz =∑
(s,d)∑

0<n≤Nsd
v

pqz
sdn

(
G pqzκsdn + Vpqz

)
.

By assuming the cost of the lightpath ssdn is
G pqzκsdn + Vpqz , it is obvious that min

Ypqz

(
Rpqz

)
rep-

resents the cost of the shortest path from nodes
p to q for routing the traffic x pqz over the vir-
tual topology (Vv ,Ev ), which is formed by the elec-
trical switches and all the lightpath candidates.
We decompose the ETRS into |Y | subproblems

min
γpqz

[
γpqz min

Ypqz

(
Rpqz

)+ (
1−γpqz

)
PpqzG pqz

]
, each
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of which corresponds to one traffic demand. We
shall use ETRpqz to denote the sub-problem in
ETRS corresponding to x pqz .

5.3.2 The Solution to the Sub-Problems
The total number of sub-problems is |A| + |Y |,
where | · | denotes the number of elements in the
set. The optimal solutions for RWAS and ETRS
may be obtained separately by applying RMC-
SLP and RSPA, respectively.

(A) RMCSLP:
Intuitively, the lightpath ssdn can be thought of

as a “broker” in the dual problem, which “nego-
tiates” between cost and “offer”. The cost of the
lightpath ssdn is min

�sdn ,Φsdn
{Qsdn}, which reflects the

criticality of the physical resources that the light-
path uses. The more critical the resources that
the lightpath uses are, the higher cost the light-
path has. The “offer” from the electrical traffic
demands is Cκsdn , which reflects the “intention”
of the electrical traffic demands to use the light-
path. The acceptance decision of the lightpath is
based on whether the lightpath is “profitable”. In
this way, the RWAS and ETRS sub-problems are
linked to each other.

We can see from the expression of Qsdn that
the first two summations assume the same form
as the well-known problem that has been solved
optimally by the MCSLP [54], which is essentially
a shortest path algorithm. Therefore, we can first
obtain min

�sdn ,Φsdn
{Qsdn} by applying MCSLP and

then add the constants ηs + ts + rd . Afterwards
each node i , we do the sorting of the ssin ’s to
satisfy constraints (1f). This is captured in our
Revised Minimum Cost Semi-lightpath (RMCSLP)
algorithm below in order to solve RWAsdn :

(A.1) Employ the MCSLP to solve
min

�sdn ,Φsdn

[∑
(i, j)

∑
0<c≤ni j

(
ξi jc +di jc

)
δsdn

i jc +∑
j

(
λ j + c j

)
φsdn

j

]
, subject to constraints

(1a), (1b). By assuming the cost of using
WC wi jc to be di jc + ξi jc, and the cost
of using one wavelength converter on
node j to be λ j + c j , add ηs + ts + rd to
obtain min

�sdn ,Φsdn
(Qsdn). The solution of the

MCSLP algorithm can be found in [54].
(A.2) For any node i, among all the RWAsin’s,

(A2.1) Compute min
�sin ,Φsin

(Qsin) − Cκsin for all

RWAsin’s, and select the Ri RWAsin’s with the
lowest min

�sin ,Φsin
(Qsin) − Cκsin values (the ties are

broken arbitrarily);
if min

�sin ,Φsin
(Qsin)−Cκsin > 0, set αsin =0;

if min
�sin ,Φsin

(Qsin) − Cκsin < 0, set αsin = 1. The

tie is broken arbitrarily.
(A2.2) If the number of RWAsin’s is more than

Ri , then set αsin =0 for the rest of the RWAsin’s.
The computational complexity of step A.1 in

the RMCSLP is the same as the MCSLP pro-
vided in [54], i.e., O

(
(N + W ) N 2W

)
. The worst-

case computational complexity for the sorting
operation in step A.2 is

∑
i

O (Gi log (Gi )), where

Gi represents the number of lightpaths that are
destined for node i . The value of Gi is gener-
ally much smaller than NW, so the computa-
tional complexity is generally dominated by step
a. There are altogether |A| sub-problems in the
sub-problem RWAS, so the computational com-
plexity to solve RWAS is O

(|A| (N + W ) N 2W
)
.

(B) RSPA:
In part A, we have solved RWAS optimally,

and now we present the following Revised Short-
est Path Algorithm (RSPA) to solve ETRpqz.
(B.1) Solve min

Ypqz
{Rpqz}, subject to constraints

(1 g), after applying SPA [55], and
assuming the cost of using lightpath ssdn

is G pqzκsdn + Vpqz .
(B.2) If min

Ypqz
{Rpqz} > PpqzG pqz , set γpqz = 0; If

min
Ypqz

{Rpqz} < PpqzG pqz , set γpqz = 1. The

tie is broken arbitrarily.
The computational complexity of the RSPA

algorithm is dominated by step B.1. Since there
are altogether |Γ | sub-problems in the sub-prob-
lem ETRS and the computational complexity
for the SPA is O

(|M |2 N 2
)
. so the computa-

tional complexity to solve the sub-problem TRS
is O

(|Γ | |M |2 N 2
)
.

5.4 Solving the Dual Problem
Because of the integer variables involved in the
formulation, the subgradient method [50] can be
used to solve the dual problem.

Let ζ , λ, η, κ be the vectors of Lagrange mul-
tipliers {ζi jc}, {λi }, {ηs} and {κsdn}, respectively.
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The multiplier vector z = (ζ, λ, η, κ) are updated
using the following formula:

z(h+1) = z(h) +α(h)g
(

z(h)
)

, (6)

where z(h) denotes the value of vectors z obtained
at the hth iteration, and α(h) denotes the step
size at the hth iteration. The notation g(z) is the
subgradient of q with respect to z, i.e. g(z) =
{g(ζ ), g(λ), g(η), g(κ)}. The vectors g(ζ ), g(λ),
g(η) and g(κ) are composed of gi jc(ζ ), g j (λ),
gi (η) and gsdn(κ), respectively, where

gi jc(ξ)=
∑
(s,d)

∑
0<n≤Nsd

δsdn
jic −1, (7)

g j (λ)=
∑
(s,d)

∑
0<n≤Nsd

φsdn
j − Fj , (8)

gi (η)=
∑

j

∑
(s,d)

∑
0<n≤Nsd

�sdn
w j ic

− Ti , (9)

gsdn(κ)=
∑
(p,q)

∑
0<z≤Zsd

υ
pqz
sdn G pqz −Cαsdn .

(10)

The step size is given by

α(h) =µ× qU −q(h)

gT
(
z(h)

)
g
(
z(h)

) (11)

where qU is an estimate of the optimal solu-
tion, and q(h) is the value of q at the hth iter-
ation. Generally, the best value of the objective
function J of the feasible routings obtained is
used to be qU . The parameters µ and qU are
changed adaptively as the algorithm converges.
The details of the methods to speed up the con-
vergence can be found in [55,56].

5.5 Constructing a Feasible RWA and Routing
Scheme
Because some of the constraints are relaxed by the
Lagrange multipliers, the solution to the dual prob-
lem is usually associated with an infeasible routing
scheme, i.e., a scheme where the WC capacity con-
straint (1c), the converter capacity constraint (1d),
the transmitter capacity constraint (1e) and the light-
path capacity constraint (1h) might be violated.

Note that other constraints will be respected because
of the way sub-problems of (5) are solved. To con-
struct a feasible RWA and a routing scheme from
the solution to the dual problem, a heuristic algo-
rithm has to be employed to decide how to re-route
the collided lightpaths and corresponding traffic
demands. The main idea of the heuristic algorithm
is to select the less profitable lightpaths and traffics
to detour through other paths, or to reject them,
when there are conflicts.

The whole heuristic algorithm can be described
in the following steps:

1. Construct the wavelength graph (WG). The
details of this procedure can be found in
[54].

2. (RWA Step): Search for a feasible RWA
solution for the lightpaths, based on the
solution from the dual problem, using Mod-
ified Esau–Williams algorithm (MEWA) [56]
to every ssdn .

3. Construct the virtual topology: For all ssdn ,
if αsdn =1, add a directed arch from node s
to node d with capacity of C .

4. (Routing Step): The traffic demands are
routed through the virtual topology.

4.1. (Rough search stage) For every traffic
demand x pqz , apply the Rough Search
Algorithm. The details of this algo-
rithm can be found in the Appendix
A.

4.2. (Check solvency stage) For every
ssdn , if αsdn = 1, calculate the
total revenue from traffic tsdn =∑
(p,q)

∑
0<z≤Zsd

υ
pqz
sdn PpqzG pqz/h pqz ,

where h pqz =∑
(s,d)

∑
0<n≤Nsd

υ
pqz
sdn is

the hop number of x pqz .
If tsdn < Dsdn , set αsdn =0.
For every x pqz with υ

pqz
sdn = 1, set

γpqz = 0 and apply Rough Search
Algorithm to x pqz .

4.3. If the result obtained from step 4.1
(J ) > (1 + l) × J ∗, terminate the heu-
ristic algorithm.
Otherwise go to the next step;

4.4. (Extensive search stage) Use another
LR based algorithm to search for
a better routing scheme, which
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consumes much more time than the
Rough Search Algorithm. The details
of the algorithm can be found in the
Appendix B.

In the RWA Step, the routing and wavelength
assignment of the lightpaths is decided (i.e., vari-
ables in A, �, Φ are determined). Based on
the result from this step, the virtual topology is
formed by the lightpaths connecting the nodes.
In the Routing Step, the routing of the traffic
demands over the virtual topology (i.e., variables
in Γ , Y are determined). To minimize the com-
putation time, we separate the heuristic algorithm
of the Routing Step into two stages. In the first
stage (rough search stage), a rough search of the
feasible routing scheme is launched. Only if the
result obtained in the first stage is within a cer-
tain range (l > 0) from the best result obtained
(J ∗), that the second stage, i.e., the extensive
search (extensive search stage), is launched to
search for a good routing scheme, based on the
result from the dual solution and the virtual
topology formed in RWA Step. In our current
implementation, we chose l =0.05.

To decide which lightpath should be deployed
first, we define the rank rsdn = Lsd − Qsdn for
all the lightpaths, where Qsdn represents the dual
cost of the sub-problem corresponding to ssdn

(see Section 5.3), and Lsd = ∑
0<n≤Nsd

tsdn B.1)
represent the “revenue” from the left traffic load
between (s,d). At the beginning of the heuristic
algorithm, Lsd is set to be the total traffic going
from nodes s to d in the dual problem solution.
If the lightpath ssdn is deployed, Lsd is decreased
by m × C . If Lsd is less than 0, then Lsd will
be set to 0. In our implementation, m = 0.8. The
lightpath with the highest rank rsdn is deployed
first, and the tie is broken arbitrarily.

The heuristic algorithm to search for a feasible
RWA for a lightpath is the same as MEWA in
[56], and is omitted here for simplicity.

In the Check solvency stage, the lightpaths
that have a higher cost (Dsdn) than the reve-
nue (Ptsdn) are deleted (set αsdn =0) to minimize
the overall objective function value. The traffic
demands that are routed through those lightpaths
are set to the rejected status (ν pqz

sdn = 0), and re-
routed again using Rough Search Algorithm to see
if there might be some other viable route.

After the lightpaths are deployed, the traffic
demand should be routed through the virtual topol-
ogy formed by the lightpaths. In the rough search
stage, we simply route the traffic demands with a
lower hop numbers in the dual solution. In the exten-
sive search stage, a search algorithm employing the
Lagrangian relaxation and the subgradient method
is launched. Again, the detailed algorithms for the
rough search stage and the extensive search stage can
be found in the appendices.

5.6 Overall Structure of the Algorithm
Fig. 2 depicts the overall structure of the algo-
rithm to solve the problem proposed in Section
4. We first solve the sub-problems independently
using the RMCSLP and RSPA algorithms (Sec-
tion 5.3). Note that solving all the sub-problems is
to solve the dual problem (Section 5.2). After the
solution for the dual problem is obtained, a heu-
ristic algorithm (Section 5.5) is used to generate a
feasible solution based on the solution for the dual
problem. If the stopping criterion is not reached,
the Lagrange multipliers are updated (Section 5.4),
and another iteration of computation is launched.
There are various criteria that can be used to ter-
minate the algorithm, such as the duality gap [56],
the number of iterations, the time of computation
and the objective function value, etc. In the cur-
rent implementation, we stop the algorithm when
the duality gap does not decrease for 1000 iter-
ations. The value of the objective function J of
any feasible routing scheme obtained is an upper
bound on the optimal objective J ∗. The value of
the dual function q∗, on the other hand, is a lower
bound on J ∗ [50].

6 Numerical Results

To test the performance of our algorithm, we
use the 14-node NSFNET topology as shown in
Fig. 3. The randomly generated traffic demands
are shown in Table 1 where the horizontal and
vertical indexes are the source and destination
nodes, respectively. Specifically, the number on
the ith row and the jth column represents the
number of traffic demands of specific types from
node i to j . The total traffic is equivalent 1880
times of an OC-1 SONET traffic stream (i.e.,
1880 * 51.84 Mbps = 97.46 Gbps). Since OC-48
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Initialization

Solving Dual Problem

Subgradient method to
update multipliers;

Update other variables

Obtain feasible routing
scheme by heuristic

Stopping criterion
reached?
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Stop

No

Solve all RMCSLP subproblems independently

Solve all RSPA subproblems independently

Compute Duality Gap

Fig. 2. Schematic depiction of the overall algorithm.
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Fig. 3. 14-node NSFNET topology.

traffic is the well-studied RWA problem [48], and
we can reuse the results, we need only to use
the lower bandwidth traffic to study the traffic
grooming behaviour of the algorithm.

We set all penalty coefficients Ppqz ’s to 1.
This means the potential revenue generated by
accepting a traffic demand is proportional to its
bandwidth requirement. We will demonstrate the
influence of different Ppqz values reflecting differ-
ent pricing policy at the end of this section. We
also set the transmitter cost ti and the receiver
cost ri to the same value and refer to it as the
transceiver cost. To simplify the simulation, we

assume all fibres have the same number of wave-
length (W ) and all nodes have the same number
of converters (Fi ). Various computation results for
different parameters (W, Vpqz, ri , ti ,di jc, Ti , Ri , Fi

and ci ) are obtained. To study the influence on
the network behaviour from different parameters
in the optical domain, we first study the cases with
Vpqz = 0, i.e., ignoring the electrical routing cost.
Then we study the cases with various Vpqz values
with the electrical routing cost.

Fig. 4 reflects the changes of primal value J
and the dual value (i.e., bound) q with respect
to the number of wavelength channels on a fibre



Y. Zhang et al./A Lagrangian-Relaxation Based Network Profit Optimization 169

1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

The number of wavelength channels on a fibre (W)

F
in

al
 V

al
ue

Ti=R i=4,F i=V pqz =0,r i=t i=7,d ijc =3

Primal Value (J)
Dual Value (bound q)

Fig. 4. Objective function J and the dual function q versus the number of wavelength channels on a fibre W .
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(W ). The other parameters values are Ti = Ri =
4, Fi = Vpqz = 0, ri = ti = 7, and di jc = 3. In the
following figures, all the parameters values will
be listed on the top of the graphs as in Fig. 4.
We can see from Fig. 4 that as W increases, J
and q decrease. However, when W reaches a cer-
tain value (4 in this case), J cannot be further
improved by increasing W . It indicates that when
a certain number of resources are installed, no
further profit can be achieved by installing more
resources. This is because when the resources
(fibres, transceivers and wavelength converters)
are abundant, J is limited by the resource cost,
instead of the amount of resources. Most of the
results can be obtained in two hours on a per-
sonal computer configured with 1.4 GHz Intel�
CPU, 512MB RAM and Windows XP� operat-
ing system.

In Fig. 5 and 6, we can see that as the cost of
transceivers (ti or ri ) and the cost of a WC (di jc)
increase, the objective value J increases almost lin-
early. In Fig. 5, we can see that as ti and ri reach
a certain value (11 in this case), because the cost
of setting up the lightpaths is so high that most
traffic demands are rejected, J stays close to 1880,
which is the penalty value for rejecting all the
traffic demands (the total bandwidth of the traf-
fic is OC-1880 and Ppqz = 1). However, J cannot
become worse when ti and ri increase more. The
abnormal increase of J when ti (or ri ) goes from 8
to 10 maybe is because of the imperfection of the
heuristic algorithm in our framework. The similar
phenomenon is observed in Fig. 6.

Fig. 7 shows the influence of di jc on the aver-
age hop number of the lightpaths. When the cost
of a WC increases, the hop number of a light-
path tends to be lower. We can see from Fig. 7
that as di jc increases, the average hop number of
the lightpaths decreases, until it reaches the min-
imum hop number (i.e., 1). Due to the random-
ness of the heuristic algorithm in our framework,
the curve is not very smooth.

Fig. 8 shows the influence of the OC-3 traffic’s
penalty coefficient (Ppqz) on the percentage of the
rejected OC-3 traffic, while the Ppqz value for the
OC-1 and OC-12 traffic remains 1. We show in
Fig. 8 that as Ppqz increases, the percentage of
OC-3 traffic demands rejected decreases. This is
because as the revenue of OC-3 traffic increas-
es (i.e., Ppqz goes higher), it is more likely for the

Table 1. Traffic demand matrices.

OC-1 TRAFFIC DEMANDS

0 1 3 1 5 1 3 0 2 0 1 2 0 3
0 0 2 2 2 11 1 1 1 2 1 0 1 3
3 2 0 3 0 1 2 3 1 3 1 2 2 0
3 1 4 0 1 1 2 3 2 2 1 2 1 3
1 3 0 2 0 1 0 2 0 3 0 1 1 3
1 2 1 3 2 0 1 3 3 11 0 6 10 9
2 2 3 1 10 3 0 0 3 1 2 0 3 7
3 10 2 3 1 4 1 0 0 3 2 0 3 0
3 0 12 3 3 3 1 0 0 2 1 1 1 0
0 0 0 1 2 0 2 0 1 0 1 0 0 3
1 0 0 10 0 3 0 1 0 3 0 3 1 3
2 3 1 1 3 2 3 2 10 2 2 0 1 3
13 0 1 2 0 1 2 0 9 0 2 1 0 3
10 14 0 15 9 3 1 3 0 12 2 1 30 0

OC-3 TRAFFIC DEMANDS

0 1 0 1 1 1 0 2 2 0 1 2 0 1
0 0 0 2 2 2 1 1 1 2 1 0 1 1
1 2 0 1 0 1 2 1 1 1 1 0 2 0
1 1 0 0 1 1 2 1 2 2 1 2 1 1
1 1 0 2 0 1 0 2 0 1 0 1 1 1
1 2 1 1 2 0 1 1 1 1 0 1 1 2
2 2 1 1 1 1 0 0 1 1 2 0 0 1
2 1 2 1 1 0 1 0 0 1 2 0 1 0
1 0 1 1 1 1 1 0 0 2 1 1 1 0
0 0 0 1 2 0 2 1 0 1 0 0 1
1 0 0 2 0 0 0 1 0 1 0 1 1 2
2 1 1 1 1 2 1 2 2 2 2 0 1 1
0 0 1 2 0 1 2 0 1 0 2 1 0 1
1 1 0 2 1 0 1 1 0 1 2 1 0 0

OC-12 TRAFFIC DEMANDS

0 1 0 1 0 1 0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 0 0 1 1 0 1 0
0 1 0 0 0 1 0 0 1 0 1 1 0 0
0 1 0 0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 1 1 0 0 0
0 1 1 0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 1 0 1 0 1 0 1 1 0 1 0
0 0 1 0 0 1 1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 0 0 1 0 1 0 0
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Table 2. Influence of the number of wavelength converters on a node Fi on the objective function J .

W Ti , Ri di jc ri , ti Vpqz Fi ci J

OC-1 OC-3 OC-12

4 4 0 0 0 0 0 0 0 227
4 4 0 0 0 0 0 1 0 216
4 4 0.2 0 0 0 0 0 0.01 262
4 4 0.2 0 0 0 0 1 0.01 235
4 4 3 7 0 0 0 0 0 1284
4 4 3 7 0 0 0 1 0 1284
4 4 1 0 0.1 0.3 1.2 0 0.01 580
4 4 1 0 0.1 0.3 1.2 1 0.01 580
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Fig. 8. Percentage of OC-3 traffic rejected versus the OC-3 traffic’s penalty coefficientPpqz .

network to gain profit to route OC-3 traffic
rather than other traffic (e.g., OC-1 and OC-12).
Also, as the revenue goes higher, it is more likely
to set up profitable lightpaths. After Ppqz reaches
a certain value, the majority of the OC-3 traffic
demands are accepted, and there are still some
residual OC-3 traffic demands that need some
expensive lightpaths to be set up, which might
not be profitable, if the Ppqz is not high enough.

We have also extensively studied the benefit of
using wavelength converters. Some of the results
under different parameters are listed in Table 2.

Table 2 attempts to demonstrate how Fi influ-
ences J . We can see that the benefit on J of hav-
ing wavelength converters is marginal, even if we
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3 4
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Fig. 9. A six-node network.

assume that the wavelength converter is free, by
setting the cost of wavelength converters (ci ) to
0. The cases with wavelength conversion capacity
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(Fi ) larger than 1 are not listed in Table 2, because
we do not observe any improvement by setting
Fi to values larger than 1. This observation is in
accordance with the results obtained in [48], which
concludes that Fi does not have significant influ-
ence on the total RWA cost in the optical domain.

6.1 Special Case
When we set all the costs for the lightpath rout-
ing, i.e., ri , ti , di jc, and ci , to 0, and set the Fi

to 0. The problem we solve is exactly the same as
the multi-hop case studied in [34].

To have a fair comparison with the existing
algorithm, we used the same six-node network
and same traffic matrix used in [34]. The topol-
ogy and the traffic matrices are shown in Fig. 9,
and Table 3, respectively.

The comparison between the results provided
in [34] and our algorithm is shown in Table 4.
Results are numbers of equivalent OC-1 band-
width routed by different algorithms. We can see
that the amount of traffic that can be routed
by our algorithm is much more than either of
the heuristic algorithms provided in [34], and in
most cases, is even better than the result gener-
ated from the CPLEX software. This proves that
the results from CPLEX in [34] are not optimal,
because after a period of time, the CPLEX com-
putation was terminated and the optimal value
was not yet found.

7 Conclusions

Traffic grooming in SONET-over-WDM networks
involves the routing of individual low-bandwidth
traffic demands in the SONET layer and the rout-
ing of lightpaths in the WDM layer. Although
the integrated design of both layers offers bet-
ter results than the two-step design for the two
layers, the optimization problem is very complex
and thus solving the optimization problem is chal-
lenging. By relaxing some of the constraints, we
are able to solve the problem by using Lagrang-
ian-relaxation technique and subgradient meth-
ods. The overall dual function is decomposed into
two sets of sub-problems that are solved indepen-

Table 3. Traffic matrices for the 6-node network (Equivalent
to 988 OC-1 bandwidth in total).

OC-1 TRAFFIC DEMANDS

0 5 4 11 12 9
0 0 8 5 16 6
14 12 0 9 6 16
4 11 15 0 1 5
10 2 3 3 0 9
2 1 8 15 13 0

OC-3 TRAFFIC DEMANDS

0 6 2 1 5 4
8 0 8 6 7 8
1 3 0 0 2 7
5 7 3 0 2 6
6 4 5 0 0 2
5 4 4 2 0 0

OC-12 TRAFFIC DEMANDS

0 1 1 1 0 0
1 0 1 1 0 2
0 1 0 2 1 0
2 0 2 0 2 0
1 2 0 2 0 1
1 1 2 2 2 0

dently. An effective heuristic algorithm is also pro-
posed to generate the feasible result based on the
solution to the dual problem. The decomposition
of the dual function into sub-problems, simplifies
the inner problem solution. The outer problem is
solved by applying the subgradient method. As a
special case of our formulation, the comparison
between our results and some other research shows
the high effectiveness of our algorithm.

Besides the contribution of solving the traffic-
grooming problem by the Lagrangian-relaxation
and subgradient methods, we propose a novel
objective function taking into account the rejec-
tion penalty, the routing cost associated with
the electrical and optical domains. By optimis-
ing this cost function, the potential profit of net-
work operation is maximized. Compared to other
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Table 4. Comparison between the results in [34] and our results.

Result from Result from Result from Result from our Upper bound from

CPLEX [34] Heuristic 1 [34] Heuristic 2 [34] algorithm our algorithm

T = 2, W = 3 – – – 516 576
T = 3, W = 3 738 701 666 751 851
T = 4, W = 4 927 883 925 930 976
T = 5, W = 3 967 933 933 969 987
T = 7, W = 3 967 933 933 969 987
T = 3, W = 4 738 701 666 751 851
T = 4, W = 4 933 920 925 930 976
T = 5, W = 4 988 988 988 988 988

formulation accepting traffic demands without
considering the network cost, we have adjusted
our objective to accept only the most profitable
traffic demands for a given network capacity.
As a result, the traffic demands are identified as
profitable or not. By doing a series of computa-
tions for different parameters, the impact of net-
work resource allocation on the network profit is
obtained.

Appendix A: Rough Search Stage

The Rough Search Algorithm is a simple heuristic
algorithm to obtain an estimate of the overall cost
in the electrical domain (the switching cost and
the rejection penalty) for the routing of the traf-
fic demands, i.e.,

∑
(p,q)

∑
0<z≤Z pq

PpqzG pqz(1 −
γpqz) + ∑

(p,q)

∑
0<z≤Zsd

E pqz , subject to con-
straints (1 g) and (1 h).

ui is the label associated with node i . To sim-
plify the description, the source node is set to
node 1, and u1 is set to 0.

Step 1 (Initialization):
(1.1) u1 :=0; n := false;
(1.2) If i �= 1 and there exist an arch (an admit-

ted lightpath) from node 1 to i , then ui :=1,
(∀i).

Step 2 (Search all vertices):
(2.1) Node m := next node (the node 1 for

the first run; until all nodes have been
searched).

Step 3 (Find the improvement):
(3.1) For all every node q �= 1, if there exists an

arch from node m to node q, uq > (um +

Vpqz) and the capacity of this arch is not all
used, then uq := (um + Vpqz), n := false; If
node q is the destination node of the traffic
demand considered, terminate the algorithm
and assign the route to this traffic demand;

(3.2) If !n, n := true; Go to Step 2; else end
the algorithm and set the traffic demand
rejected (γpqz = 0). “n = true” means that
there is no more possible label change.

Appendix B: Extensive Search Stage

Only if the estimate from Rough Search Stage
is within a certain range from the best result
obtained, the Extensive Search Stage is launched.
Extensive Search Stage generally takes much more
time than the Rough Search Stage. In RWA Step,
the variables in A, �, Φ are decided. The Extensive
Search Stage is to minimize

∑
(p,q)

∑
0<z≤Z pq

Ppqz

G pqz(1 − γpqz)+∑
(p,q)

∑
0<z≤Zsd

E pqz , subject to
constraints (1 g) and (1 h), with Γ , ν as variables.

The Lagrangian relaxation and subgradient
methods are again used to solve this problem.
We can simply relax the lightpath capacity con-
straints (1 h) by using Lagrangian multiplier ωsdn ,
and obtain the dual problem (DP1):

max
ω≥0

p ≡min
Γ,y



∑
(p,q)

∑
0<z≤Z pq

[PpqzG pqz
(
1−γpqz

)

+E pqz]+
∑
(s,d)

∑
0<n≤Nsd

ωsdn


∑

(p,q)

∑
0<z≤Zsd

ν
pqz
sdn G pqz

−Cαsdn




 , subject to (1 g).



Y. Zhang et al./A Lagrangian-Relaxation Based Network Profit Optimization 175

By using the fact that ν
pqz
sdn = ν

pqz
sdn γpqz , DP1 can

be rewritten as:

max
ω≥0

p ≡min
Γ,Y



∑
(p,q)

∑
0<z≤Z pq


(1−γpqz

)
PpqzG pqz

+γpqz
∑
(s,d)

∑
0<n≤Nsd

(
Vpqz + G pqzωsdn

)
ν

pqz
sdn






−
∑
(s,d)

∑
0<n≤Nsd

Cωsdnαsdn

=
∑
(p,q)

∑
0<z≤Z pq

min
γpqz ,Ypqz


(1−γpqz

)
PpqzG pqz

+γpqz
∑
(s,d)

∑
0<n≤Nsd

(
Vpqz + G pqzωsdn

)
ν

pqz
sdn




−
∑
(s,d)

∑
0<n≤Nsd

Cωsdnαsdn

=
∑
(p,q)

∑
0<z≤Z pq

min
γpqz


(

1−γpqz
)

PpqzG pqz

+γpqz min
νpqz


∑

(s,d)

∑
0<n≤Nsd

(
Vpqz+G pqzωsdn

)
ν

pqz
sdn






−
∑
(s,d)

∑
0<n≤Nsd

Cωsdnαsdn

subject to (1 g).
Note that αsdn ’s are already decided in RWA

Step, so the Routing Step in the heuristic algo-
rithm sees only the virtual topology formed by
all the nodes and the lightpaths with αsdn =1.

To obtain the minimum for every sub-problem

Spqz = minγpqz

{(
1−γpqz

)
PpqzG pqz + γpqz minγpqz[∑

(s,d)

∑
0<n≤Nsd

(
Vpqz + G pqzωsdn

)
ν

pqz
sdn

]}
, we can

simply use the same Revised Shortest Path Algo-
rithm (RSPA) provided in Section 5.4, assuming the
cost of using lightpath ssdn by traffic demand x pqz is
Vpqz +ωsdnG pqz .

The dual solution is thus obtained by solv-
ing all the sub-problems. The lightpath constraint
(1 h) are relaxed in the dual problem, so that the
solution to the dual problem is generally not fea-
sible. To obtain the feasible result, we can simply
apply the same Rough Search Algorithm.

Subgradient method is used to maximize the
dual solution.

The multiplier vector ω is updated using the
following formula:

ω(i+1) =ω(i) +β(i)g(ω(i)),

where ω(i) denote the value of vectors ω obtained
at the ith iteration, and β(i) denote the step size
at the ith iteration. The notations g(ω) is the
subgradients of p with respect to ω. The vector
g(ω) is composed of gsdn(ω), where

gsdn(ω)=
∑
(p,q)

∑
0<z≤Zsd

ν
pqz
sdn G pqz −Cαsdn . (10)

The step size is given by

β(i) = θ × pU − p(i)

gT (ω(i))g(ω(i))
,

where pU is an estimate of the optimal solution,
and p(i) is the value of p at the ith iteration.
Generally, the best value of the objective func-
tion of the feasible routings obtained is used to
be pU . The adaptation of the parameters in the
algorithm is the same as Section 5.2.

Here in current implementation, we terminate
the Extensive Search Stage after 2000 iterations.
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