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Partition Testing Does Not Inspire Confidence 
Dick Hamlet, Member, ZEEE, and Ross Taylor 

Abstmc-Partition testing, in which a program’s input domain is 
divided according to some rule and tests conducted within the subdo- 
mains, eqjoys a good reputation. However, comparison between testing 
that observes subdomain boundaries and random sampling that ignores 
the partition gives the counterintuitive result that partitioning is of little 
value. In this paper we improve the negative results published about 
partition testing, and try to reconcile them with its intuitive value. 
Theoretical models allow us to study partition testing in the abstract, 
and to describe the cireomStances under which it should perform well at 
failure detection. Partition testing is shown to be more valuable when the 
partitions are narrowly based on expected failures and there is a good 
chance that failures occur. For gaining conlidence from successful tests, 
partition testing as usually practiced has little value. 

Index Tern-Partition testing, random testing, reliability, software 
testing theory. 

I. PARTITIONTESTING 
NPUT partitioning is the natural solution to the two fundamen- I tal testing problems of systematic method and test volume. By 

dividing a program’s input domain into classes whose points are 
somehow “the same,” it is sufficient to try one representative 
from each class; the problem of systematic testing is reduced 
to a proper definition of the classes. A partition can be defined 
using all the information about a program. It can be based on 
requirements or specifications (one form of “blackbox” testing), 
on features of the code (“structural” testing), even on the process 
by which the software was developed, or on the suspicions 
and fears of a programmer. For example, a specification-based 
partition might divide the input domain into inputs required to 
invoke one of several software features Fl, F2, . . Or, a binary 
structural partition might consider inputs that do or do not force 
use of a suspect data structure. The partition-testing method forms 
the intersection of such input classes-e.g., one class formed 
from the above would be those inputs requiring feature F2 and 
making use of the suspect data structure; another would be inputs 
for feature F1 and not making use of it. The goal is to make the 
resulting classes so narrow that each aspect of the program, of the 
specification, of development, each programmer concern, etc., is 
separated into a unique class. 

Goodenough and Gerhart [l] expressed a partition using “sig- 
nificant predicates” from both specification and program to divide 
inputs into classes, and created the intersection by considering 
all combinations of predicate values. Weyuker and Ostrand [6], 
and Richardson and Clarke [2] describe the special case of 
intersecting specification classes with those defined by program 
path predicates. Although “partition testing” often carries a 
connotation of functional testing involving specifications, here 

Manuscript received November 13, 1989; revised July 24, 1990. Recom- 
mended by M.S. Deutsch. The work of D. Hamlet was supported by the 
National Science Foundation under Grant CCR-8822869. 

D. Hamlet is with the Department of Computer Science, Portland State 
University, P.O. Box 751, Portland, OR 97207. 

R. Taylor is with Tektronix, Inc., P.O. Box 1O00, M / S  63/356, Wilsonville, 
OR 97070. 

IEEE Log Number 9039335. 

we use the term in the general sense of any input-space division. 
The technical results require that this division be a partition 
in the mathematical sense; that is, a division of the input 
domain into disjoint, mutually exhaustive classes. (Technically, 
the partition must be an equivalence relation, which has those 
equivalence classes.) Some kinds of “functional testing” based on 
specifications, and path testing, meet the technical requirements. 

In the sequel, we reserve the word “partition” for an equiva- 
lence relation, and we call its equivalence classes “subdomains” 
as well as “classes.” But because of long standing usage, we will 
continue to use “partition testing” to refer to any testing method 
that subdivides the input domain and chooses test points from 
each subdomain. In Section 11-B we consider testing schemes 
like statement coverage and mutation that are not partitions, and 
in Section IV-B we try to convince the reader that it is not far 
wrong to apply our technical results to any intuitive form of 
partition testing. 

The strength of partition testing is its ability to use any and 
all information, and to examine information in combinations that 
may not have been thought of during development. Intuitively, 
the source of program bugs is some unlikely combination of 
requirements, design, and programmer inattention. By including 
these factors in the subdomain definition, it seems that nothing 
has been missed in testing. Good subdomains are defined and 
refined throughout development as information arises. 

Partition testing can be no better than the information that 
defines its subdomains. For the method to work perfectly, all 
inputs in one subdomain must be interchangeable-if one causes 
a failure, any other must do the same. (Goodenough and Gerhart 
called this property “reliability,” but since that word has other 
definitions, let us here call a subdomain homogeneous if either 
all its members cause the program to succeed or all cause it 
to fail. Weyuker and Ostrand used the term “revealing” for 
a homogeneous subdomain.) Intuitively, homogeneity might be 
obtained by narrowing the subdomain definitions. It seems that 
enough constraints would force test points from a subdomain to 
behave the same. In practice, when partition testing goes wrong, 
it is technically because a subdomain lacked homogeneity-the 
test point succeeded but another point in the subdomain fails in 
the field. The subdomain definition can always be blamed for 
the debacle: some refinement would have separated the success 
and failure points. 

Practical partition testing, with less-than-perfect subdomains, 
must thus sample each subdomain often enough to improve 
the chance of detecting failures. A uniform distribution across 
each subdomain seems appropriate, because each subdomain 
represents an indivisible collection. Were the appropriate dis- 
tribution skewed in any way it would be a basis for further 
refinement. The criteria by which subdomains are defined are 
a mixture of seeking to establish confidence in the program 
(Goodenough and Gerhart had this orientation), and to find its 
failures (as Weyuker and Ostrand proposed [6] and as Myers [9] 
strongly advises). On the one hand, specification-based blackbox 
criteria and many structural criteria strive for “coverage”-these 
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are confidence methods. But subdomains that concentrate on a 
subroutine expected to be fault-prone, or on a difficult aspect 
of a data structure (e.g., collisions in a hash table), are seeking 
failures. 

The distinction between seeking confidence and seeking failure 
is central to evaluation of testing methods. It turns on the test in- 
puts used, their distribution over the input domain. When looking 
for failures, it is appropriate to use peculiar test inputs. So- 
called “special-values testing” is just a name for choosing strange 
test points likely to provoke behavior problems. However, tests 
seeking to excite failure are not representative of a program’s 
day-to-day operation. Confidence in daily performance can be 
gained only by testing that mimics the “operational distribution” 
of typical usage. Thus the two kinds of testing may be expected 
to have little in common: tests designed to expose failures are 
not representative, and tests representative of typical operation 
may seldom encounter failure situations. The technical results 
presented below deal with this important distinction. Briefly, we 
show that partition testing is not much different than random 
testing; hence success of a few partition tests, however clever, 
does not contribute to confidence in the program. The other side 
of the coin is that unless care is taken, partition testing may not 
even succeed in exposing failures. Using random testing as a 
standard, we suggest how to improve the failure-finding ability 
of partition testing. 

This study was undertaken because partition testing did not 
live up to its intuitive value in two earlier studies. In their brief 
for random testing [3], Duran and Ntafos published a precise 
comparison between it and partition testing. Their surprising 
result is that the two methods are of almost equal value, under as- 
sumptions that seem to favor partition testing. Random testing has 
a decidedly spotty reputation, probably because it makes almost 
no use of special information about the program being tested. It is 
certainly counterintuitive that the best systematic method is little 
improvement over the worst. Hamlet [5] corroborates this result 
using a different sampling model. He shows random testing to be 
superior to partition testing, its superiority increasing with more 
partitions and with the program confidence required. 

These results are analyzed and extended in Section 111; close 
examination strengthens them and gives insight into what makes 
partition testing work. In brief, quantitative results about partition 
testing are counterintuitive because our intuition is untrained 
in confidence testing. To guarantee high confidence in even 
medidm-scale software requires very large test sets to be executed 
without any failures, and for this situation our intuition fails. 
Partition testing’s systematic nature may also be overrated. The 
intuition that the “right” partition will find most of the faults 
may be no more than wishful thinking. Any program has a finite 
number of faults, and hence a partition exists to expose them all. 
But if the right subdomains are the ones that find the unknown 
faults, those subdomains are equally unknown, and no system 
can necessarily find them. 

11. PROPERTIES OF PARTITION TESTING 
In this section we explore some underlying strengths and 

weaknesses of partition testing. 

A. “Treated the Same” Subdivisions 

Partition testing works perfectly when the right points are 
chosen from the right subdomains. But a practical partition must 
be obtained before a program’s bugs are identified. Analysis 
that shows a partition to exist for detecting a known fault falls 

under the archery scheme proposed by Walt Kelly: shoot first 
and paint the target where the arrow falls. Partitions can be 
defined to necessarily reveal faults (if they exist); this is the 
view of fault-based testing suggested by Weyuker and Ostrand 
[6] ,  and investigated by Morel1 [7]. Fault-based testing is the best 
candidate for a formal method that combines proving and testing, 
but its theory is more like proving than testing. As we will now 
show, perfect partitions seem to share this quality. 

In the sequel we use the convention that programs have a 
single input value and a single output, so that their meanings 
are functions of one variable. We use the Mills notation [8]: 
denotes the function that program P means. Specifications are 
also assumed to be functions, so that a program P is correct with 
respect to specification S iff S = m. These assumptions simplify 
the presentation; the results do not change in the more realistic 
case of multiple input/outputs and relational specifications. 

We can learn a good deal by considering the simplest case of a 
partition with homogeneous classes in which inputs are literally 
treated the same. In the simplest program view, inputs are treated 
the same when they yield the same output. The same-output 
partition is the relation 

for program P ,  whose equivalence classes contain inputs leading 
to identical outputs. Similarly, for a specification S the same- 
output partition is 

Let z be a particular input for which is defined. Then z lies 
in one of the equivalence classes of Ep, in fact the class 

The case in which the program domain is smaller than the 
specification domain deserves special comment. Here there exist 
inputs for which is not defined, but should be, inputs not 
in any equivalence class of Ep. Let all such inputs constitute a 
special “undefined” program class U. It is a primary virtue of 
specification-based testing that it may select inputs in U. 

Intersecting the equivalence classes of Ep (with U added) with 
those of Es creates a partition whose classes have members that 
are literally treated the same in a simple sense. Inputs in one class 
are all specified to have the same output, and furthermore do have 
the same output when supplied to the program (or, the program is 
undefined for all these inputs). For diagonal classes the specified 
and actual output is the same; for off-diagonal classes the outputs 
differ. (U contributes only to off-diagonal classes.) 

Theorem: A test using one arbitrary element from each inter- 
section class of the Ep and Es relations is successful iff P is 
correct with respect to S. 

Proofi (Correctness as a consequence of test success.) Each 
of the off-diagonal classes must be empty for the test to succeed, 
because by definition P is wrong for all points therein. Consider 
then any nonempty diagonal class D, and any x E D. Some 
t E D was involved in the successful test, and hence m ( t )  = 
S(t). But by definition of D as an intersection class, S(x) = S(t) and 

(x) = (t), hence P is correct, because x was any member of 
class D. (The reverse implication, test success as a consequence 
of correctness, is trivial.) 

The proof shows that there is an easier way to state this result. 
Corollary: The off-diagonal classes of Ep (plus U) and Es are 

empty iff P is correct. 
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Thus in its simplest form, use of homogeneous input classes 
is a proving technique unconnected with testing: the off-diagonal 
classes must be shown to be empty, necessarily without testing; 
there is no need to try points in the diagonal classes. 

For example, consider the “triangle problem”: triples of inte- 
gers (A, B, C) representing triangle sides are to be classified into 
the textbook types such as “scalene.” The possible outputs are 
a finite set, and thus Es determines a natural finite-index input 
partition. The natural program that solves the problem has a path 
corresponding to each possible output, so its path equivalence 
classes are those of Ep, also of finite index. Fig. 1 shows a 
possible set of equivalence classes, in which the program fails 
in two different ways. 

Choosing a point from a specification class like “equilateral” 
may be easy (in Fig. 1: V), and a successful test execution 
shows that the diagonal “equilateral” intersection class is not 
empty. But it does not prove correctness to proceed in this way, 
because the tester does not know if it is possible to wander into 
an off-diagonal class (such as: program prints “equilateral” but 
the specification requires “isoceles,” in Fig. 1: +). Indeed, the 
Corollary states that the off-diagonal classes must be empty for 
correctness, but it proves nothing to repeatedly fail to select off- 
diagonal points. The partition is in principle perfect but perfectly 
useless for testing. 

When one class of partition contains inputs not treated the 
same, there is no assurance that success and failure will not 
be mixed in that class. The partition may then be no help, 
because the selection problem was not reduced by dividing the 
input domain. The partition refinement-how much information 
goes into defining its classes-is of no consequence so long 
as any large class remains that may contain both success and 
failure inputs. Thus partitions are flawed in either case: if they 
are not homogeneous, the testing problem may be no simpler 
than without them; on the other hand, perfect classes yield a 
correctness proof, and so in general cannot be obtained. In the 
one case testing is not improved, in the other it is not involved 
at all. 

B. Overlapping Subdomains 
Many kinds of partition testing involve a division of the 

input domain that is not technically a partition at all, because 
the subdomains overlap. (Thus the defining relation is not an 
equivalence relation, because it fails to be transitive.) Two 
examples are statement testing (defining relation: two inputs are 
grouped if they cause the same statement to be executed) and 
mutation testing (grouped inputs kill the same mutant). Such 
relations do not induce disjoint classes, as shown in Fig. 2. 

A true partition can be formed 1) by intersecting the natural 
subdomains, removing the intersections from each subdomain, 
and adding them as separate subdomains (in the figure above, 
this partition would have three distinct classes with the la- 
bels shown); 2) by taking the union of all subdomains with 
nonempty intersection to be the partition (above, the partition 
would have one class that includes both subdomains). However, 
these artificial partitions may be unsatisfactory. For example, in 
statement testing, 2) always creates a trivial partition with a single 
equivalence class consisting of the whole input domain, because 
all inputs cause execution of the first statement in a program. 
1) refines the natural subdomains, but the newly created classes 
do not have the same intuitive meaning as the originals. For 
statement testing, the subdomains of 1) look rather like path 
equivalence classes. For other methods, the partitions formed 

, iscceles , isoceles 

equilateral 

equilateral 

(undefined) 
scalene 

, isoceles(daponal) 

equilateral(dqond) 

scalene/undefined(offdiagonal) isoceles/equilaterd(offdwonal) 

Es n ($ u U) 

Fig. 1. A possible set of equivalence classes. 

Fig. 2. An example subdivision for statement testing. 

from subdomains may be more natural. In mutation testing, the 
natural subdomains contain points that kill the same mutant. If the 
mutation rules are narrow, the subdivisions may fall into many 
disjoint clusters, so that the partition of 2), whose subdomains 
contain those tests that kill any one of the mutants in a cluster, 
seem natural. 

It is interesting to examine partition homogeneity when there is 
overlap. The natural subdomains cannot be homogeneous unless 
they happen to agree when they intersect. In Fig. 2, for example, 
all inputs executing 13 cannot lead to failure at the same time 
that all inputs executing 42 lead to success, for then what of 
inputs that execute both? If the points of overlap do agree, then 
homogeneity of the natural subdomains implies homogeneity of 
both true partitions 1) and 2); this is the only way 2) can be 
homogeneous. On the other hand, there is nothing to prevent 
the true partition of type 1) being homogeneous even though 
the natural subdivisions that defined it are not. In the figure, all 
inputs executing both 13 and 42 might lead to failure, yet all 
those executing either statement without the other could lead to 
success. 

The technical results of Section I11 do not apply to partition 
testing with overlapping subdomains. However, in Section IV-B 
the partition 1) is used to analyze an overlapping method. 

C. Partition Testing Is Useful 

Most of this paper’s technical content is critical of partition 
testing, particularly as a way to inspire confidence in software. 
However, no one can deny that partition testing is an essential 
part of software development. The reader should bear in mind 
the narrow scope of our criticism, which does not impact any 
of the strengths listed below. (In Section IV-C we suggest 
improvements to address even the narrow concerns raised in 
Section 111.) 

Specification-based testing is valuable early in the develop- 
ment cycle, for example in driving a specification walkthrough. 
Specification-based subdomains are particularly good at detecting 
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“missing logic” faults, which are the most common programmer 
mistake [4]. The systematic nature of partition testing methods 
recommends them to anyone faced with the real task of generat- 
ing tests. Furthermore, the generation process can continue as the 
program develops, incorporating new information as it becomes 
available. 

A subdomain that is nearly homogeneous for failure has 
immense value in debugging. The intersection of specification- 
and program-based subdomains is valuable because the program 
part helps to locate the fault, and the specification part indicates 
what should be done about it. Subdomains based on programmer 
concerns can have such ideal failure classes. The programmer 
was worried about (say) collisions in a hash table, and with good 
reason-when there is a collision the program usually fails. 

Catastrophic failures deserve an extra prevention effort, and 
partition testing is the only way to attack them. These failures 
may be so infrequent that they are discovered in use only when 
it is too late, but a partition can be constructed to seek them (for 
example, using a fault tree). 

These virtues of partition testing are double-edged, however. 
Fault-based partitions put themselves out of business: after all 
faults of the kind sought have been corrected, there is no reason 
to believe that the tests which exposed those faults have any 
further significance. But in confidence testing, the ultimate test 
is always of this kind: no more failures are found, so the software 
is released. We will return to this discussion in Section IV, 
following presentation of our main results. 

111. STATISTICAL ANALYSES OF PARTITIONS 
Because practical partition testing samples uniformly within 

classes, it is natural to compare the efficacy of the partitioned 
test to one in which the same number of points were dis- 
tributed over the entire input domain. To contrast the latter to 
“partition testing,” we call it “random testing.” Although the 
analysis of partition testing began [3] as a simple comparison 
of two techniques, we exploit the method to gain a wider 
goal. Because random testing can be theoretically justified as 
a confidence measure, we use it to study partition testing. 
By varying the parameters that relate the two techniques, we 
can learn what makes partition testing more or less effec- 
tive. We believe these results to be the first practical test- 
ing advice with theoretical backing. We are able to prove 
what we say, using a theory whose assumptions are com- 
pletely spelled out. It will take empirical studies to validate 
the theory-the assumptions may be wrong, after all-but 
if it proves to be in error, better assumptions can correct 
it. 

The assumptions that we must make, and must examine closely 
to judge the plausibility of the theory, are tied to the idea of 
test input distribution. Random testing is viewed as sampling 
program behavior, so its significance depends on the sample 
being representative. Partition subdomains, on the other hand, 
are sampled only to counteract the effects of nonhomogeneity, 
for which a uniform distribution is appropriate. If there were 
a natural nonuniform distribution over some subdomain, then 
further subdivision would be in order to reflect the parts it 
weights. It is always possible to refine a partition until no further 
distinctions can be made, and then reflect the input distribution 
by weighting the sampling rates. The crucial assumption that 
a theory must make is the extent to which this reflected input 
distribution distorts the one for random testing. Two extreme 
assumptions to avoid are the “perfect” partitions that homoge- 

neously isolate failures (because such partitions are unattainable 
in practice), and at the other extreme, “background” partitions 
that precisely mimic the random-test input distribution (because 
they are merely an approximation to random testing). The reader 
must judge how well we have avoided these extremes. In the 
situations we investigate, failures are needles in the haystack 
of the input domain. In hypothesizing how the haystack is 
partitioned for search, it is difficult to know if we have been 
fair. 

In the discussion to follow presentation of the two statistical 
theories we will further consider random testing in its own right, 
but it should be stated at the outset that we do not advocate it as 
a practical method except in special cases. Rather, we believe it 
to be the theoretical ideal, and thus perfect for analyzing other 
methods (here, partition testing). 

A. Failure-Rate Model 
Duran and Ntafos [3] use the conventional failure-rate model 

in which a program is assumed to fail at rate 8, and the probability 
that n independent tests will reveal at least one failure is 

1 - (1 - 8)”. 

(The tests are assumed to be drawn from the operational dis- 
tribution.) On the other hand, if nj points are similarly chosen 
from class Di, the class failure rate in each of K classes being Bi 
(1 s i s K ) ,  then the probability of these tests revealing at least 
one failure is 

K _ _  
1 - n (1 - 81)”’ 

,=l 

The two formulas immediately above can be compared, and 
thus the effectiveness of pai t ion testing and random testing can 
be compared, if the relationship between n, 8, and the ni, 8, is 
established. One should evidently take n, = n for a fair 
comparison: the total number of tests is thus made the same. 
The relationship between 8 and the Bi is dependent on the input 
distribution relative to the classes. The remainder of this section 
describes models of this relationship. 

1) Preliminary Investigations: In order to illustrate the 
method, we will start with the simplest (and least realistic) 
model. This model assumes that a randomly chosen input is 
equally likely to fall within each subdivision of the partition, 
for which I 

l K  
- Cei = e. 

i=l 

The difference between random testing and partition testing in 
terms of the probability of finding at least one failure will be 
maximum when the variance of the Bi is at a maximum. For 
the case where there is one sample per class, this occurs when 
samples in all the classes except one (say the dth subdomain) 
have a zero chance of failing, and samples in class d have 
probability Od = KO = n8 of failing. Table I shows the ratio 
between the probabilities of finding at least one failure by random 
testing and by partition testing for a range of 8 and K. The data 
in Table I assume that all of the probability of failure comes 
from one class. As 8 decreases the differences between the 
methods also decreases. For 8 in the range where it should be 
for released software, the differences are minor unless there are 
many classes. 
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TABLE I 
RATIO OF PROBAEXITIES OF FWDING SOME 

FAILURE FOR RANDOM VERSUS PAR”I0N ’kiTING 

Class 
Count 

Failure rate 8 

0.1 0.01 0.001 o.oO01 o.oooo1 

1 

2 

5 

10 

25 

50 

1000 

1.0 1.0 1 .o 1.0 1.0 

0.95 1.0 1 .o 1.0 1.0 

0.82 0.98 1.0 1.0 1.0 

0.65 0.96 1.0 1.0 1.0 

0.89 0.99 1 .o 1.0 

0.79 0.98 1.0 1.0 

0.63 0.95 1.0 

As long as the probability of a random input being in a class 
equal for all classes, the number of classes has to be of the same 
order of magnitude as the inverse of 0 for there to be a significant 
advantage to partition testing. In addition, there have to be classes 
with high failure rates. With the most favorable assumptions, the 
limiting case for this model is that random testing will be 1 - l / e  
or about 0.63 as effective as partition testing. 

2) The Duran and Ntafos Model: Duran and Ntafos [3] in- 
vestigated a somewhat more realistic model of random-input 
distribution over the classes. Expressing the probability of de- 
tecting an error by random testing in terms of the classes, 

/ K \ n  

where p ,  is the probability that a randomly selected input will 
fall in class i. Duran and Ntafos selected the probabilities pi 
from a uniform distribution, thus varying the chance that classes 
are hit by random tests. They then selected O1 to simulate (nearly) 
homogeneous classes. Classes were generated with a 2% chance 
of having a failure rate above 98% and a 98% chance of having a 
failure rate below 4.9%. Very little data was presented in [3]; only 
two values for the number of classes (25 and 50) were presented, 
and n, was always 1, so that n = K. For these parameters, Duran 
and Ntafos found little difference between partition and random 
testing. 

3) Variations on the Duran and Ntafos Model: These indica- 
tions are so counterintuitive that we attempted to explore the 
parameters of the Duran/Ntafos model more fully, but found 
much the same results as long as we used the same model. 
We varied the 0, distribution by changing the balance of classes 
having high- and low failure rates. We also tried different upper 
bounds on the low-failure-rate classes and different lower bounds 
on the high-failure-rate classes. We also tried a wider range 
of numbers of classes and different numbers of samples per 
class. The results universally favored partition testing, but not 
by much. In all cases the random method was at least 80% as 
effective as the partition method. For example, exploring one 
case from [3], 25 classes were selected, each having either a 
“high” failure rate (uniformly distributed from 0.98 to 1.00) 
or a “low” failure rate (uniformly distributed from 0.049 to 
0.00). The probability of a class having a high failure rate was 
varied. (The second row of the table is the case reported in 
[31.) 

Probability of high 
failure rate 

0.01 

0.02 

0.04 

0.10 

0.20 

0.30 

Probability of finding some failure 

Partition Random Ratio 

0.60 0.54 0.94 

0.75 0.66 0.91 

0.77 0.70 0.93 

0.93 0.85 0.91 

1.0 0.98 0.98 

1.0 1.0 1.0 

Thus it does not seem to matter what proportion of the classes 
are those containing failures. 

We next explored the approximation to homogeneous classes. 
The probability of a class having a high failure rate was held 
constant at 0.02, the number of classes was 25 and the upper 
limit of the failure rate in the low failure rate classes was 0.049. 
The range of failure rates in the high failure rate classes was 
allowed to vary: 

High failure rate 
Lower Bound 

Probability of finding some failure 

Partition Randdm Ratio 

0.69 0.60 0.90 

0.90 OJ30 I 0.65 0.58 0.93 

0.95 

0.99 

0.63 0.56 0.92 

0.66 0.59 0.93 

The homogeneity of the high-failure-rate classes increases toward 
the bottom of the table, but it does not seem to change the balance 
between methods. 

A similar set of cases were tried for the low-failure-rate upper 
bound. The probability of a class having a high failure rate was 
held constant at 0.02, the number of classes was 25 and the lower 
limit of the failure rate in the high failure rate classes was 0.98. 
The range of failure rates in the low failure rate classes was 
allowed to vary: 

Low failure rate 
Upper Bound 

Probability of finding some failure 

Parti ti on Random Ratio 

0.20 I 0.96 0.94 0.98 

0.10 

0.05 

0.82 0.78 0.96 

0.66 0.60 0.94 

0.01 I 0.56 0.43 0.88 

Again, homogeneity increases downward, with only a slight gain 
for partition testing. 
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hidden the partition 
Hidden class failure 

rate 

1 .o 
0.1 

0.01 

0.001 

0.0001 

0 . m 1  

0.000001 

o.oooooo1 
0 
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method behaves as follows: 
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Varying the bounds of both the high- and low-failure-rate 
classes together produced little difference: 

Failure rates bounds 

High LOW 

0.80 0.20 

0.90 0.10 

0.95 0.05 

0.99 0.01 

Probability of finding some failure 

Partition Random Ratio 

0.96 0.95 0.99 

0.84 0.81 0.96 

0.68 0.57 0.88 

0.49 0.34 0.85 

Thus although more homogeneity is better for partition testing, 
the results are not very sensitive to the approximation used. 

Duran and Ntafos note that if random testing is cheaper than 
partition testing (because the classes need not be devised), then 
the slight advantage for partition testing could be overcome by 
using more random tests. In the case they examine, it would 
require 32 random tests to equal the average effectiveness of 
25 classes. Using the above model we were unable to find a 
situation in which partition testing was clearly superior, and 
in which varying the parameters exaggerated that superiority. 
We thus conclude that, in the Duran and Ntafos model, a 
modest increase in random-testing intensity will always suffice 
to compensate for partition testing’s advantage. 

4) Special-Purpose Models: Perhaps partition testing cannot 
attain a clear advantage because of a deficiency in the Du- 
ran/Ntafos model. The model is unrealistic because the overall 
failure probability is quite high. In reproducing the case described 
in [3] we found the average failure rate to be B = 0.04, which is 
much higher than should be expected in a released program. For 
the case above with the largest difference between the random 
and partition methods, the overall failure rate averaged 0.017. 
In addition, the overall failure rate varied between trials largely 
because a larger or smaller number of high-failure-rate classes 
were generated. The largest differences between the testing 
methods occurred when 0 for the individual trials had the highest 
variability. Another problem with the model is that it assumes 
that classes are selected purely for their homogeneity and not as 
a way of focusing test cases in areas where failures are more 
likely. No correlations were explored between the probability of 
a random input being in a particular class and the failure rate 
for that class. The assumption that partitioning methods create 
a uniform distribution of probabilities of inputs falling in each 
class also seems unrealistic. 

We therefore devised specific models to investigate the ques- 
tions raised in Section I: 

1) Is it important that classes be chosen to find failures (as 

2) How does the efficacy of partition testing depend on class 

The first question was addressed by adding to the model above 
a correlation between the probability of a random input being in 
a given class and the class’s failure rate. The classes with higher 
failure rates were forced to have a lower probability that a random 
input would fall in them. In a series of experiments, different 
weight was given to 1 - 8, in selecting the class p , .  Aside from 
the added correlation between pI and Bz the parameters were the 
same as for [3]. 
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rate was lower in the hidden classes, increasing the number of 
hidden classes caused the partition method to fare worse. 

In another experiment, failure rates were randomly generated 
for 24 hidden classes. The failure rate in a single exposed class 
was adjusted to maintain a constant overall failure rate. In 100 
trials the failure rate was set to 1 at random for a low proportion 
of the hidden classes. For low overall failure rates the partition 
method was clearly superior to the random method when the 
probability of a failure rate of 1 was 0.01 or greater in the hidden 
classes. If the probability of a failure rate of 1 was reduced to 
0.001 the random method was significantly better. 

The second question to be addressed by the special pur- 
pose models concerned the importance of homogeneity. When 
classes are precisely homogeneous, the assumption that a point 
is selected from each class amounts to proving correctness, 
and in that case partition testing should outperform random 
testing by any desired factor, the more so the smaller the failure 
probability. (However, as pointed out in Section 11-A, the case 
of perfect homogeneity has no practical significance, because 
points cannot necessarily be found in “failure” or off-diagonal 
classes.) We expected to observe the effects of homogeneity in 
the above simulations, but did not, so a special experiment was 
performed. In the last model described above, high failure rates 
in the hidden classes were permitted to vary uniformly from 
1 to 0.2 (low homogeneity) and the results were compared to 
the case where they varied from 1 to only 0.9 (high homo- 
geneity). The largest impact of low homogeneity was found 
to be only a 22% decrease in the effectiveness of partition 
testing. In cases where very few of the classes (0.001 or less) 
contain a high proportion of failures, class heterogeneity has no 
effect. 

5) Failure-Rate Model Summary: These special-model results 
indicate that the advantage of partition testing arises only from 
increased sampling in regions where failures can occur. In 
other words, if you already know where failures are likely, this 
information can usefully partition the input space. This is contrary 
to the discussion in [3] where the homogeneity of the classes is 
the important factor. If this result is correct, it calls into question 
the basis of most testing methods based on coverage, which 
partition on the basis of assumed homogeneity and ignore failure 
probability. Finding a few classes with failure rates much greater 
than the overall rate is more useful than finding many nearly 
homogeneous classes with undistinguished failure rates. 

B. Defect-Rate Model 

The fundamental assumptions of the failure-rate model are 
called into question in [5], and a probable-correctness model 
proposed instead. It is argued that faults are uniformly distributed 
in the state space of the program code, not over the input space 
of program executions. The valid partitions are therefore those 
that result from reflecting uniform coverage of program states 
into the input domain where testing must be done. Of course, 
sampling according to this model is even less practical than trying 
to observe an unknown operational distribution. The reflected 
distribution cannot be calculated even in principle, because it is 
an unsolvable problem to determine the data states that can reach 
an arbitrary control point. However, using an idea of Valiant’s 
[lo], it is still possible to relate the number of test points to the 
probability of missing a failure. We cannot in general find an 
ideal partition, but we can compare methods on the assumption 
that an ideal partition was used. 

1) Valiant’s Model: Valiant’s statistical model describes the 
situation in which independent drawings are made from a space 

containing many kinds of objects. When drawings fail to turn 
up any new kinds, how likely is it that they are still present? 
The application to testing for confidence is that the space is 
all program executions, the drawings are tests, and failures are 
never drawn. How many successful trials N are needed to have 
confidence that the probability of unseen failures in the space 
is less than p? A relationship between N, p, and the s u e  of the 
space K is derived in [5] (and reexamined below), from which N 
can be calculated. This result can be used to compare partition 
testing to random testing. 

Throughout this paper we have used “confidence” in its 
nontechnical sense expressing the belief that a program is of good 
quality, unlikely to fail. In this section the word will instead have 
its technical meaning of a probability that another probability is 
correct. We return to the nontechnical meaning in Section IV. 

The learning-theory application for which Valiant devised his 
model is only concerned with the probability of unseen objects 
in a fixed space. The calculation is not exact, and its quality 
depends on the size of the space K. Thus in comparing two 
different spaces the results may be invalid if the inaccuracies lie 
in the wrong direction. We repeat the derivation with attention to 
these details and the application to testing; it turns out that both 
[lo] and [5] are incorrect (although the qualitative results do not 
change). We also separate the confidence probability from the 
probability that failures have been missed, which neither [lo] 
nor [5] investigated. 

Suppose a space of K kinds of successful program executions 
is sampled, with the result that no failures are,observed. We wish 
to establish that the fraction of failures that might exist unseen 
in the space is less than p, and to do so with a confidence e, 
by selecting a sample of N points without a failure. Valiant’s 
idea was to count the number of ways the samples could be 
dispersed over the different kinds of executions. A dispersion of 
s, i.e., that exactly s + 1 different kinds were chosen among the 
N points, can be viewed as exposing s differences in the drawing. 
For example, s = 0 means that there were no differences exposed, 
because s + 1 = 1 kinds were drawn. Suppose that the probability 
of drawing a different kind were d,  independent of the number 
of points drawn. Then the probability of dispersion s is given by 
the Bernoulli distribution: 

(T)d”(l - d)N--s .  

Dispersions from 0 to K - 1 are independently possible without 
drawing a failure, so the probability that N points will all be 
successful executions is 

Valiant argues that although the probability of drawing a different 
kind is not constant-indeed it decreases as more kinds have 
been drawn-it is always greater than p, the probability of 
drawing a failure, because all failures remain undrawn. Because 
the summation above is nondecreasing when d decreases [ll], 
replacing d with the smaller p overestimates the probability, 
so that N is an upper bound, establishing confidence e that the 
failures occupy no more than fraction p of the space when 
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(In [lo] the size of the space is wrong, e.g., K = 2 for {success, 
failure} instead of K = 1; in [5] the summation has the right 
number of terms, but starts at 1 instead of 0.) 

It is argued in [5]  that failure fraction p must be very small to 
obtain confidence in software being correct; however, it is less 
clear that the confidence e needs to be extreme. Some typical 
values for p = IOd6 are: 

5 

12 

19 

29 
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K 

99.999 62 400 89 

90 48 300 38 

50 39 700 14 

5 30 200 2.4 

1 26 800 0.30 

In contrast to the behavior as K increases, improving e does not 
substantially increase the samples required, and the sensitivity 
decreases with increasing K. Similar behavior is observed as p 
varies over six orders of magnitude: N does not vary greatly 
with e .  To a crude approximation, for larger K and smaller p, N 
increases directly, but N changes slowly with e.  

2) Testing Comparison: Valiant’s model can be used to com- 
pare partition testing to overall random testing. The comparison is 
quite different from the ones presented in Section 111-4 because 
it is in terms of unseen failures. Nothing is assumed about the 
probability these will ever come to light in using the software, 
merely that they exist. Thus we are looking for all possible 
defects, a form of assurance testing that is far more stringent than 
mere operational reliability. Consider testing in L subdomains of 
a partition, seeking to establish a probability h that no failures 
are possible. Assuming the subdomains cannot be refined, the 
execution space for each is only {success, failure}, i.e., K = 1. 
Let the probability that a failure exists in each subdomain be p. 
Then the probability that there is no failure in each is 1 - p, 
and that there is no failure in them all is (1 - p)”. Then the 
probability of at least one hidden failure is h = 1 - (1 - p)”. 
Solving for p, we obtain the probability that must be attained 
in the subdomains to gain the overall h (which is of course 
more stringent than h): p = 1 - (1 - h)llL. Thus the number of 
samples needed in each subdomain is Np, which can be calculated 
from the formula above using this p and K = 1. 

On the other hand, overall random sampling requires NR 
samples, in the formula using h directly, in a space of no more 
than K = 2L kinds of objects (successlfailure in each subdomain). 
The ratio LNP/NR is a measure of the quality of the two testing 
methods, since the respective number of points give the same 
probability for undiscovered failures. The result in [5] is that 
partition testing requires many times more tests, and the disparity 
widens with more subdomains and more stringent probabilities. 
The model presented in Section 111-A suggests that partition 
testing will only outperform random testing for a small number of 
subdomains, and high failure probability, cases not investigated 
in [5]. Taking L = 20 subdomains, the ratio of points required 
by partition testing to those required for random testing at the 
same confidence ( e )  and failure probability (h = 0.001) was 
investigated as follows: 

Thus random testing outperforms partition testing by many times, 
unless very low confidence is to be placed in the results. Similar 
results are obtained for wide variations in number of subdomains 
(partition performance is better for fewer subdomains) and failure 
probabilities (partition performance declines as failure is less 
likely). 

3) Discussion of Valiant’s Model: When K = 1 the formula 
above is exact, because only dispersion 0 is possible, and the 
chance of drawing N executions of the same kind is (1 - p)”, 
in agreement with conventional decision theory. But for K > 1 
the calculated bound N is too large, because the probability p 
is an underestimate. In the comparison of partition and random 
testing, the choice of K = 2L for random testing also leads to 
overestimating NR, because the space might be as small as L (if 
none of the subdomains contained failures). The results therefore 
make random testing appear worse than it is. Thus the balance 
in favor of random testing is increased rather than mitigated by 
the inaccuracies in the calculation. 

Partition testing should be a “divide and conquer” strategy, 
but under the assumptions of the defect-rate theory it is really a 
“divide and founder” one. L subdomains turn one problem into 
L problems, and since a given level of assurance in the whole 
requires a higher assurance level in each part, each new problem 
is more difficult than the original. (The small subdomains of the 
partition decrease Np,  but not so much as the more stringent 
assurance increases it.) This observation explains the results, but 
does not help much in explaining their counterintuitive nature. 
The difficulty may lie with the model itself. Subdividing test 
success/failures by attaching the subdomain from which the 
test input came, is not clearly an accurate description of the 
overall random test situation. The subdivision seems arbitrary, 
unconnected to the test method, yet it influences the result. The 
assumption that tests are independent samples from the space of 
all executions is also suspect: how can this be arranged through 
the input domain that favors some execution patterns and makes 
others extremely difficult to excite? 

IV. DISCUSSION: How SHOULD WE TEST? 
It should be a goal of testing theory to provide sound advice 

for those who practice the testing art. In this section we provide 
practical advice based on the theory of Section 111. 

A. Confidence Versus Failure 

Our main point has been to call into question the common 
wisdom that confidence in software is obtained by vigorously 
seeking failures, and when a variety of (partition-testing) methods 
finds no more failures, concluding that the software will prove 
reliable in use. Unless the methods used employ orders of 
magnitude more test points than is usual, this conclusion is 
false. Random testing is the only standard for reliability in use, 
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and we have shown in Section 111-A that partition testing has a 
hard time improving on it. About 4.6 million successful inputs 
drawn from the operational distribution are required to attain 99% 
confidence that a program will fail less than one time in In 
partition testing which is about as good as random testing, a (say) 
specification-based partition test in which one test is tried in each 
of 100 subdomains, gives high confidence only that the chance 
of failure is less than about 1 in 25. Clever choice of a partition 
in no way compensates for the disparity in these numbers. 

A second, similar point is that the situation is even worse if 
the tested software is to be assessed for defects. Further orders 
of magnitude more tests are required, so many that these will 
never be practical; and, partitions perform badly. The theory 
of Section 111-B is more questionable than that for conventional 
reliability, but its results are provocative. 

B. Application to Overlapping Subdomains 

The “natural” subdomains of partition methods are those that 
arise from the method’s systematic character. For example, 
a person seeking to attain statement coverage considers one 
statement at a time, and hence the natural subdomains are test 
inputs that execute each statement. Similarly, a mutation tester 
tries to kill individual mutants, so inputs that kill a mutant are a 
natural subdomain. As Section 11-B notes, the natural subdomains 
do not form a partition for these and some other methods, so the 
results of Section 111 do not apply directly. A true partition can 
always be formed from a collection of overlapping subdomains 
by treating intersections as distinct classes. In this section we 
apply the results of Section 111 to a partition obtained from an 
overlapping method, to analyze the original method. 

Much of Section 111-A was devoted to investigating the way 
an overall random test on a domain falls among the subdomains 
that partition that domain. The results can now be applied in 
miniature. Consider a natural subdomain as the whole, and its 
intersections with other natural domains as the partition classes. 
The rough results of Section 111-A are that it will be difficult to 
see the difference between “partition testing” (that is, choices in 
the artificial, true partition), and “random testing” (that is, choices 
from the original subdomain). It is not quite that simple, however, 
because each natural subdomain is not isolated. Choices made 
in two natural subdomains may both fall in the intersection, so 
that in the true partition, some classes are sampled more heavily 
than others. Again, results of Section 111-A apply. If the heavily 
sampled intersection classes have a high failure rate, the original 
test, considered on the artificial partition, will appear better; or, 
if the intersection classes have about the same failure rates as 
the natural subdomains of which they are part (or lower failure 
rates), the true partition test will be the same (or less effective), 
compared to the original. 

Detailed analysis of particular methods will be required to 
discover if their overlap is beneficial or harmful. In general, we 
can say that benefits are likely to be short-lived in the testing 
process. Suppose an overlapping part of several subdomains has 
a high failure rate, and so partition testing in the overlapping 
method is really better than it seems. Once the faults that were 
exposed are fixed, the overlap class loses its usefulness. 

The results of Section 111-B seem to apply to methods with 
overlapping subdomains, but partition testing may do even more 
poorly. The true partition formed by intersecting the natural sub- 
domains has new classes, and the number of samples is divided, 
perhaps increasing in overlap classes, but certainly decreasing 

where there is no overlap. Without attempting a careful analysis, 
it appears that the negative factors will outweigh the positive. 

In any case, nothing in overlapping subdomains mitigates 
the disparity between the number of test points required for 
confidence and the number usually used in partition testing. 
It could happen that overlap increased the sampling rate in 
an intersection class manyfold, and that class might also be 
heavily weighed in the operational distribution. But a difference 
of several orders of magnitude is difficult to make up. 

C. Improved Partition Testing 
It is not unfair to say that partition-testing methods have 

been devised to meet the twin criteria of systematic coverage 
of software features and homogeneous subdomains. Covering 
something that is manifest in programs allows the testing to be 
systematic; homogeneity is the ideal circumstance under which 
partitions should work. Our results of Section 111-A call both 
criteria into question. Undifferentiated coverage is the antithesis 
of concentrating failures in subdomains; in the imperfect practical 
case homogeneity is not very important. Thus existing partition 
testing methods, created to meet irrelevant criteria, may admit 
considerable improvement. (Failure-finding ability is the issue ad- 
dressed by our theory; of course, systematic coverage is still use- 
ful in devising tests, and we do not suggest that it be abandoned.) 

Careful analysis of existing methods is needed to see how 
well they create subdomains with high failure rates, and to be 
sure about the consequences of subdomain- overlap. We expect 
to see some quantitative differences between existing methods, 
backing up the intuition that some methods (notably mutation) 
seem to be “harder to fool” than others (notably path testing). It 
should be especially interesting to take a hard look at methods 
that seem to be partitions just for the sake of division, for 
example specification-based blackbox testing, or intersection of 
subdomains arising from different methods. The theory predicts 
that these are the least valuable for exposing failures, yet they 
are among the most trusted in practice. 

We apply the theory to suggest a new partition-testing method 
that should expose failures, because it creates subdomains with 
high failure rates. Let us call this method “suspicion testing.” Its 
subdomains (which are overlapping) are defined by identifying 
inputs that probe parts of the software likely to fail. The sources 
of failure are obvious and well known; yet, suspicion testing is 
not commonly practiced. The following identify routines in a 
developing system that may be expected to cause trouble: 

A routine written by the least experienced programmer on 
the project. 
A routine with a history of failure, either in development 
or in the field. 
A routine that failed an inspection and had to be substan- 
tially modified late in the design cycle. 
A routine involved in a late design change, begun after 
most coding was complete. 
A routine about which a designer or coder feels uneasy. 

The reader can no doubt add to this list. 
At the system level, suspicion testing defines a kind of gross 

“routine coverage”-tests must invoke each routine-weighted 
to emphasize troublesome routines. At the unit level, suspicion 
testing requires that testing methods used on troublesome routines 
be more extensive than usual. For example, branch coverage 
could require many distinct tests to take each alternative, or that 
two independent branch-coverage test sets be devised, or that if 
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N random tests are needed to attain branch coverage, that 5N be 
used instead. 

V. SUMMARY AND SUGGESTIONS FOR FUTURE WORK 
It has been shown that partition testing is not a good technique 

for inspiring confidence in a program through successful tests. A 
combination of theoretical and statistical analysis indicates that 
its success occurs only when subdomains with a high failure 
probability can be identified-that is, when the failures are 
suspected and localized. This is not a bad thing, and such 
subdomains are well suited to debugging. But the usual release 
test based on partition testing, that is, one in which no failures 
are observed, is no better than a random test without subdomains. 
And because the test points selected in each subdomain are few 
and the selections are not independent, as a random test it has 
very small significance. If the release test is constructed from 
debugging tests, it is particularly untrustworthy, since the small, 
failure-prone subdomains that are good for debugging are just 
the wrong ones to inspire confidence. 

If random testing is to be a viable alternative to partition 
testing, there must be a shift from people-intensive test design to 
machine-intensive automatic test generation. Testing is a problem 
that parallelizes perfectly, so the concurrent processing power 
that is rapidly coming into use may supply the machine resources 
economically. But random testing with orders of magnitude more 
tests than are used today is impractical without a test oracle 
to mechanically judge the results. In unusual situations there 
is a simulation program, an old software system that is being 
replaced, or even a physical system that can be measured to 
serve as an oracle. Two special cases deserve mention. In one, 
testing a protocol or a codingldecoding scheme, the output should 
be the same as the input, which is easy to check mechanically. 
In another, testing a Postscript interpreter for a color printer, 
random-test output was visually compared to samples from 
similar printers [12]. In the typical case, however, no oracle 
exists. Research on formal, effective specifications is therefore 
of the first importance for testing. 

All partition-testing methods are suspect when used to gain 
confidence in software. Particularly suspect are the important 
cases of quality assurance in which haphazard test collections are 
augmented to achieve coverage (but no failures appear), and the 
case of regression testing in which coverage is attained without 
failures. Our theory suggests that to demonstrate the efficacy of 
such methods even for debugging, their proponents must show a 
connection between the method’s subdomains and likely failures, 
and must study the question of overlap. 
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