
812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. IO, OCTOBER 1994

A Markov Chain Model for Statistical
Software Testing

James A. Whittaker and Michael G. Thomason, Senior- Member-, IEEE

Abstruct- Statistical testing of software establishes a basis
for statistical inference about a software system's expected field
quality. This paper describes a method for statistical testing based
on a Markov chain model of software usage. The significance of
the Markov chain is twofold. First, it allows test input sequences
to be generated from multiple probability distributions, making
it more'general than many existing techniques. Analytical results
associated with Markov chains facilitate informative analysis of
the sequences before they are generated, indicating how the test
is likely to unfold. Second, the test input sequences generated
from the chain and applied to the software are themselves a
stochastic model and are used to create a second Markov chain to
encapsulate the history of the test, including any observed failure
information. The influence of the failures is assessed through
analytical computations on this chain. We also derive a stopping
criterion for the testing process based on a comparison of the
sequence generating properties of the two chains.

Index Terms- Markov chain, statistical software testing, sto-
chastic process, test case generation

I. INTRODUCTION

HE black box approach [191, [2S] to the software testing T process unfolds as follows. Given a program P with
intended function f and input domain d, the objective is to
select a sequence of entries from d, apply them to P, and
compare the response with the expected outcome indicated by
f . Any deviation from the intended function is designated as
a failure. It is assumed that f is well defined and completely
specified, so that any deviation is unambiguously detected and
a failure is explicitly noted. The history of the test at some time
n is a sequence of inputs d o d l d z ' . . dTL-l and a corresponding
sequence of zero or more failures, each of which is uniquely
identified with the particular input d; at which the failure was
observed.

Statistical testing follows the black box model with two
important extensions. First, sequences from d are stochastically
generated based on a probability distribution that represents a
profile of actual or anticipated use of the software. Second, a
statistical analysis is performed on the test history that enables
the measurement of various probabilistic aspects of the testing
process. Thus, one can view statistical testing as a sequence
generation and analysis problem. A solution to the problem is
achieved by constructing a generator to obtain the test input

Manuscript received July 17. 1992; revised July 1994. Recommended for

J. A. Whittaker is with Software Engineering Technology, Inc., Knoxville,

M. G. Thomason is with the Department of Computer Science, University

IEEE Log Number 9405547.

acceptance by D. Pamas.

TN 37920 USA; e-mail: whittake@cs.utk.edu.

of Tennessee, Knoxville, TN 37920 USA; e-mail: whittake@cs.utk.edu.

sequences and by developing an informative analysis of the
test history.

This paper describes a sequence generation and analysis
technique for statistical testing using Markov chains. We
discuss the construction of a Markov chain as a sequence
generator for statistical testing and show how analytical results
associated with Markov chains can aid in test planning. An
innovative aspect of this method is that the test sequences
generated and applied to the software are used to create a
second Markov chain to encapsulate the history of the test,
including any observed failure information. The influence of
the failures is assessed through analytical computations on
this chain. We also derive a stopping criterion for the testing
process based on a comparison of the sequence generating
properties of the two chains.

11. A STATISTICAL TESTING MODEL FOR SOFTWARE

The need for testing methods and reliability models that
are specific to software has been discussed in various forms
in the technical literature [3], [IO], [111, [20]. Statistical
testing for software is one such method. The main benefit
of statistical testing is that it allows the use of statistical
inference techniques to compute probabilistic aspects of the
testing process, such as reliability 131, [IO], [161, [20], mean
time to failure (MTTF) [4], [22], and mean time between
failures (MTBF) [IS].

Current statistical testing techniques model software usage
by assigning a single, unconditional probability distribution
to individual inputs (or groups of inputs) from the software's
input domain [4], [7], [SI, [111, [161, [191. This distribution
represents the best estimate of the operational frequency of use
for each input. Input sequences are obtained by sampling from
the distribution with or without replacement (depending on the
application). Obviously, this model is insufficient for many
types of software, because the probability of applying an input
can change as the software is executed. As software processes
inputs, it moves from one sfate or mode to the next, depending
on any or all prior inputs received. Thus, the probability of
an input can change depending on the mode of the software
[20]. It is necessary, therefore, to maintain multiple probability
distributions for each such mode of a software system.

This paper proposes that statistical testing be carried out
with a stochastic model of software usage. We define a sto-
chastic model that is capable of modeling multiple probability
distributions corresponding to pertinent software modes and
is tractable for the computation of properties of informative
random variables that describe its sequence generating capa-

0098-5589/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

mailto:whittake@cs.utk.edu
mailto:whittake@cs.utk.edu

WHllTAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOFTWARE TESTING 813

bilities. Ideally, the parameters of the model are established
using information obtained from various sources, including
the software’s intended function and usage pattems of prior
versions or prototypes of the software. However, it is often
the case that complete information about the probabilities that
describe usage is not available from any source; in this case,
the stochastic model is based on estimated usage pattems [27].

This usage model consists of elements from d, the domain of
the intended function, and a probabilistic relationship defined
on these elements. A test input is a finite sequence of inputs
from domain d probabilistically generated from the usage
model. The statistical properties of the model lend insight
into the expected makeup of the sequences for test planning
purposes.

As the test sequences are applied to the software, the results
are incorporated into a second model. This testing model
consists of the inputs executed in the test sequences, plus
any failures discovered while applying the sequences to the
software P. In other words, it is a model of what has occurred
during testing. The testing model also allows analysis of the
test data in terms of random variables appropriate for the
application. For example, we may measure the evolution of the
testing model and decide to stop testing when it has reached
some suitable “steady state.”

This paper explores the use of finite state, discrete param-
eter, time homogeneous Markov chains as the software usage
and testing models for program P. For the usage model, the
state space of the Markov chain is defined by extemally visible
modes of the software that affect the application of inputs.
The state transition arcs are labeled with elements from the
input domain d of the software (as described by the intended
function f) . Transition probabilities are uniform (across exit
arcs from each state) if no usage information is available, but
may be nonuniform if usage pattems are known. This model is
called the usage Markov chain. For the testing model, the state
space of the Markov chain is initially the same as the usage
chain, but additional states are added to mark each individual
failure. This model is called the tesring Markov chain.

Ill. THE USAGE MARKOV CHAIN

A usage chain for a software system consists of states, i.e.,
extemally visible modes of operation that must be maintained
in order to predict the application of all system inputs, and state
transitions that are labeled with system inputs and transition
probabilities. To determine the state set, one must consider
each input and the information necessary to apply that input.
It may be that certain software modes cause an input to become
more or less probable (or even illegal). Such a mode represents
a state or set of states in the usage chain. Once the states
are identified, we establish a start state, a terminate state (for
bookkeeping purposes), and draw a state transition diagram by
considering the effect of each input from each of the identified
states. The Markov chain is completely defined when transition
probabilities are established that represent the best estimate of
real usage.

Consider the simple selection menu pictured in Fig. I . The
input domain consists of the up-arrow key and the down-arrow

Current Project: 1-1

Arrow Keys to Move Cursor

Fig. 1. An example software system.

Enter to Select

key, which move the cursor to the desired menu item, and the
“Enter” key, which selects the item. The cursor moves from
one item to the next, and wraps from top to bottom on an
up-arrow and from bottom to top on a down-arrow. The first
item, “Select Project,” is used to define a project (the semantics
of which are not described here for simplicity). The project
name then appears in the upper-right comer of the screen.
Once a project is defined, the next three items, Enter Data,
Analyze Data, and Print Report, can be selected to perform
their respective functions. (These additional screens are also
not described.) If no project is defined, selecting these items
gives no response.

In this example, there are two items of interest when
applying inputs. First, the current cursor location must be
maintained to determine the behavior of the “Enter” key.
Second, whether a project has been defined must be known
to determine which of the menu items are available.

These two items of information are organized as the fol-
lowing usage variables:

1) cursor location (which is abbreviated CL and takes on
values “Sel”, “Ent”, “Anl”, “Prt”, or “Ext” for each
respective menu item), and

2) project defined (which is abbreviated PD and takes on
the values “Yes” or “No”).

The state set therefore consists of the following: {(CL =
Sel.PD = No), (CL = Ent, PD = No), (CL = Anl, PD
= NO), (CL = Prt, PD = NO), (CL = Ext, PD = NO), (CL
= Sel, PD = Yes), (CL = Ent, PD = Yes), (CL = Anl, PD
= Yes), (CL = Prt, PD = Yes), (CL = Ext, PD = Yes)}.
In addition, we include states that represent placeholders for
the other system screens, as well as start and end states that
represent the software in its “not invoked” mode. The state
transitions are depicted in Fig. 2 in a graphical format.

This state transition diagram defines the possible input
sequences for the software in a formal and concise model. A
path, or connected state/arc sequence, from the initial “Unin-
voked” state to the final “Terminated” state, represents a single
execution of the software. A set of such sequences are used as
test cases for the software. Since loops and cycles exist in the

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

814 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. 10, OCTOBER 1994

I 4 = d o w n arrow key1

Fig. 2. Usage chain (structure) for the example.

model, an infinite number of sequences are possible. In order
to generate sequences statistically, probability distributions are
established over the exit arcs at each state that simulates
expected field usage. The assignment of these probabilities
is discussed below.

Sequences are generated from the model by stepping
through state transitions (according to the transition proba-
bilities), from “Uninvoked” to “Terminated,” and recording
the sequence of inputs on the path traversed. A sample input
sequence from the model of Fig. 2 is: invoke
analyze 11 J. It is readily apparent that the generation of
sequences can be automated using a good random number
generator and any high-level programming language. Thus,
a large number of input sequences can be obtained once a
usage chain is constructed.

The construction of the transition diagram identifies the
probabilities that need to be estimated, i.e., the state transi-
tion probabilities. An investigation into usage pattems of the
software should focus on obtaining information about these
probabilities. Sequences of use from a prototype or prior
version of the software, for example, may be used to estimate
these probabilities. These usage sequences, captured as inputs
(keystrokes, mouse clicks, bus commands, buffered data, and
so forth) from the user, are mapped to states and arcs in the
model in order to obtain frequency counts that correspond to

select 11

state transitions. Normalizing the frequency counts establishes
relative frequency estimates of the transition probabilities and
completes the definition of the Markov chain.

In the event that no sequences are available to aid in the
estimation of the transition probabilities, all probabilities can
be distributed uniformly across the exit arcs at each state. In
this case, the model building process amounts to establishing
only the structure of usage sequences without developing any
informed statistics. Table I lists each transition for the example
chain in Fig. 1 with probabilities assigned both by relative
frequency counts and by uniform distributions.

Iv. ANALYSIS OF THE U S A G E CHAIN

The fact the usage model is a Markov chain allows software
testers to perform significant analysis that gives insight how
the test is likely to unfold. The details of the underlying
mathematics can be found in Feller [9] or Kemeny and Snell
[141; however, we have included Table I1 to summarize some
useful results. This analysis is used to gain insight into how
the test will likely unfold so that testers can proceed in an
informed manner. The insight gained through the analysis can
be used to aid test planning and preparation.

Our experience has been that each result summarized in
Table I1 is useful in practice. It would be too lengthy to

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

WHI’ITAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOFTWARE TESTING 815

TABLE I
TRANSITION PR0BABlLITIF.S FOR THE EXAMPLE USAGE MODEL

(CL=Ent,PD=No)

(CL=Sel,PD=Yes) (CL=Ent,PD=Yes)
(CL=Ext,PD=Yes)

(CL=Anl,PD=Yes)

select (CL=Sel,PD=Yes) 1 /2 7/8
Enter Data data (CL=Ent,PD=Yes) 1 1
Anlyz Data analyze (CL=Anl,PD=Yes) 1 1
Pmt Report print (CL=Prt,PD=Yes) 1 1
Terminated null Uninvoked 1 1

describe each result in detail; however, two examples of the
analytical results are given to illustrate their usefulness.

In some automated real-time test execution
environments there is a physical limit on the number of
inputs in a single test case [l]. It is useful, therefore, to
know the “expected length and standard deviation of the input
sequences,” so that overloading the test execution environment
can be controlled. Using (4) with i = Uninvoked and j =
Terminated, this expectation for the example chain with rela-
tive frequency estimated probabilities is 20.1, with standard
deviation of 15.8. If these results were unacceptable (i.e.,
outside the range of the test environment), then modification
of the transition probabilities would be necessary to obtain
more suitable results.

In practice, software testers are often con-
cemed with the caveruge of some specific attribute of the
software under test. For example, Myers [191 relates coverage
criteria conceming the percentage of source code executed by

Example I :

Example 2:

a set of test cases. When testing is performed from the black
box point of view, coverage of elements of the input domain
is often of interest [19].

Equations (6) and (8) are used to estimate the coverage of
usage chain states and arcs. This measure goes beyond input
domain coverage, because the software modes are represented
(i.e.. as states) as well as inputs (i.e., as arcs). The information
is organized into percentages of states and arcs in Table 111.
For example, Table I11 indicates that 81.25% of the states have
expectation of seven sequences or less until they appear in the
test sequences.

The information from each of these examples is used to
make the following estimates of expected effort to achieve
full coverage (each result is rounded up to the nearest integer).
Suppose testers determine that it takes 5 s, on average, to apply
an input to the example selection menu software. An average
sequence will then take 21 x 5 = 105 s (1 min, 45 s) to execute.
Further, it will take 12 x 105 = 1260 s (21 min), on average,

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

816

no. of occurrences of
state j in a single
SeqUenCe

IEEE TRANSACTIONS ON SOFWARE ENGINEERING. VOL. 20, NO. 10, OCTOBER 1994

if i= i (g) The mean number of occurrences
of state j in a single sequence. rnvli)=C U ~ ~ ~ I ~) + (~ ifi?ti

ksr

TABLE I1
SOME STANDARD ANALYTICAL RESULTS FOR MARKOV CHAINS*

Result I Equation for Prob. or Mean Interpretation of Mean
Recurrentchain

stationary distribution, I
x

recurrence time for
state j

no. of occurrences of
state i between
occurrences of state j

kcj

lcj is the asymptotic appearan-
rate of state j in a large number
of sequences from U.

The mean number of state
transitions between occurrences
of state j in a large number of
sequences from U.

The mean number of ~ccurrence~
of state i between occurrences of
state j .

The mean number of state
transitions until state j occurs
from state i .

Absorbing Chain (for initial state i)

single sequence prob.
for state j

The probability that state j occurs
in a single sequence [i.e., from the
intial state to the absorbing state).

YiJ = ' I ; 't" y k ,
ksr

no. of sequences to
occurrence of state j

1 h. = - The mean number of sequences
(6) until state j occurs.

Yij

(7) The probability that arc j,k ocsurs
in a single sequence [i.e., from the
intial state to the absorbing state).

zfi = Yjj 'fi single sequence prob.
for arc j,k

no. of sequences to
oc3currence of arc j,k

1 The mean number of sequences
(81 until arc j,k occurs.

*Each measure in this table IS based on the usage model encoded as a transition matrix, Li, with states as indices and transition probabilities as entries.
LT is called the recurrent model because the arc from Terminated to Uninvoked occurs with probability 1, causing a new sequence to begin each time
the previous sequence ends. The absorbing model. U, is achieved by redirecting the arc from Terminated to Uninvoked back to Terminated; thus, this
is a model representing only single executions of the software. In this case, the state Terminated is called ubsorhing, and the other states are called
transient. (The set of transient states is denoted 7.)

to execute enough sequences so that every state is covered and
36 x 105 = 3780 s (I hr, 3 min) so that every arc is covered.
In addition to these results, each measure in Table I1 has been
used in practice to analyze some aspect of software usage or
testing. More detail is presented elsewhere [I], [26].

v. THE TESTING MARKOV CHAIN

When the usage chain is complete, a series of input se-
quences is stochastically generated and applied to software
P. The application of the test sequences can be manual
or automatic, depending on the testing environment and the

availability of suitable automated support. We assume the
presence of an oracle that is capable of comparing the output
of P with the intended behavior, f , and correctly classifying
success or failure. Thus, the history of the test at some time
n is a series of input sequences (and usage chain states)
dodl . . . and a corresponding sequence of failures, each
of which is uniquely identified with the particular sequence
and specific input d; with which the failure was observed.

As failures are discovered and the software's internal faults
repaired, the software evolves, becoming more or less reliable,
depending on the success of the fixes. Each change to the

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

WHIITAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOFlWARE TESTING

TABLE I11
EXPECTATIONS FOR STATE AND ARC COVERAGE FROM THE EXAMPLE USAGE CHAIN

817

software creates a new software version. Corresponding to
each such version is a subset of the test history that represents
the testing experience for that particular version. Thus, if
one is interested in quantifying the behavior of a specific,
homogeneous software version, then the applicable data to use
as a basis for measuring this is the corresponding subset of the
test history [20]. In addition, if one is interested in studying
the rate at which failures are identified and how this rate varies
during the complete testing process, then the applicable data
are the entire test history over successive software versions.
Although the entire test history pertains to no specific software
version, it does represent the entire testing experience for a
software project and can be helpful in analyzing the underlying
software process used to create the software. The following
discussion applies to either view of the testing history. In fact,
both analyses can be performed simultaneously for any given
project.

The test history (or any meaningful subset thereof) is
a realization of a stochastic process and is appropriately
analyzed by a stochastic model. In this paper, we use a
stochastic model of a test history to identify the length of
the test sequence that will be a suitable stopping point for
testing the software, and to analyze the effect of the failures
on the testing stochastic process. For these purposes, the test
history is encoded as another Markov chain, the testing Markov
chain, T. This section describes construction of the testing
chain from a test history and derives an analytical stopping
criterion. In addition, analytical results associated with Markov

chain theory are used to quantify the impact of the failures on
the testing process.

A set of test input sequences is a realization of the usage
chain U and has certain characteristics imposed by U; e.g.,
states and transitions appear with known probabilities in the
long run. The development of these characteristics occurs
probabilistically; i.e., given a new random seed, a different
set of sequences could be obtained in which states and arcs
are generated in a different order. Detailed analysis of the
testing process therefore requires a model that itself evolves
as specific testing is carried out.

A. Constructing the Testing Chain

Usage chain U has stationary transition probabilities; i.e.,
they do not change throughout the test. However, probabilities
in testing chain T are updated, and tracking T’s evolution i s
an inherent part of monitoring the statistical testing process.
Let SI, s2, . . . , sm denote the set of test sequences in the order
generated by U and applied to software P. The corresponding
series of testing chains TO, T I , . . . , T, describes the evolution
of T during testing and is constructed as follows.

Before any sequence is input to P, the test history is empty.
The initial chain TO is a copy of usage chain U, with all arc
probabilities set to 0. Assume first that no software failures
occur. TI is obtained from To by incrementing arc frequencies
along the path of states from “Uninvoked” to “Terminated”
in SI. Similarly, Tz is obtained from T’1 by sequence s2,
and, in general, T, is obtained from T,-1 by sequence s,. In

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

818 IEEE TRANSACllONS ON SOFlWARE ENGINEERING, VOL. 20, NO. IO. OCTOBER 1994

this way, frequency counts on arcs in T, are always obtained
from specific sequences applied to software P. These arc
frequencies are converted to relative frequency probabilities
whenever computation with Ti’s state transition probabilities
is required.

The testing chain’s arc counts are reset when fixes are
applied to P. Thus, as the software changes, a new testing
chain is created to model only the sequences applied on that
version. In this manner, the testing chain remains an accurate
model of the testing experience of the current software version.
An additional formulation is to maintain a testing chain that is
not reset between fixes and incorporates testing experience
across different software versions. This latter testing chain
is really a model of the process of error discovery and
fault removal, whereas the former series of chains repre-
sents each successive version of the software product. Either
interpretation can provide valuable feedback about software
development activity.

What can be said about the series TO, T I , . . . , T,? If no
failures are detected, the evolution of T is dictated solely by
sequences from U. The Strong Law of Large Numbers for
Markov chains [6] guarantees (with probability 1) that these
sequences SI, . . . , sm will become statistically typical of U
when enough are generated. This means that convergence of
T to U is certain, because the relative frequencies on T’s arcs
will converge to the probabilities on U’s arcs. A key point is
that the test history T is statistically typical of the usage chain
U if and only if convergence is achieved.

In other words, U is a fixed reference toward which T,
evolves at an expected rate with statistical variation that
depends on factors such as the source entropy of U [26]. This
evolution is well controlled and predictable in statistical terms.

B. Incorporating Failure Data

Suppose now that failures do occur and that the j t h failure
f, is detected during input of sequence s, to P. To incorporate
this failure event into the test history, a new state labeled f,
is placed in Markov chain T, exactly as it was ordered in s,.
The arcs to and from the new state f, have frequency count
1. If f, is a catastrophic failure, then the run of software P is
aborted, and the arc from f, goes to “Terminated”; otherwise,
the test sequence can continue, and the arc from f, goes to
the next state in s,. In this way, T, is maintained as a Markov
chain that incorporates both the underlying structure of the
source of test sequences, U, and the frequency count history
of sequences-plus-failures as testing evolves.

Convergence of T to U is adversely affected by failures
of software P during testing. To achieve convergence when
failures have been observed, the relative frequency proba-
bilities on arcs to failure states in T, must approach 0. In
this way, the probabilities on the nonfailure arcs are still
forced to converge to the corresponding (nonzero) values in
U. If even one failure occurs, this can be accomplished only
when P responds to more test sequences without exhibiting
failures. Thus, failures automatically impose additional testing
to overcome their adverse impact on the convergence of T
to U.

When no failures occur in the test history, convergence
will ultimately be achieved. Intuitively, comparison of the
actual evolution of T (including failures) with its expected
evolution (without failures) supports statistical estimation of
P’s characteristics based on the software’s actual performance.
At any point in the testing process, the most recent test
history T, is available for analysis. Because T, itself is a well-
defined Markov chain, computations are based on the theory
of Markov chains.

The testing chain, T, is a model of the current test history
and is useful for computing properties of descriptive random
variables as shown in the next section. An altemative would be
to obtain statistics directly from the set of sequences executed;
however, T incorporates explicitly the sfructure of the usage
chain, which is only implicit in the sequences. In other words,
each sequence is accorded different status according its specific
attributes; e.g., sequences can vary in length and probability,
and thus contribute a different amount of information to the
statistical testing experiment. The testing chain incorporates
each event of each sequence, recognizing the probabilistic rela-
tionship between states and arcs established in the usage chain.
Any computation based on T incorporates this information
as well. Thus, T is an important model for the identification
and derivation of measures that describe the statistical testing
process. See [26] for proofs conceming specific attributes of
testing chains.

To illustrate testing chain construction, consider the example
usage chain of Fig. 2. The initial testing chain, before any
sequences are executed, is a copy of this chain, with each arc
frequency initialized at zero. A randomly generated sequence
is then obtained and executed against the software. The testing
chain is updated to reflect the states and arcs traversed in
that sequence. For example, the following sequence causes
the corresponding transition arcs in the testing chain to be
updated. (States are included in the sequence for reference;
individual inputs are indented.)

Uninvoked

{CL = Sel, PD = No}) {CL = Sel, PD = No}
invoke update transition: (Uninvoked,

Enter key

Select Project Screen
select

{CL = Sel, PD = Yes}
Dn Arrow key

{CL = Ent, PD = Yes)
Dn Arrow key

from 0 to 1
update transition: ({CL = Sel,
PD = No}, Select Project)
from 0 to 1

update transition: (Select Project,
{ CL = Sel, PD = Yes))
from 0 to 1

update transition:
({CL = Sel, PD = Yes},
{CL = Ent, PD = Yes})
from 0 to 1

update transition:
({CL = Ent, PD = Yes},
{CL = Anl, PD = Yes})
from 0 to 1

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

WHIlTAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOFTWARE TESTING 819

{CL = Anl, PD = Yes}
Dn Arrow key update transition:

({CL = Anl, PD = Yes},
{CL = Prt, PD = Yes})
from 0 to 1

{CL = Prt, PD = Yes}
Enter key update transition:

({CL = Prt, PD = Yes}, Print
Report) from 0 to 1

Print Report Screen
print update transition: (Print Report,

{CL = Prt, PD = Yes})
from 0 to 1

update transition: ({CL = Prt,
PD = Yes}, Print Report)
from 1 to 2

print update transition: (Print Report,
{CL = Prt, PD = Yes})
from 1 to 2

{CL = Prt, PD = Yes}
Enter Key

Print Report Screen

{CL = Prt, PD = Yes}
Dn Arrow key update transition:

({CL = Prt, PD = Yes},
{CL = Ext, PD = Yes})
from 0 to 1

(CL = Ext, PD = Yes}
Enter key update transition:

({CL = Ext, PD = Yes},
Terminated) from 0 to 1

Uninvoked) from 0 to 1
Terminated update transition: (Terminated,

Suppose now that a failure appeared during printing that
caused the system to halt execution. This same sequence, under
these circumstances, would achieve the following updates in
the testing chain.

Uninvoked
invoke update transition: (Uninvoked,

{CL = Sel, PD = No})
from 0 to 1

CL = Sel, PD = No
Enter key update transition:

({CL = Sel, PD = No},
Select Project) from 0 to 1

Select Project Screen
select update transition: (Select Project,

{CL = Sel, PD = Yes})
from 0 to 1

{CL = Sel, PD = Yes}
Dn Arrow key update transition:

({CL = Sel, PD = Yes},
{CL = Ent, PD = Yes})
from 0 to 1

{CL = Ent, PD = Yes}
Dn Arrow key update transition:

({CL = Ent, PD = Yes},
{CL = Anl, PD = Yes})

from 0 to 1
{CL = Anl, PD = Yes}

Dn Arrow key update transition:
({CL = Anl, PD = Yes},
{CL = Prt, PD = Yes})
from 0 to 1

{CL = Prt, PD = Yes}
Enter key update transition:

({CL = Prt, PD = Yes},
Print Report) from 0 to 1

add state: Failure State j
update transition: (Print Report,
Failure State j) from 0 to 1
update transition: (Failure State
j, Terminated) from 0 to 1

Uninvoked) from 0 to 1

Print Report Screen
print

Failure State i

Terminated update transition: (Terminated,

Thus, the testing chain is updated with frequency counts
that reflect the actual events that occurred when the sequence
was executed. If the failure had not caused the system to
halt, then the testing chain would be updated with the failure
state followed by the remaining sequence parts. Whenever
computation is desired, the frequency counts are normalized
to probabilities.

VI. ANALYTICAL &SULTS FOR THE TESTING CHAIN

In this section, the testing chain, T, is used to obtain
analytical results to answer two questions. First, at what point
does the test history become representative of usage (as defined
by U); second, how does each failure impact the testing
process?

A. An Analytical Stopping Criterion

Stopping criteria for statistical software testing can be as
simple as choosing some target reliability [3], [4], [lo], [18],
[20], [22], [24], and testing until the estimate of the reliability
meets or exceeds the target. However, the usage-to-testing-
chain approach suggests an analytic stopping criterion based
directly on the statistical properties of the usage and testing
chains. The usage chain is a model of ideal testing of the
software; i.e., each arc probability is established with the best
estimate of actual usage, and no failure states are present. The
testing chain, on the other hand, is a model of a specific test
history, including failure data. Thus, the usage chain represents
what would occur in the statistical test in the absence of
failures, and the testing chain represents what has occurred.
Dissimilarity between the two models is therefore a useful
measure of the progress of testing. When the dissimilarity
is small, the test history is an accurate picture of the usage
model.

Failure states are introduced into the testing chain by actual
observations of software failure during testing. Since the usage
chain does not have these failure states, they have an implied
long-run probability of zero in U. In order to match the
stochastic characteristics of the testing chain T in which the
failure states may exist, enough nonfailure sequences from U

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

820

0.08

0.07

0.06

0.05

c 2 0.04
9

0.03

0.02

0.0 1

0

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO. OCTOBER 1994

LEGEND
No Failures l - Failures

. , , ’. . . - .

. .
. . . * .

I I I I I I I I I I
10 20 30 40 SeqJi!nce 60 70 80 90 100

Fig. 3. Two plots of D(Lr T) for the example usage chain.

must end in correct termination to push the long-run occupancy
of all failure states in T close to zero. Thus, failures observed
during testing tend to increase the number of sequences that
must be applied to P.

Regardless of whether failures are encountered, we are
seeking to identify the point at which the stochastic properties
of the usage chain and the testing chain are indistinguishable
within some acceptable tolerance. In order to measure this,
one could compute, for example, the stationary distribution of
each chain and use a goodness of fit criterion (e.g., Chi-squared
[5]) to measure their similarity. However, this approach takes
into account only a single (albeit very important) attribute of
the two models. If we want to measure the difference of the
ensemble characteristics of each chain, then another approach
is desirable.

Consider each chain as an ergodic stochastic source. Each
chain has a set of typical sequences that accurately characterize
it as a sequence generator. If both chains have the same
set of typical sequences, we may draw the conclusion that
the two chains are indistinguishable as sequence generators.
Stated differently, it should be extremely difficult, if not
impossible, to determine whether a long concatenation of
sequences dodl . . .dn. . . l was generated by U or T.

The log likelihood ratio [151 is a fundamental computation
in measuring the evidence an observation provides for or

against a hypothesis. In this case, the hypothesis is “stochastic
process U is equivalent to stochastic process T,” and an
observation is a large number of sequences generated by
recurrent chain U. We define a measure for two stochastic
processes as the expected value of the log likelihood ratio,
called the discriminant [15]. This value is computed for
two arbitrary ergodic stochastic processes XO and A 1 [13] as
follows:

1
D (X 0 , X l) = lim - [log ,p(dodl . . - d , - l l X o)

n+m n
- l o g , p (d o d l . . . & - l I X 1)] , (10)

where p (d . . . [A) denotes the probability with which stochastic
process X generates sequence d . Although D(X0,Xl) cannot
be directly computed for arbitrary processes XO and XI, it can
be computed for Markov chains U and T [26] as follows:

where T is the stationary distribution of U, pij is the probabil-
ity of a transition from i to j in U, and l;ij is the corresponding
probability in T. Each l ; i j that corresponds to a nonzero p ; j

must be greater than zero in order for D(U, T) to be defined.
D(U, T) is non-negative and equal to zero if and only if
p i j = pij for all i , j [15].

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

WHITTAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOWWARE TESTING 82 I

0.03

0.028

0.026

0.024

0.022

0.02

0.018

0.016

9 0.014

0.012

0.01

0.008

0.006

0.004

0.002

s,

a

.02287 k

I

.00905

3f -j
I I I I I I io 2b 3b JO 40 6b $I d0 90 100 110 120 130 140 150

I
equence

Fig. 4. Plot of D(I- . T)

The two sources U and T are likely to generate a similar
set of typical sequences only if the value for D(U, T) is
very small. A value of D(U, T) approaching zero has several
implications for software testing. First, it ensures that each
usage state appears in the test history in the correct proportion,
as computed in the stationary distribution of U , and that the
sequencing properties of the test history closely match those
of U . Second, it forces the probability of occurrence of the
failure states in T to be pushed toward zero. This means
that confidence must be gained in every path through the
testing chain before D(U: T) will be acceptably small. Third,
it recognizes the limitations of the usage chain for testing the
software. When the statistics of the testing chain and usage
chain match, the usage chain is unlikely to generate a sequence
that adds any additional information to the statistical testing
experiment.

To monitor the testing process, D(U, T) can be computed
with each sequence applied to the software after T becomes
fully defined. A downward trend in the values of D (U , T)
signifies growing similarity of the two models. Usage chain
U never changes; however, D(U,T) reflects the impact of
each additional sequence on the stochastic characteristics of
the testing chain. D (U , T) , for example, can rise when no
failures are observed if a sequence reinforces some low-
probability event. Of course, a rise is expected when a failure

occurs. When the discrimination drops below some predefined
threshold and experiences little change for an extended period,
it is implied that additional test sequences will not significantly
impact the statistics of the testing model, and testing can stop.

Fig. 3 shows two plots of D (U , T) that depict typical
behavior of the function. Each plot represents a separate series
of sequences from the example usage chain with relative
frequency estimated transition probabilities. The solid line
depicts behavior of D(U, T) with no failures. The dotted line
depicts a sequence with three failure states. There are several
interesting features of this figure. First, note that D (U , T)
becomes computable at sequence 40 for the first plot and at
sequence 26 for the second plot. Since D(U, T) is computable
only when every arc in T has been initialized (i.e., generated
by U and applied to the software), its first occurrence is
a random variable and depends on the specific sequences
generated by U . Second, the failure states cause T to converge
to U more slowly than without failures. The general trend
of the failure-free plot is toward significantly smaller values
than the plot with failures. Third, the fluctuation of D(U, T) ,
even in the absence of failures, can be seen in both plots.
When states and arcs occur in a sequence which reinforces
low probability events, D(U, T) can rise significantly. This is
made explicit in the plot at sequence 56, where the failure-free
plot rises significantly and even surpasses the plot with failures

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

822 IEEE TRANSACTIONS ON SOITWARE ENGINEERING. VOL. 20, NO. IO, OCTOBER 1994

0.9745

0.9579 0.9619
A

I 0.7973

Fig. 5 . Plot of R.

temporarily. The general trend of both curves is downward;
however, each is affected by the appearance of atypical events
in the sequences. It is important to stress that analysis of
D (U , T) should involve trends in the values of the function
over time rather than any single value at some specific point
in time.

Fig. 4 depicts a graph of D (U , T) from a real usage
chain used to test a graphical user interface [26]. D(U,T)
is computed after each sequence beginning at sequence 29
when the last arc is generated by the usage chain. This graph
illustrates typical behavior of D(U, T) during both failure
and nonfailure sequences. When no failure occurs, D(U, T)
either falls or rises, depending on whether the current sequence
causes the testing chain to become more or less similar to the
usage chain. Note that the general trend is downward under this
circumstance. When a failure is observed, a rise in D(U, T)
occurs that is sustained over several subsequent failure-free
sequences. The effect of the failure starts to diminish only after
multiple failure-free sequences are incorporated that reinforce
the paths that avoid the failure state.

B. Measuring the Impact of Failures

The testing chain represents the test history of the software,
P, during correct functioning and during software failure.
Thus, it is possible to define random variables that characterize

the relationship of failure states to nonfailure states in order
to describe the impact of failures on the testing stochastic
process. We compute two characteristics of the testing chain
that give insight into the effect of the failures. The first is the
probability of a failure free realization of the testing chain,
denoted R, computed by using a standard result from Markov
chain theory. The second is the expected number of steps
between failure states, denoted M, which requires a new
computation.

R and A4 can be computed directly from the testing chain
T at any time during the testing of software P, even when
only a single sequence has been input to P. It must be
emphasized that R is a probability and M is an expected value
conditioned on the test history encoded as T. These values
gain credibility as statistical measures as the discrimination
D(U, T) becomes relatively small, for this indicates that T is
becoming statistically typical of software P’s response to the
input sequences from usage chain U.

The probability, R, of a failure-free realization of the testing
chain is the probability that a realization of T beginning
with “Uninvoked” and ending with the first occurrence of
“Terminated” will not contain a failure state. To compute R,
each failure state and “Terminated” are made absorbing states.
R is the probability that absorption occurs at “Terminated,”

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

WHIITAKER AND THOMASON: MARKOV CHAIN MODEL FOR STATISTICAL SOFIWARE TESTING 823

1200

1100

IO00

900

800

700

2 600

500

400

300

200

100

0

1092.75

769.33 /

lb 210 do 4b 5b 610 l o $0 bo lbo 1 i O lh0 140 Id0 15b
Sequence

Fig. 6. Plot of -11

given "Uninvoked" as the start state [9], [14]; namely, as
follows:

RUnin,Term = fiUnin,Term + fiUnin,jRj,Term, (12)
j € r

where 7- is the set of transient (nonabsorbing) states.
Fig. 5 depicts a plot of R for 150 sequences generated

from the data of Fig. 4. The smoothness of the curve is due
to the fact that the measurement is obtained by multiplying
probabilities, and thus the effect of any one sequence is
small. Failures on high-probability paths will cause a sharper
decrease in R, because the failures are probability-weighted
according to their location in the chain. Note that R = 1
when no failure states exist in T. Because it is a conditional
probability, R gains credibility as D(U, 7') gets small. See
Miller er al. [I61 or Pamas et al. [20] for an alternative
formulation for this probability.

The expected number of steps bemeen failure is the expected
number of state transitions encountered between occurrences
of failure states in the testing chain. This value is computed
[26] as follows:

where v; is the conditional long-run probability for failure
state fi, given that the process is in a failure state, m j is the
mean number of steps until the first occurrence of any failure
state from j , ul, . . . U, is the set of usage chain states, and
f l , . . . , fm is the set of failure states.

Fig. 6 is a plot of M for 150 sequences generated from the
data of Fig. 4. Since M counts the number of steps between
failure states, which could grow significantly when arcs are
traversed for the first time, the increase tends to be more
pronounced than the measure for R. Thus, when new paths are
established by traversing arcs for the first time, the increase
can be quite large. However, as the testing chain becomes
complete, the changes are less dramatic.

The analytical results computed for the testing chain have
several beneficial features. First, they are based on actual
occurrences of failures. No assumptions about the distributions
of failures are required in order to measure these quantities.
Second, each state generated is accounted for in the compu-
tations. Each sequence of states contributes to the model in
proportion to its length and probability of occurrence. The
computations on the model take into account the facts that
the sequences are not equally likely and that some have
more impact than others. Third, each failure is probability
weighted according to its location in the testing chain. Failures

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

824 IEEE TR

attached to relatively high-probability paths will impact the
testing stochastic process more than failures attached to lower-
probability paths. Thus, the testing chain delivers results
that are based on the usage patterns described in the usage
model.

VII. CONCLUSION AND PROSPECTS FOR FUTURE WORK

The finite state, discrete parameter, time homogeneous
Markov chain represents a practical option for software test
engineers in the development and analysis of usage models
and automatic test input generation. There have been several
successful applications of Markov chain usage models to date
[11, [27], involving both real-time embedded systems and user-
oriented applications. Our experience has shown that Markov
chain usage models can be constructed in a diverse set of
application domains, and are useful for driving statistical tests.

It is sometimes the case that model size (i.e., the number
of states) becomes unwieldy for large and complex systems.
However, in such cases, many states are duplicates of other
states, because certain inputs can be applied in different
software modes. Thus, maintaining large chains often becomes
a library problem that can be automated. We have also found
it useful to model usage of such systems in a more abstract
form. For example, the software system of Fig. 1 could be
modeled with only the PD = {Yes,No} usage variable by
creating the abstract inputs “choose the Select Project option,”
“choose the Enter Data option,” “choose the Analyze Data
option,” and “choose the Print Report option.” Thus, the usage
variable for cursor location has been effectively removed by
including the necessary information in the abstract inputs. We
are investigating the details of these more abstract models,
including the gaidloss in test effectiveness and rules for when
it is or is not beneficial.

The analysis of the testing chain is currently intended as
a supplement to the many reliability models that exist in
the literature. The testing chain represents a new perspective
on test data and bypasses assumptions concerning anticipated
rates of failure appearance. However, it is not yet offered as a
complete reliability model for software. Our current research
is directed toward this end.

REFERENCES

K. Agrawal and J. A. Whittaker, “Experiences in applying statistical test-
ing to a real-time embedded software system,” Proc. Pacific Northwest
Software Qualify Cont. 1993, pp. 154-170.
R. Ash, Information Theory and Coding. New York: McGraw-Hill.
1963.
R. C. Cheung, “A user-oriented software reliability model,” IEEE Trans.
Software Eng., vol. SE-6, Mar. 1980.
P.A. Cumt, M. Dyer, and H.D. Mills, “Certifying the correctness of
software,” IEEE Trans. Sofhvare Eng., vol. SE-12, no. 1, pp. 3-1 1, Jan.
1986.
H. Cramer, The Elements Probabiliry Theory. Huntington, NY: Robert
E. Krieger, 1955.
J. L. Doob. Stochastic Processes.
J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE
Trans. Software Eng., vol. SE-10, no. 4, pp. 4 3 8 4 , July 1984.
J. W. Duran and J. J. Wiorkowski, “Quantifying software validity by
sampling,” IEEE Trans. Reliability, vol. R-29, no. 2, pp. 141-144, June
1980.
W. Feller, An Introduction to Probability Theory and Its Applications,
vol. I .
R. Hamlet, ‘Testing software for software reliability,’’ Tech. Rep. TR-

New York: Wiley, 1953.

New York: Wiley, 1950.

.ANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO. OCTOBER 1994

91-2, rev. I , Dept. of Comput. Sci., Portland State Univ.. Portland, OR,
USA, Mar. 1992.

[1 I] R. Hamlet and R. Taylor, “Partition testing does not inspire confidence,”
IEEE Trans. Sofovare Eng., vol. 16, pp. 1402-1411, Dec. 1990.

[121 I. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory.
Reading, MA: Addison-Wesley, 1979.

[13] B.H. Juang and L.R. Rabiner, “A probabilistic distance measure for
hidden Markov models,” AT&T Tech. J., vol. 64, no. 2, pp. 391408,
Feb. 1985.

1141 J.G. Kemeny and J.L. Snell, Finite Markov Chains. New York: . .

Springer-Veriag, 1976.
[15] S. Kullback, Information Theory and Statistics. New York: Wiley,

1958
[161 K. W. Miller, L. J. Morrell, R. E. Noonan, S. K. Park, D. M. Nicol, B. W.

Mumll, and J.M. Voas, “Estimating the probability of failure when
testing reveals no failures,” IEEE Trans. Sofovare Eng., vol. 18, pp.
3 3 4 3 , Jan. 1992.

[171 H. D. Mills, “The new math of computer programming,” Commun. ACM,
vol. 18, no. 1, pp. 4 3 4 8 , Jan. 1975.

[I81 J. D. Musa, “A theory of software reliability and its application,” IEEE
Trans. Software Eng., vol. SE-I, pp. 312-321, Aug. 1975.

[19] G. J. Myers, The Art of Software Testing.
1201 D. L. Parnas. A. J. Van Schouwen, and S. P. Kwan, “An evaluation of

safety-critical software,” Commun. ACM, vol. 23, pp. 636-648. June
1990.

[2 I] E. Parzen, Stochastic Processes. San Francisco, CA: Holden-Day,
1962.

[22] M. L. Shooman, Software Engineering: Design, Reliability and Man-
agement. New York: McGraw-Hill, 1983.

[23] C. E. Shannon, “A mathematical theory of communication,” Bell Sysr.
Tech. J. , vol. 27, pp. 379423, 623-656, 1948.

[24] K. Siegrist, “Reliability of systems with Markov transfer of control,”
IEEE Trans. Software Eng., vol. 14, pp. 1049-1053, July 1988.

[25] M. G. Thomason, “Generating functions for stochastic context-free
grammars,” Int. J. Pan. Recognition Art. Intell. , vol. 4, pp. 553-572,
Apr. 1990.

[26] J.A. Whittaker, “Markov chain techniques for software testing and
reliability analysis,” Ph.D. dissertation, Dept. of Comput. Sci., Univ.
of Tennessee, Knoxville, USA, 1992.

[27] J.A. Whittaker and J.H. Poore, “Markov analysis of software specifi-
cations,” ACM Trans. Software Eng. Methodology, vol. 2, pp. 93-106,
Jan. 1993.

[28] D. M. Woit, “Realistic expectations of random testing,” CRL Rep. 246,
McMaster Univ., Hamilton, ON, Canada, May 1992.

New York: Wiley, 1979.

J.A. Whittaker received the B.A. degree from
Bellarmine College, Louisville, KY. USA, in 1987,
and the M.S. and Ph.D. degrees from the University
of Tennessee, Knoxville. TN, USA, in 1990 and
1992, respectively.

He currently works as a computer scientist for
Software Engineering Technology, Inc., and is an
Adjunct Assistant Professor of Computer Science at
the University of Tennessee, Knoxville, TN, USA.
His research interests include methodical and sta-
tistical techniques for software testing and software
reliability engineering.

M. G. Thomason (S’63-M’65-SM’83) received the
B.S. degree from Clemson University, Clemson, SC.
USA, in 1965, the M.S. degree from Johns Hopkins
University, Baltimore, MD, USA, in 1970, and the
Ph.D. degree from Duke University, Durham, NC,
USA, in 1973.

He worked at the Westinghouse Defense and
Space Center, Baltimore, MD, USA, has been a con-
sultant for Perceptics Corp., Knoxville, TN, USA, as
well as other companies, and is currently Professor
of Computer Science at the University of Tennessee,

Knoxville, TN, USA. His research interests include structural pattern analysis
and stochastic processes in computer science.

Dr. Thomason is a member of Sigma Xi, Tau Beta Pi, and the ACM.

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore. Restrictions apply.

