
Bluetooth scatternet formation from a time-efficiency perspective

Ahmed Jedda • Arnaud Casteigts • Guy-Vincent Jourdan •

Hussein T. Mouftah

� Springer Science+Business Media New York 2013

Abstract The Bluetooth Scatternet Formation (BSF)

problem consists of interconnecting piconets in order to

form a multi-hop topology. While a large number of BSF

algorithms have been proposed, only few address time as a

key parameter, and when doing so, virtually none of the

solutions were tested under realistic settings. In particular,

the baseband and link layers of Bluetooth are highly spe-

cific and known to have crucial impacts on performance. In

this paper, we revisit performance studies for a number of

time-efficient BSF algorithms, focusing on BlueStars,

BlueMesh, and BlueMIS. We also introduce a novel time-

efficient BSF algorithm called BSF-UED (for BSF based

on Unnecessary-Edges Deletion), which forms connected

scatternets deterministically and limits the outdegree of

nodes to 7 heuristically. The performance of the algorithm

is evaluated through detailed simulation experiments that

take into account the low-level specificities of Bluetooth.

We show that BSF-UED compares favorably against

BlueMesh while requiring only 1/3 of its execution time.

Only BlueStars is faster than BSF-UED, but at the cost of a

very large number of slaves per master (much more than

7), which makes it impractical in many scenarios.

Keywords Bluetooth � Scatternet formation �
Distributed algorithms � Topology control

1 Introduction

In this paper, we study the problem of forming multi-hop

ad hoc networks with Bluetooth, one of the most wide-

spread communication technologies. Point-to-point com-

munication between two Bluetooth devices is relatively

straightforward, but the construction of efficient multi-hop

topologies is challenging. This problem attracted much

attention a decade ago, less recently as the question of

whether Bluetooth is more than a point-to-point cable

replacement technology started to be debated. With the

current development of home automation and personal area

networks, which involves devices as varied as heart-rate

monitors, smart-phones, blood-glucose meters, smart

watches, window and door security sensors, car key fobs,

or blood-pressure cuffs, there is a revival of interest for

Bluetooth in an ad hoc networking context. This revival is

also due to the wide adoption of Bluetooth (about 95 % of

today’s mobile phones are enabled [1]) and the fact that it

offers communication at low cost, low energy consump-

tion, and low interference. While the Bluetooth specifica-

tions kept evolving (it is now in its seventh version), new

marketing trademarks were recently pushed forward by the

Bluetooth Special Interest Group (SIG) in anticipation of a

new networking trend around Bluetooth, including Blue-

tooth Smart and Bluetooth Smart Ready.1

The Bluetooth Scatternet Formation (BSF) problem:

According to the specifications [2], a Bluetooth device can

A. Jedda (&) � G.-V. Jourdan � H. T. Mouftah

School of Electrical Engineering and Computer Science,

University of Ottawa, Ottawa, Canada

e-mail: ahmed.jedda@uottawa.ca

G.-V. Jourdan

e-mail: gvj@uottawa.ca

H. T. Mouftah

e-mail: mouftah@uottawa.ca

A. Casteigts

LaBRI, University of Bordeaux, Bordeaux, France

e-mail: arnaud.casteigts@labri.fr

1 Bluetooth Smart Ready: http://www.bluetooth.com/pages/Bluetooth-

Smart-Devices.aspx. Fetched on Dec. 20, 2012

123

Wireless Netw

DOI 10.1007/s11276-013-0664-z

http://www.bluetooth.com/pages/Bluetooth-Smart-Devices.aspx
http://www.bluetooth.com/pages/Bluetooth-Smart-Devices.aspx

be either master or slave when it communicates. A master

along with its slaves is called a piconet. All communica-

tions in a piconet is controlled by the master. The number

of active slaves (that is, slaves that can participate in the

piconet’s communication) is limited to 7. More slaves are

possible in a piconet if some of them are inactive (or

parked). In such cases, the master dynamically parks and

unparks its slaves to regulate communications, which

imposes a penalty on the piconet throughput. Thus, main-

taining the number of slaves per piconet below 7 is highly

desirable. A piconet that has at most 7 slaves is called

outdegree limited.2

The interconnection of several piconets is called a

scatternet. Scatternets are the solution for multi-hop com-

munication in Bluetooth. A scatternet interconnects several

piconets by having some nodes playing a dual role in two

piconets, namely, master in one piconet and slave in the

other (M/S bridge) or slave in both (S/S bridge). M/M

bridges are not allowed (that is, a node cannot be master to

more than one piconet at the same time). A bridge node

must schedule its time between the different piconets it

belongs to (using a so-called interpiconet scheduling

algorithms). As a result, a large number of bridges in a

scatternet also imposes a penalty on the throughput of the

scatternet. Among those, M/S bridges impose a higher

penalty than S/S bridges because an M/S bridge causes all

its slaves to be inactive when it is itself inactive. It is also

preferable to keep the number of piconets a node belongs

to—its number of roles—to a minimum. A classical metric

in this regard is the average number of roles per node. A

scatternet such that all its piconets are outdegree limited is

called an outdegree limited scatternet. Limiting the out-

degree of a scatternet, which is a main objective in many

BSF algorithms, improves the performance of the scatter-

net significantly.

An algorithm that forms scatternets is called a Bluetooth

Scatternet Formation (BSF) algorithm. The way piconets

must interconnect to form scatternets is not specified in

Bluetooth specifications and left open to the research

community. The many possible approaches as well as the

number of quality metrics to be assessed on the resulting

topology make this problem challenging. One difficulty is

that some of the metrics are conflicting (i.e., improving one

may deteriorate another). We are interested in BSF algo-

rithms that balance between all metrics under reasonable

assumptions, while keeping a light emphasis on the exe-

cution time for suitability to changing environments.

It is a challenging task for BSF algorithms to verify such

a dosage of performance metrics. BlueStars [3] forms in a

time-efficient manner connected scatternets that have a low

number of piconets and M/S bridges, but potentially a large

number of slaves per piconet. Many attempts have been

made to solve the issue of large piconets in BlueStars. For

instance, Li et al. [4] introduce an algorithm that generates

outdegree limited scatternets using geometric structures,

but they assume that knowledge of nodes positions is

available. Bluenet [5] forms outdegree limited scatternets

with an acceptable number of piconets and M/S bridges,

but does not guarantee connectivity of the resulting scat-

ternet. BlueMesh [6] offers similar qualities together with

connectivity, but at the cost of a long execution time.

Another example is BlueMIS I [7] which generates in a

time-efficient manner scatternets that are connected and

outdegree-limited but with significantly high number of

piconets. The authors of [7] introduce simple rules to be

executed over BlueMIS I that were called BlueMIS II in

order to improve the qualities of BlueMIS I. However,

BlueMIS II suffers from either a long execution time or

outdegree unlimited scatternets depending on how these

rules are implemented.

Unfortunately, the BSF algorithms which are presented

as time-efficient were not evaluated under the complex

baseband and link layers of Bluetooth, despite the high

specificity of these layers and their impact on performance.

The corresponding papers either do not mention what

simulator was used, or present simulations that relied on

naive simulators such as simjava [8] or bluehoc,3

which makes it hard to assess the real efficiency of these

solutions.

This paper extends a line of work [9, 10] whose focus is

the execution time of Bluetooth networks algorithms. In

[10], we showed how simple changes in the configuration

of Bluetooth devices may either significantly improve or

degrade the execution time of a distributed algorithm

running over a Bluetooth network. The work in [10]

focused on time efficient implementations of communica-

tion rounds in Bluetooth networks (that is, we studied the

problem of how every node sends and receives a message

to and from all its neighbors as fast as possible). The study

in [10] introduced us to interesting properties of Bluetooth

networks. These properties affect the execution time of

distributed algorithms run over Bluetooth networks. These

properties must be considered in the design of BSF algo-

rithms in order to improve their execution times. In [9], we

used some of the results obtained in [10] to design time-

efficient outdegree limited BSF algorithms. The algorithms

of [9] do not perform well in term of some performance

metrics.
2 In the following, a piconet is modeled as a star graph with a master

and slaves. We model a master-slave relationship as a directed edge

from the master to slave, hence the number of slaves of a master is its

outdegree. 3 Bluehoc: http://bluehoc.sourceforge.net/. Fetched on Dec. 20, 2012

Wireless Netw

123

http://bluehoc.sourceforge.net/

The first main contribution of this paper is a compara-

tive study of major BSF algorithms. The major criteria that

we focus on in the studied algorithms are:

1. The execution time of the algorithms, from an

empirical and theoretical point of view.

2. The balance between performance metrics: a BSF

algorithm shall form scatternets that are efficient with

respect to performance metrics other than execution

time (e.g., scatternet connectivity, outdegree limita-

tion, number of bridges, average role per node and

fault tolerance). and,

3. Other criteria: a BSF algorithm shall not run only in

single-hop networks, or depends on knowledge of

nodes positions or relative distance to other nodes, or

assume the existence of a centralized entity, such a

server or a fixed distinct node.

The algorithms that match our criteria are BlueStars [3],

BlueMesh [6], BlueMIS I and BlueMIS II [7]. These

algorithms form mesh-like scatternets which give more

fault-tolerance to the scatternet compared to tree-like

scatternets. These algorithms have distinctive theoretical

and practical features, as it is shown in the rest of the paper.

We believe that these algorithms are the best of their kind.

This view is shared with the authors of [11].

The second main contribution of this paper is the

introduction of a distributed algorithm that we call Blue-

tooth Scatternet Formation based on Unnecessary Edges

Deletion (BSF-UED). Algorithm BSF-UED uses concepts

of BlueMesh, BlueStars and BlueMIS in order to achieve a

balance between the advantages of these algorithms. We

give special attention to forming outdegree limited scat-

ternets in a time efficient manner without significantly

affecting the other quality metrics of the scatternet. We

focus mainly on three performance metrics of scatternets,

(1) connectivity, (2) execution time, and (3) outdegree

limitation. Focusing on a small set of requirements without

significantly affecting other quality metrics leads to a better

understanding of the problem which, as a result, leads

towards the design of more efficient BSF algorithms in the

Future. Algorithm BSF-UED is time-efficient, and deter-

ministically forms connected scatternets in multi-hop net-

works and heursitically forms outdegree limited to 7. It

forms scatternets with a low average role per node, low

average piconet size using low number of messages. Fur-

thermore, the algorithm does not require any knowledge of

position or relative distance between nodes. The idea of the

algorithm is to delete edges that are unnecessary for the

connectivity of our scatternets using simple local rules.

BSF-UED may form scatternets that are not outdegree

limited. However, simulation experiments show that using

BSF-UED with a heuristic, which we call H1, generates

scatternets that are outdegree limited in virtually all the

cases (e.g. only one outdegree non-limited scatternet was

formed over 5000 runs we performed).

The performance of BSF-UED is studied using simula-

tion experiments. It is compared to that of BlueStars [3],

BlueMesh [6] and BlueMIS [7]. We show that the execu-

tion time of BSF-UED is approximately 1/3 the execution

time of BlueMesh. BSF-UED is shown to form scatternets

with similar properties to those of BlueMesh. We show that

BSF-UED is better than the algorithms in hand with respect

to many performance metrics. We include also a theoretical

analysis of the algorithms in hand in ‘‘Appendix 1’’.

The paper is organized as follows; Sect. 2 gives some

basics of the Bluetooth technology. Section 3 gives a for-

mal definition of the Bluetooth Scatternet Formation

problem. Section 4 gives a brief literature review. Section 5

describes in details the algorithm BSF-UED. Section 6

discusses the simulation results, and Sect. 7 concludes the

paper.

2 Bluetooth basics

Bluetooth technology is a wireless technology that uses the

ISM band from 2,400 to 2,480 MHz divided into 79

channels (1 MHz each). Bluetooth devices use the Fre-

quency Hopping Spread Spectrum (FHSS) technique for

communication. A pair of nodes communicating with each

other alternates between a set of pseudo-random frequency

channels known to both nodes. During this alternation, the

nodes exchange their messages. Two basic procedures are

of interest to us; the device discovery and link establish-

ment procedures. For a node to discover a neighbor, it must

switch to a state called INQUIRY. It broadcasts small

packets called ID in different channels to announce its

existence. A node that wants to be discovered switches to a

state called INQUIRY SCAN. The scanner alternates

pseudo-randomly between a set of channels. If a scanner

receives one of the packets of an inquirer, it sends back a

packet to the same inquirer. The two devices exchange

some packets then. The procedure of discovery is termi-

nated thereafter.

Bluetooth is a connection-oriented communication

standard (that is, any two communication nodes must build

a link before communicating). For a node u to establish a

link with a neighbor v, node u switches to a state called

PAGE while node v switches to a state called PAGE

SCAN. Node u sends packets specifically designated to v in

different channels. Node v on the other hand alternate

between a set of frequency channels in the PAGE SCAN

state and in case it received a packet from u, then both

nodes exchange some packets in order to terminate the

procedure. Such a link represents a piconet of a master

Wireless Netw

123

(node u in this example) and one slave (node v in this

example).

According to the Bluetooth specifications, for any pair

of Bluetooth devices to communicate with each other, they

both need to be in the same scatternet or the same piconet.

Given the unavailability of scatternet before a BSF algo-

rithm is executed, most BSF algorithms uses the following

technique to exchange messages in order to build the

scatternets; if a node needs to send a message to a neighbor

it builds a temporary piconet with it, exchanges messages

and then destroys the piconet. A standard forwarding

technique is used for a node to send a message to a non-

neighbor node.

3 Problem statement

The scatternet formation problem can be defined as follows.

The input is an undirected graph G = (V, E), where V is the

set of Bluetooth nodes and E is the set of edges between the

nodes of V such that an edge ðu; vÞ 2 E if u and v are within

the radio range of each other, and both nodes have discov-

ered each other during the discovery phase. The objective is

to form a scatternet S ¼ ðV;E0Þ such that S is a directed

subgraph of G with V as set of nodes and E0 as set of edges,

whereas if an edge (u, v) is in E0, then ðu; vÞ 2 E and

ðv; uÞ 62 E0. The set E0 essentially represents the master-slave

relationships between neighbor nodes. We denote n as the

size of V (i.e. the number of nodes).

The set of neighbors to any node u is denoted N(u). The

degree of a node u is the size of N(u) (i.e. |N(u)|). The set of

all masters of u is denoted M(u). The set of all slaves to u is

denoted S(u). The outdegree of a node u is the size of the

set S(u). It is preferred that the outdegree of all nodes in the

scatternet to be at most 7. We call such scatternets as

outdegree limited scatternets.

A piconet u is the set q(u) such that q(u) = {u [S(u)}.

The master of piconet q(u) is u. A scatternet S ¼ ðV;E0Þ is

a set of interconnected piconets. The set of all piconets

q(u) in a scatternet S ¼ ðV;E0Þ is denoted PS . Note that it

is not necessary that every node u in the scatternet S ¼
ðV;E0Þ is a master, and hence it is not necessary that there

is a piconet qðuÞ 2 PS for every node u 2 V . Throughout

this paper, we use the notation G = (V, E) for the input

graph, S ¼ ðV ;E0Þ for the output scatternet, E for the set of

edges of the input graph and E0 for the set of edges of the

output scatternet.

3.1 Performance metrics

The standard performance metrics used to measure the

efficiency of BSF algorithms are many. The most important

metrics:

1. Execution time: The BSF algorithm shall form a

scatternet in a short time.

2. Connectivity: The subgraph consisting of the scatternet

must be connected.

3. Outdegree limitation: Each piconet shall not have

more than seven slaves. Otherwise they have to be

parked and unparked, which imposes a penalty on the

performance.

4. Number of piconets: The number of piconets should be

minimized. A large number of piconets causes a

scatternets to consume more energy because a larger

number of nodes (that is, the masters) have to control

the flows of packets, which consumes substantial

energy.

5. Number of M/S and S/S bridges: M/S bridges have a

higher penalty on the performance of scatternets.

However, both should be minimized.

6. Average role per node: The number of roles per node

is the number of piconets it belongs to. The average

role per node should be minimized.

These performance metrics are discussed in [11] and

[12] and are used to measure the performance of most BSF

algorithms in the literature (see for example, [3, 4, 5, 6, 13,

14] and [15]).

Algorithm BSF-UED focuses on the execution time,

connectivity, and outdegree limitation quality metrics.

Focusing on these three quality metrics helps in better

understanding of the BSF problem, which as a result leads

to the design of more efficient BSF algorithms on the

future. It should be noted that the BSF problem remains

challenging with only these three performance metrics as

shown in Sect. 4. However, BSF-UED gives an acceptable

balance between the other performance metrics.

4 Related work

We present in this section a brief literature survey for the

BSF problem. A more detailed survey can be found in [11].

We categorize existing BSF algorithms into four catego-

ries. We discuss each of these categories in the following.

4.1 Centralized BSF algorithms

These BSF algorithms assume that there is a centralized

node that has full knowledge of the network topology. The

centralized node can be a specific centralized server or an

elected leader node. The centralized node collects infor-

mation about all the nodes in the network and performs a

BSF algorithm that assigns to each node a role and to

which piconet each node belongs to. For example, algo-

rithm BTCP (Bluetooth Topology Construction Protocol)

Wireless Netw

123

[16] elects a leader node that collects all nodes information

and executes a BSF algorithm. BTCP assumes that every

node is in the radio range of all other nodes and that the

number of nodes in the network is at most 36. Given the the

availability of a centralized node, more sophisticated

approaches can be executed such as evolutionary algo-

rithms [17, 18], linear programming optimization [19], or

others [20, 21]. These algorithms attempts to optimize a

larger number of performance metrics simultaneously and

often outperforms decentralized algorithms. The main

weakness of this category of BSF algorithms is being not

decentralized and thus non-scalable. Also, centralized BSF

algorithms do not perform well with respect to execution

time.

4.2 Single-hop BSF algorithms

Single hop BSF algorithms assumes that all nodes in the

network are in the radio range of each others. These

algorithms take advantage of the fact that a single hop

network can be modeled as a complete graph, making it

possible, thus, to mimic known graph topologies. Daptar-

dar introduced in [22] a BSF algorithm that constructs a

mesh-like or cube-like scatternets. Similarly, scatternets

formed by algorithm dBBlue [23] follows the structure of

the well-known de-Bruijn graph, which limits the diameter

of the scatternet to O(log n).4 Zhang et al. in [24] intro-

duced an algorithm that forms ring-like scatternets. The

nodes of the ring are piconets. A slave in a given piconet

has either one role or serves as an S/S bridge to connect a

pair of piconets. In their algorithm, no M/S bridges are

used. Wang et al. in [25] introduced an single-hop BSF

algorithm based on virtual coordinates. Each node selects a

random virtual location (position) and shares it with all the

other nodes. The authors of [25] suggest the use of a

geometric structure to build the scatternet such delaunay

triangulation, Gabriel graph, relative neighborhood graph,

or minimal spanning tree. Barriere et al. introduced in [26]

a sophisticated theoretical algorithm based on projective

geometry. The main issue in [26] is the high level of

abstraction of the scatternet formation procedure which led

to ignoring some important system specifications and high

execution time in practical Bluetooth networks. The main,

and obvious, weakness of single-hop BSF is the necessity

that every node is in the radio range of all others. This

assumption reduces significantly the applicability of this

type of algorithms.

4.3 Tree-based BSF algorithms

Note that any connected graph contains a spanning tree.

This observation is used by the algorithms of this category

to create tree-like scatternets. The spanning tree structure

can be used as a backbone that guarantees the connectivity

of the scatternet, whereas additional links may be added to

the tree to improve the routing performance as suggested in

[11] or improve the fault tolerance of the tree, as it is the

case in [27] and [28].

Law et al. introduced in [29] a tree-based BSF algorithm

that assumes that the network is a single-hop network. The

algorithm is based on the idea of merging subtrees [30],

which is commonly used in distributed spanning trees

algorithms. Initially, every node is a subtree that contains

itself only. Algorithm TSF (Tree Scatternet Formation)

[31] is a similar single hop tree-based algorithm. Both

algorithms in [29] and [31] mix the procedure of neighbor

discovery with the scatternet formation procedure. That is,

initially no node has any knowledge of its neighbors. Each

node alternates between inquiring and scanning the envi-

ronment to find new nodes. As a node discovery a new

neighbor, it executes certain rules of the scatternet forma-

tion procedure. On the other hand, it is assumed in [25] that

a separate neighbor discovery phase is executed. After this

phase, each node exchanges information with all the other

nodes. Then, all nodes build a minimum spanning tree

which forms the scatternet. Note that the assumption of

single-hop networks simplifies the procedure of scatternet

formation. Another similar single-hop tree based algorithm

can be found in [32].

Algorithm Bluetree [33] is a multihop tree-based BSF

algorithm that initiated a series of algorithms that used the

same approach. There is also a series of algorithms that

provided modifications on algorithm Bluetree. There are

two versions of Bluetree. In the first version, it is assumed

that there is a unique node that initiates the algorithm as a

root of the tree. The root node captures its neighbors as

slaves. The root then assigns its slaves to become masters

(i.e. M/S bridges) and capture their neighbors as slaves. If

the network is modeled as a unit disk graph, then it is

possible with the use of simple rules to restrict the size of

any piconet to at most 5. This version of Bluetree did not

introduce a leader election algorithm to select the root

node. This, in fact, a major weakness of this version of

Bluetree. The second version of Bluetree solves the issue of

electing a leader. Each node that has the highest identifier

among its neighbors considers itself as a root. A given root

initiates a procedure similar to that of the first version of

Bluetree, and creates a tree. None of the trees shall have a

node from another tree. That is, the result of this procedure

is a set of disjoint trees that span over all nodes. A second

phase in Bluetree is then initiated. Its goal is to connect the

4 Given two functions f, g, we say that g is in O(f) if there is a

constant c [0 such that gðnÞ\c � f ðnÞ for a sufficiently large n.

Wireless Netw

123

disjoint trees in a single tree. Algorithm Bluetree has been

slightly modified in [34, 35] and [27].

Cuomo et al. introduced in [28] algorithm SHAPER. The

algorithm is an implementation of the well-known distrib-

uted MST algorithm by Gallager et al. [30]. Note that the

same algorithm of [30] was used as a base for a tree-based

BSF algorithm introduced in [13]. In [28], an optimization of

the tree structure is introduced. This optimization is a set of

heavy calculations, called DSOA (Distributed Scatternet

Optimization Algorithm), that generates a mesh-like scat-

ternet. DSOA is a centralized algorithm. In order to execute

DSOA in a distributed manner the nodes of the SHAPER

tree must be sequentially visited in a Depth First Traversal

manner as shown in [28], which is a time-consuming pro-

cedure. Methfessel et al. introduced in [36] a modification of

SHAPER that overcomes some practical issues in the

implementation of SHAPER.

In general, tree-based BSF algorithms main advantage is

the simplicity of design. However, implementing such

algorithms on Bluetooth networks is a sophisticated pro-

cedure that causes increased execution time and overhead

in communication [11]. Moreover, tree-like scatternets

suffer from weak fault-tolerance and bottleneck at some

nodes in the tree.

4.4 Mesh-based BSF algorithms

These algorithms solve the main issue of tree-based BSF

algorithms by forming mesh-like scatternets. Algorithms

belonging to this category are usually simpler to implement

and run on top of a neighbor discovery algorithm (i.e. every

node knows its neighbors in advance). Some of the major

BSF algorithms belong to this category [11, 14]. BlueStars

[3] is an important mesh-based algorithm. In BlueStars, a

maximal independent set5 of the input network is first con-

structed, denoted MIS(V) where V is the set nodes of the

network. The nodes of MIS(V) becomes masters and try to

capture all their neighbors that have smaller identifiers. No

slave is captured by two masters. This forms a set of disjoint

isolated piconets. BlueStars implements the previous pro-

cedure as follows. A node u waits for all its larger neighbors

(i.e. having larger identifier). If none of the larger neighbors

slaved u, then u becomes master and attempts to slave its

smaller neighbors. Otherwise, u informs its smaller neigh-

bors that it has been slaved. Note that the nodes with no

larger neighbors initiate the algorithm. The worst case time

complexity of this algorithm is O(n). This is achieved in a

network modeled as a line and the nodes are sorted

ascendingly according to their identifiers (see more detail in

‘‘Appendix 1’’). In a second phase of BlueStars, neighbor

piconets are interconnected via bridge nodes (called gate-

ways). Two piconets are neighbors if their masters m1 and m2

are separated by either (1) one slave sx belonging to the

piconet of either m1 or m2 but neighbor to both, or (2) two

slaves s1 and s2 which are neighbors to each other, s1 is a

slave of m1 and s2 is a slave of m2. Each pair of neighbor

piconets selects, using simple local rules, a unique gateway

or pair of gateways to be interconnected.

Algorithm BlueStars advantages is the simplicity and

the short execution time. Its main disadvantage is its

incapability of forming outdegree limited scatternets. This

issue has been tackled using different approaches. One of

them is the use of location information as in [4]. Given

location knowledge at each node, the nodes form a degree-

limited geometric structure such as Yao graph [4]. Algo-

rithm BlueStars is then run over this degree-limited struc-

ture. Note however that the use of location knowledge is a

strong assumption that significantly simplifies the scatter-

net formation procedure. Another approach to solve this

issue is the use of randomization as it is the case in [37].

This approach trades off degree limitation with connec-

tivity. Similarly, Wang et al. introduced in [5] algorithm

Bluenet which solves the outdegree limitation problem but

does not guarantee connectivity. Note how achieving

connectivity and outdegree limitation at the same time can

be a challenging task.

Basagni et al. introduced a deterministic algorithm,

called BlueMesh [6], to solve the outdegree limitation issue

of BlueStars. BlueMesh achieves this by assuming that the

underlying network is modeled as a unit disk graph.

BlueMesh runs in iterations. Initially, each node u that is

larger than all its neighbors starts the following procedure

(called the bluemesh procedure for simplicity). First, node

u creates the set Sp(u) which consists of the smaller

neighbors of u (i.e., those having smaller identifiers) and

the larger neighbors of u that are not masters. Then,

u creates a maximal independent set, denoted S0(u) of Sp(u)

(that is, S0(u) is a subset of Sp(u) such that: 1) no pair of

nodes in S0(u) are neighbors (i.e., independent), and 2) S0(u)

is not a subset of any other independent set of Sp(u) (i.e.

maximal). Node u slaves all nodes in S0(u). The maximum

size of S0(u) is 5 in unit disk graphs. Therefore, node u may

slave any other neighbors in {Sp(u)\S0(u)} in order to have

at most 7 slaves. Every node that has been contacted by all

its larger neighbors but has not been selected as a slave

executed the bluemesh procedure. Note that, contrary to

BlueStars, a node in BlueMesh may slave a neighbor that is

slaved by another other masters. The previous procedure

creates a set of piconets. We say a pair of piconets are

neighbors iff: (1) they share one slave or more (called

connected neighbor piconets), or (2) if there is a pair of

slaves s1 and s2, each of which belonging to one of the

5 An independent set of a network (or a graph) is a set of nodes that

none of which is neighbor to another. A maximal independent set is

an independent set that is not a subset of any other independent set.

Wireless Netw

123

piconets, and both are neighbors (called unconnected

neighbors piconets). The masters of a pair of unconnected

piconets select a unique pair s1 and s2 following a certain

criteria. We call these nodes unique gateways. All unique

gateways at iteration i move to the next iteration i ? 1, and

forms the induced graph Gi ? 1. The procedures given

above are repeated until a connected scatternet is formed.

We give in ‘‘Appendix 1’’ the worst case time complexity

of BlueMesh accompanied by an illustrative example.

Another major BSF algorithm that solves deterministi-

cally the outdegree limitation problem is BlueMIS [7]. The

novel approach of BlueMIS is to form in short time a con-

nected outdegree limited scatternet that is not necessary

efficient with respect to all performance metrics. The formed

scatternet is then improved using simple rules. BlueMIS

uses a similar idea to those of algorithm XTC [38], which is a

topology control algorithm for wireless ad-hoc networks.

BlueMIS assumes that the network is modeled as a unit disk

graph. The algorithm runs in two phases, BlueMIS I and

BlueMIS II. In BlueMIS I, each node passes greedily by its

neighbors in an order from the smallest neighbor to the

largest neighbor, with respect to the identifier of nodes. A

node u adds a neighbor v to S(u) if v is not neighbor to any

node in S(u). A node v in S(u) is considered as a slave of u if

u is not in S(v) or if u is in S(v) and the identifier of v is

smaller than that of u. The execution time of BlueMIS I is

improved by algorithm Eliminate introduced in [9]. To our

knowledge, BlueMIS I is the first BSF algorithm that has

O(1) time complexity, measured in number of communi-

cation rounds executed (i.e. local). This is of theoretical

importance, since the execution of the algorithm does not

depends on the number of nodes. The main disadvantage of

BlueMIS I is the large number of piconets (masters) in the

formed scatternets. BlueMIS II improves the efficiency of

the scatternets by simple rules. The rules are proven to be

correct theoretically. However, some implementation

details were not included in the description of these rules

which resulted in different possible implementations. For

instance, there could be cases where a node cannot execute

its rules until some other (possibly all other) nodes execute

their rules in order to achieve the expected results. This turns

the algorithm to be non-efficient with respect to time. Thus,

we found that BlueMIS II either suffers from a long exe-

cution time or from piconets with large number of slaves

depending on the implementation used. More details about

BlueMIS can be found in ‘‘Appendix 1’’.

Lastly, Song et al. introduced in [15] algorithm

M-dBBlue. The algorithm idea is to build a connected

dominating set S from the input network (that is, any node

in the network is either in S or neighbor to a node in S and

the network induced by S is connected). The algorithm

does not guarantee outdegree limitation, but the authors

gave theoretical upper bounds for the formed scatternets

maximum outdegree if the input graph is a unit disk graph.

The algorithm is based on a heavy tree-based method to

construct a dominating set. Furthermore, the algorithm did

not include any details of the algorithm implementation.

5 BSF-UED: A new BSF algorithm based

on unnecessary-edges deletion

In this section we describe our algorithm, BSF-UED. The

algorithm is mesh-based, and runs in two phases. The first

forms disjoint outdegree-limited piconets, whereas the

second interconnects these piconets. This interconnection

in phase 2 may induce scatternets that are not outdegree-

limited, but we mitigate this impact by introducing heu-

ristic H1, whose main effect is to reduce the number of

outdegree unlimited piconets. BSF-UED is inspired by an

extensive study of the algorithms BlueStars, BlueMesh and

BlueMIS given their interesting distinctive properties.

BSF-UED uses the idea of delegating nodes in a piconet

to a different master in order to achieve low average pic-

onet size. BSF-UED gives different colors to the edges of

the network and categorizes them into: Type 1 edges that

unnecessary for connectivity but may cause exceeding the

outdegree limit, Type 2 edges that may be necessary for

connectivity but does not cause exceeding the outdegree

limit, and Type 3) edges that may be necessary for con-

nectivity and may cause exceeding the outdegree limita-

tion. With this in mind, we attempt to give priority for

edges of Type 2 over those of Type 3, and we avoid using

edges of Type 1. The coloring of edges is done locally.

That is, each pair of nodes decides locally the edge color

that they share.

Our algorithm has an O(n) time complexity. We use a

wave-like communication rounds implementation adapted

to Bluetooth networks in order to decrease the algorithm’s

execution time. In this implementation, each node is given

a unique priority (e.g. its unique identifier). A node waits to

receive a message from all its neighbors with higher pri-

ority, then it sends a message to all its neighbors with lower

priority. This guarantees that each edge is contacted once.

This technique, which is used in BlueStars and BlueMesh,

was found in [10] to be more efficient with respect to time

compared to standard implementations of communication

rounds.

5.1 Assumptions

We use the same set of assumptions used in BlueMesh and

BlueMIS. Each node in the input graph G = (V, E) has a

unique (and comparable) identifier. Using this order on V, we

say node u is larger (smaller) than node v if the identifier of

u is larger (smaller) than that of v, denoted as u � v (u � v).

Wireless Netw

123

Given a graph or network, we denote N(u) as the set of

neighbors of u;N�ðuÞ as the set of smaller neighbors of u and

N�ðuÞ as the set of larger neighbors (that is, v 2 NðuÞ iff

ðu; vÞ 2 E, and v 2 N�ðuÞ iff v 2 NðuÞ and v � u).

Using the total order on V, we consider the acyclic directed

graph G
!ðV ; E

!Þ such that E
!¼ fðu; vÞ 2 E : u � vg. Note

that the graph G
!

is used frequently in this paper. We refer to G
!

sometimes as the directed version of the input graph.

The input graph G is assumed to be a unit disk graph

(UDG); but some other graphs that we manipulate are not.

An interesting property of unit disk graphs is that any node

in the graph can cover all its neighbors by at most 5

neighbors. In other words, a node u in a unit disk graph

G can have at most 5 neighbors that are not neighbors to

each other. We assume that a node has no knowledge of its

location neither of the distance to its neighbors. As most

mesh-based BSF algorithms (if not all), we assume that the

nodes are static. Thus, we do not treat nodes joining or

leaving the scatternet.

5.2 Phase 1: piconet construction

Given the directed version of the input graph G
!¼ ðV; E

!Þ,
the first phase of BSF-UED generates a forest G

!0 ¼
ðV; E
!

bÞ of disjoint outdegree-limited piconets such that

every node is either master or slave in exactly one piconet.

Our technique is inspired from a technique proposed in

BlueStars [3] (which does not limit the number of slave per

nodes).

5.2.1 Informal strategy

All nodes identifiers are unique and ordered, and therefore

some nodes must be local maxima (that is, larger than all

their neighbors). This property is used to initiate a wave-

like process whereby larger nodes successively attempt to

capture (i.e., to slave) smaller neighbors. Nodes cannot be

captured twice nor capture other nodes once they are

themselves slaves. In order to limit the outdegree, we adapt

a number of delegation rules by which nodes can control

the number of slaves they capture and delegate excesses (if

any) to other neighbors. We prove that such delegation is

feasible sufficiently often to limit the number of slaves to 7,

thanks to the UDG assumption. The rules are described

formally in the next section.

5.2.2 Detailed strategy

The state of a node u is denoted by stateðuÞ 2 fnone;

master; slaveg. The state of an edge (u, v) is denoted by

cðu; vÞ 2 fwhite; black; silver; green; red; blueg. Initially,

state(u) = none for all u 2 V , and c(e) = white for all e 2 E.

Given an edge ðu; vÞ 2 E
!

(keeping in mind that u � v), the

meaning of each color is as follows:

– black: u captured v.

– silver: u contacted v, but v was already captured.

– green: u was captured by a third node and thus gave up

on capturing v.

– red: u delegated the capture of v to another node w such

that u � w � v.

– blue: u delegated to v the capture of a common

neighbor w such that w � v � u.

The first phase of BSF-UED colors all the edges of the

graph G
!ðV ; E

!Þ by means of Algorithms 1 to 4. At every

node u a variable uðuÞ denotes its capacity (initially set to

7) accounting for the number of slaves it can capture.

Each node is considered as a potential prey to all its

larger neighbors. A prey can be captured only by one of its

larger neighbors. In case a node u was not captured by any

of its larger neighbors, it will consider its smaller neighbors

N�ðuÞ as preys and attempts to capture them. An attempt of

capture fails if the prey is already captured by another

node. We denote the set of preys of u as preys(u), initially

equal to N�ðuÞ. We add the following rules to the proce-

dures of capturing in order to limit the number of slaves per

master to at most 7. Whenever a node u starts the capture

procedures, if preys(u) B7, then u attempts to capture all of

them. Otherwise, u goes through each of them in

decreasing order. For each prey v, u finds a subset of

common smaller neighbors CN(u, v) that it shares with

v (procedure FindCommonNeighbors() on Algorithm

4). If CN(u, v) = [, then u attempts to capture

v. Otherwise, u delegates some of the common neighbors in

CN(u, v) to v and does not capture v either. Node v and the

neighbors in CN(u, v) are then removed from preys(u), and

the process repeats until u has enough capacity to capture

the remaining neighbors (that is, preysðuÞ�uðuÞ). The

details of these procedures are illustrated in Algorithms 1,

2, 3 and 4. A flow diagram of these procedures is available

in Fig. 12 in ‘‘Appendix 2’’.

Wireless Netw

123

Remark 1 Procedure contact(v) of Algorithm 3 is

considered to be atomic: if nodes u and w attempts to

contact a node v, then only one of them can enter procedure

contact(v) at a time. This is guaranteed in Bluetooth

specifications, since a node can communicate only with one

node at a time.

5.2.3 Procedure FindCommonNeighbors(v)

Called at a node u, this procedure is responsible for

selecting a set of common smaller neighbors CN(u, v) to be

delegated to v. Precisely, given the set L ¼ fpreysðuÞ \
N�ðvÞg of potentially capturable common neighbors

between u and v, the procedure selects the largest subset

L0 � L of nodes such that:

– jL0j � 7: no more than 7 nodes are delegated.

– jL� L0j �uðuÞ: u does not delegate a number of nodes

that would leave it with less than uðuÞ neighbors to

contact.

As a result, u delegates a number of neighbors equal to

minðjpreysðuÞj � uðuÞ; 7; jLjÞ. By convention, these

neighbors are those whose identifiers are the largest. (See

Algorithm 4.)

Algorithm 4 Procedure FindCommonNeighbors(v) at node u

1: L fpreysðuÞ \ N�ðvÞg
2: nb minðjpreysðuÞj � uðuÞ; 7; jLjÞ
3: return largest nb nodes in L

An example illustrating all procedures of Phase 1 is

provided next in Sect. 5.2.4, followed by theoretical ana-

lysis of correctness in Sect. 5.2.5.

5.2.4 Example

We give in this section an example to describe in more

details the procedures of Phase 1. Consider the graph in

Fig. 1a. Initially, uðuÞ ¼ 7 for every node u. The nodes

that are larger than all their neighbors are 35 and 21 (see

Fig. 1b). Node 21 has only two smaller neighbors, which

are 12 and 14. Thus it contacts both of them directly. Since

both 12 and 14 are not slaves to any other nodes, 21 cap-

tures them (thicker directed arrows).

The case of 35 is different since |preys(35)| = 9. Since 9

is larger than uð35Þ ¼ 7, node 35 selects the largest

neighbor in preys(35) [line 3, capture()], which is 30.

The set of common neighbors between 35 and 30 is {1}.

Thus, edge (35, 30) is colored blue, while (35, 1) is colored

red. This means that node 35 delegated to 30 the respon-

sibility of capturing nodes {1}. Then, all the remaining

preys are captured by 35.

The nodes that were contacted by all their larger neigh-

bors, which are 30, 25, 22 and 12, start the next round (See

Fig. 1c). Node 30 contacts both of its smaller neighbors 1 and

14. Neighbor 1 is captured and colored black, whereas

neighbor 14 is not because it was already captured by node

21. Thus, edge (30, 14) is colored silver. Nodes 22 and 12 are

already captured by 35. Thus, they inform all their smaller

neighbors that they are slaves by coloring the corresponding

edges in green. The final result of Phase 1 is the three piconets

depicted on Fig. 1f, that are, q(35) = {35, 25, 6, 22,

16, 15, 8, 7}, q(30) = {30, 1}, and q(21) = {14, 12}.

5.2.5 Correctness

Given the input graph G
!¼ ðV ; E

!Þ, we prove that phase 1

always terminates and that its output is a set of disjoint

piconets that are outdegree limited to 7, and every node is

either master or slave in exactly one piconet. For clarity, we

denote by Ecolor the subset of those edges that are colored

color (e.g., Eblack ¼ fðu; vÞ 2 E
!

: cðu; vÞ ¼ blackg).
Let us first observe that the algorithm always terminates.

Wireless Netw

123

Lemma 1 (Termination) Phase 1 of BSF-UED termi-

nates in a finite time.

Proof Procedure construct() is executed over the

directed input graph G
!¼ ðV ; E

!Þ. Since the nodes can be

ordered with respect to identifiers, then G
!

is a directed

acyclic graph (DAG), and there is at least one node u with

N�ðuÞ ¼ ; (called sources) and v with N�ðvÞ ¼ ; (called

sinks) and u = v. In a DAG the set of all paths from

sources to sinks cover all the nodes, and each path p ¼
fu1; . . .; ukg is decreasing (that is, ui [ui?1 for 1 B i \ k).

Note that each non-sink node will necessarily color all of

its outgoing edges (all possible execution sequences start-

ing at construct() eventually lead to such a coloring).

Therefore, no edge remains white if all the paths of G
!¼

ðV; E
!Þ are used; which is what the activation control in

construct() guarantees. h

Lemma 2 After the execution of the first phase, each

node is either a master or slave.

Proof This is clear by the content of procedure con-

struct(); upon activation, if a node was not yet made

slave during its waiting period, then it turns itself as a

master. h

Lemma 3 shows that Phase 1 results in disjoint piconets.

We denote the set of these piconets as V.

Lemma 3 (Disjoint piconets) Let’s G = (V, Eblack) be

the spanning subgraph of the input graph G
!¼ ðV; E

!Þ
with the edges Eblack 2 E

!
. Then, after Phase 1 G is a forest

of disjoint piconets, denoted as V.

Proof The proof follows from Lemma 2 and the condi-

tion that is not possible for a node to be captured twice (see

procedure contact()). h

We prove in Lemma 4 that the generated set of piconets

V in G0ðV;EblackÞ are all outdegree limited to 7, given that

uðuÞ is initialized to 7.

Lemma 4 Let’s G = (V, {Eblack [Esilver}) be the span-

ner subgraph of the input graph G
!¼ ðV ; E

!Þ with the set

of edges fEblack [Esilverg 2 E
!

. Then, after the Phase 1 G is

outdegree-limited to 7, given uðuÞ is initially set to 7.

Proof We need to compute the number of times a node

u calls procedure contact(v), since we are interested

only in black and silver edges. Given that uðuÞ is initial-

ized to 7, any node u will color at most 7 of its smaller

neighbors (preys) with black or silver (that is, attempt to

contact them using procedure capture(v).

Without loss of generality, assume that |preys(u)| [7. At

the while-loop [lines 2 to 13, capture()], a node

u contacts v if and only if v and u had no common neighbors

that are smaller than both u and v. There is at most five

neighbors of u having the property of v given the unit disk

graph property of our input graph. Therefore, procedure

contact(v) is called from the while-loop [lines 2 to 13] at

most 5 times. Since the execution of the loop stops only if

preysðuÞ\uðuÞ ¼ 7, and since each time a node u executes

contact(v), uðuÞ is decreased by 1, then u will not execute

contact(v) in the while-loop and the for-loop [lines 14 to

15], combined, more than 7 times at most. h

The combination of Lemmas 1 to 4 allows us to con-

clude as follows:

Theorem 1 Phase 1 produces a set of disjoint piconets

that are outdegree limited to 7, and such that every node is

either master or slave in exactly one piconet.

We will now introduce an extra Lemma, not strictly

relevant to the objectives of Phase 1, but which will be

helpful to prove the correctness of Phase 2. It establishes

that the set of blue edges are not necessary for the con-

nectivity of the input graph G = (V, E).

Lemma 5 Let’s G1 ¼ ðV ; fE
!� EbluegÞ be the spanner

subgraph of the input graph G
!¼ ðV ; E

!Þwith the set of edges

fE
!� Eblueg 2 E

!
. Then, after the Phase 1, G1 is connected.

A B C

D E F

Fig. 1 Example illustrating the procedures of phase 1 (B: Blue, R: Red, G: Green, S: Silver) (Color figure online)

Wireless Netw

123

Proof Note that if an edge ðu; vÞ 2 Eblue, then v is the

largest node among preys(u) at that while-loop iteration

[lines 2 and 13, capture()]. If there is an edge

(u, v) that is colored blue, then there must exist two edges

(u, w) and (w, v) in E
!

such that u � v � w. Therefore,

u, v and w forms a triangle, where edge (u, w) is colored

red [line 12 of capture()]. We need to show that, fol-

lowing a specific ordering of edges, a minimum spanning

tree (MST) of G
!

will not include blue edges.

The ordering of edges that we follow is a lexicograph-

ical order in which we assume that ðu1; v1Þ � ðu2; v2Þ if

u1 � u2 or if u1 = u2 and v1 � v2). Note now that for any

triangle u, v and w such that (u, v) is blue and (u, w) is red

and u � v � w, then the blue edge (u, v) will surely be not

included by Kruskal algorithm in the MST as it is the

largest edge in that 3-circle. This completes the proof. h

5.3 Phase 2: piconets interconnection

The second phase of BSF-UED interconnects the disjoint

piconets formed in Phase 1 to form the output scatternet

S ¼ ðV;E0Þ. This phase guarantees the connectivity of the

resulting scatternet S ¼ ðV;E0Þ, while maintaining its

maximum outdegree to a reasonable value.

5.3.1 Informal strategy

The problem can be formulated as a meta-graph problem in

which every piconet formed in Phase 1 is a vertex. The

objective is to define edges in this meta-graph in a way that

guarantees its connectivity. The edges of the meta-graph

G ¼ ðV; EÞ are to correspond to edges or paths in the input

graph G = (V, E). We then apply to this meta-graph a

technique inspired from BlueMIS I [7] to interconnect

vertices. The resulting strategy is as follows. Each node

u in V constructs a maximal independent set of its larger

neighbors, denoted MIS�ðuÞ. (A set of nodes is said inde-

pendent if it does not contain any pair of neighbor nodes; it

is maximal if the addition of any node makes it no more

independent.) Then, u interconnects only to the nodes in

MIS�ðuÞ. This technique guarantees the connectivity of the

new graph. It also guarantees its outdegree limitation in

case G is a unit disk graph, which unfortunately is not

necessarily the case (however it is almost always so in

practice).

The input of Phase 2 is the graph G
!¼ ðV;EblackÞ, which

is the graph that contains all the master/slave relationships

formed in Phase 1. Keep in mind that an edge ðu; vÞ 2
Eblack indicates that u is the master of v and that u � v. The

output of the Phase 2 is GðV ; fEblack [Eblack0 gÞ, where

Eblack0 is the master/slave relationships formed in Phase 2.

It is not necessarily that for each ðu; vÞ 2 Eblack0 that u � v.

The procedures of Phase 2 are described in the sequel.

5.3.2 Detailed strategy

Let us consider the meta-graph G ¼ ðV; EÞ whose vertices

V are the piconets formed in Phase 1 and edges E ¼ ; are

initially an empty set. The objective of Phase 2 is to define

E in such a way that G becomes connected and every edge

in E corresponds to a real path connecting two piconet

masters in G (the input graph). We call two piconets

q(u) and q(v) neighbors if their masters u and v can be

interconnected through one of the following types of paths:

master-to-master (one-hop interconnection), master-to-

slave (two-hops interconnection), or slave-to-slave (three-

hops interconnection). If each piconet interconnects with

all its neighbor piconets, the resulting graph is necessarily

connected (see Theorem 2)

We first discuss the potential interconnection of each pair

of neighbor piconets through such a path, and then consider,

in a second step, the possibility to actually discard a number

of edges that are unnecessary to the connectivity. The fol-

lowing interconnection rules are considered, listed in pri-

ority order. (We provide more details later on about their

concrete implementation.) Note that only one interconnec-

tion rule is to be applied relative to a given pair of neighbor

piconets, more would be unnecessary with respect to the

final scatternet’s connectivity. Without loss of generality,

we assume below that u � v.

I-Rule 1 (Three-hop interconnection): Two piconets

q(u) and q(v) may be interconnected through an edge

e between two slaves su 2 qðuÞ and sv 2 qðvÞ, where

c(e) = green. (Operation: su captures sv.)

I-Rule 2 (Two-hop interconnection):

I-Rule 2a: through the edge ðsu; vÞ 2 E
!

; where

c(su, v) = green, su is a slave of u and v is a master

of piconet q(v). (Operation: su captures v.)

I-Rule 2b: through the edge (v, sx) or (u, sx) where

sx 2 qðuÞ or sx 2 qðvÞ, and c((v, sx)) = silver or

c((u, sx)) = silver (that is, sx is smaller than both

u and v, and it belong to either q(u) or q(v) but not

both. Both piconets attempted to slave sx but only one

of them was successful). (Operation: v captures sx or

u captures sx.)

Wireless Netw

123

I-Rule 2c: through the edge (u, sv) where sv 2 qðvÞ
and c((u, sv)) = red (that is, sv is smaller than both

u and v. sv is slaved by v, and sv was delegated by u to

v). (Operation: sv captures u.)

I-Rule 3 (One-hop interconnection): through the edge

ðu; vÞ 2 E
!

where c((u, v)) = red. Both u and v are

masters of different piconets. (Operation: v captures u as

v � u.)6,7

We call the nodes that are used to interconnect two

piconets gateways (e.g, nodes u and sv in I-Rule 2c). It is of

course desirable to try to minimize the number of slaves for

any gateway su used to interconnect a piconet q(u) and

q(v). This number can however not be strictly limited to 7

because G is not necessarily a unit disk graph.

This strategy to construct the edges set E in the graph

G ¼ ðV; EÞ guarantees the connectivity of G. Indeed, the

only type of edges we do not consider in these rules are the

blue edges, which we prove not necessary for connectivity

in Lemma 5.

Once the meta-graph G is connected, we use a technique

inspired from [7] in order to delete further edges from E
that are unnecessary for the connectivity of G. The tech-

nique can be implemented using simple local rules exe-

cuted at the vertices of G. (Keep in mind that in our case the

vertices are piconets.) Since each piconet has one master,

the local rules will be implemented in the masters of the

piconets of G. We describe next this technique.

Let us denote by N�ðuÞ the set of all neighbor piconets

of q(u) whose master v is such that v � u. We define

N�ðuÞ symmetrically. Each piconet q(u) constructs a

maximal independent set MIS�ðuÞ among N�ðuÞ in G.

Then all the edges of G that do not lead to a node of

MIS�ðuÞ are discarded. The resulting graph is guaranteed

to remain connected (see Theorem 3).

5.3.3 Implementation details

The detailed implementation is given in Algorithm 5, and

illustrated in a flow diagram in ‘‘Appendix 2’’. We give an

explanation in the following. The decision of which edge

(rule) should be used to interconnect two piconets q(u) and

q(v) in G is local to the masters u and v. Each master u of a

piconet q(u) constructs a gateway table (denoted as T ðuÞ).
The entries of a gateway table represent all the rules that

can be applied to merge with neighbor piconets. Each entry

consists of the following elements:

– v: the master of the neighbor piconet q(v).

– su: the gateway of piconet q(u) (note that su may be

equivalent to u).

– sv: the gateway of piconet q(v) (note that sv may be

equivalent to u).

– uðsuÞ: the piconet capacity of su.

– I: the interconnection rule of the tuple (that is, I-Rule 1,

…, I-Rule 3).

– role: the role to be played in the new relation (either

M or S). If role is M, su becomes master to sv

according to interconnection rule I. If role is S, su

becomes slave to sv.

As already mentioned, a given neighbor piconet q(v) can

be interconnected to q(u) by multiple rules. Therefore, the

gateway table T ðuÞ may contain several entries for a same

neighbor piconet q(v), with different su and sv.

The construction of the gateway table T ðuÞ is straight-

forward. It is sufficient that each master u collects from its

slaves su information about their neighbors vi; namely, their

master m(vi), capacity uðviÞ, and the color of the edge

(su, vi). Using such information, u can infer all the possible

rules of interconnection.

The next step is to let each piconet q(u) construct a

maximal independent set of its larger piconet neighbors

(MIS� � N�ðuÞ). The construction is done on-the-fly and

is described in procedure interconnect(); each time a

piconet q(u) interconnects to a larger neighbor piconet

q(v), it does not interconnect with any neighbor piconet

q(w) that is common neighbor to both q(u) and q(v) and

has a larger identifier than both. Any master/slave rela-

tionship between nodes su and sv added by procedure

interconnect() is represented as an edge (su, sv),

where su is the master of sv regardless of their identifiers.

The set of all edges interconnected by interconnect()

is denoted Eblack0 . The output of interconnect()

6 In this rule, the fact that v captures u (and not the opposite) is

important; it follows the anticipated decrease of uðvÞ in Phase 1 when

the edge (u, v) was colored red. In a sense, v is ‘‘more prepared’’ than

u to handle new slaves. The impact of this operation is seen while

starting the elimination algorithm from smaller to larger piconets.
7 This case may occur if u delegated to a neighbor w the respon-

sibility of v, and hence (u, v) is red. Also, there is a node a w0 that is

larger than v and delegated to v the responsibility of slaving common

neighbors between v and w0.

Wireless Netw

123

therefore is the graph G ¼ ðV; fEblack [Eblack0 gÞ (remind

that Eblack is the set of master/slave relationships formed in

Phase 1).

An issue that needs more clarification in inter-

connect() is how to select the best pair of gateways

to interconnect two piconets q(u) and q(v) [line 7]. In

order to do this, a node u ascendingly sorts the rows of

T ðuÞ in a lexicographical order of ðqðvÞ; dðIÞ;�uðsuÞÞ,
where d(I) is a number given to the interconnection rule

I (that is, d(I-Rule 1) = 1, d(I-Rule 2a) = 2, d(I-Rule 2b)

= 3 etc ..). We say a set (x1, .., xk) lexicographically

succeeds the set (y1, .., yk) if xi = yi and xj � yj for

j = i ? 1 and for all 1 B i \ k. Whenever master

u attempts to select the best gateway to a neighboring

piconet q(v) with master v, it simply finds the first

occurrence of v in T ðuÞ. That is, master u starts inter-

connecting with the smallest neighbor piconets to the

larger ones. In case of multiple choices, master u prefers

the lower rules (that is, I-Rule 1 to I-Rule 2a etc ..), and

in case of multiple choices, master u selects the slave to

interconnect with q(v) via the slave su with the maximum

piconet capacity uðsuÞ. An example illustrating the pro-

cedures of Phase 2 is given in Fig. 2.

We should note that each time a gateway su becomes

master to a gateway sv, the piconet capacity of su (uðsuÞ)
is decreased by one [line 10—interconnect()].

Thus, the gateways table T ðuÞ should be updated after

each of such changes by simply sorting it again [line 11

interconnect()]. Note that using this method a

gateway su with higher capacity uðsuÞ is always preferred.

Also, this method preserves the priorities of the inter-

connection rules.

5.3.4 Correctness

We prove that the output of Phase 2, which is

G ¼ ðV;E0 ¼ fEblack [Eblack0 gÞ, is a connected scatternet.

First, we prove the connectivity of the meta-graph

G ¼ ðV; EÞ. Recall that the vertices of G are the piconets

formed in Phase 1, while E contains edges to interconnect

neighbor piconets based on the rules of Sect. 5.3.2.

Theorem 2 (Connectivity) Let G ¼ ðV; EÞ be such that

ðu; vÞ 2 E iff u and v are two piconets that can be inter-

connected with any of the interconnection rules. Then, G is

connected.

Proof The interconnection rules consider all cases of

green, silver and red edges (i.e., all edges in the sets

Egreen, Esilver and Ered). By definition, the endpoints of any

edge (u, v) with silver or red color must belong to two

different piconets, while green edges may be between

nodes belonging to the same or different piconets. Thus,

any such edge interconnects two different piconets. The

interconnection rules does not consider blue edges, which

are not needed for the connectivity of G = (V, E) accord-

ing to Lemma 5. h

In Theorem 3, we prove that the graph G remains con-

nected as long as each vertex u 2 V keeps an edge (u, v) for

each v 2 MIS�ðuÞ, where MIS�ðuÞ is the maximal inde-

pendent set of larger neighbors of u.

Theorem 3 If a graph G = (V, E) is connected, then the

graph G0 ¼ ðV ; fðu; vÞ 2 E : v 2 MIS�ðuÞgÞ, where

MIS�ðuÞ is the maximal independent set of larger neigh-

bors of u, is also connected.

Proof For simplicity, let us refer to this technique as

Algorithm 1. We show that the graph G0 resulting from

execution of Algorithm 1 contains a minimum spanning

tree if we follow a specific ordering of the edges E. We

give a lexicographical order to the edges such that

ðx1; y1Þ � ðx2; y2Þ iff y2 � y1 or y1 = y2 but x2 � x1. For

every triangle in G of three edges (x, y), (y, z) and (x, z) of

three vertices x, y, z where x � y � z, Algorithm 1 deletes

only the edge (x, z). Note that ðx; yÞ � ðy; zÞ � ðx; zÞ. We

follow Kruskal algorithm for minimum spanning tree, we

order the edges ascendingly, and select greedily the edges

that form a tree. Edge (x, z) will never be considered in the

MST of G as it is always the maximum edge in the 3-circle

{(x, y), (y, z), (x, z)}. h

Theorem 4 The graph G ¼ ðV ; fEblack [Eblack0 gÞ is

connected.

Proof G ¼ ðV ; fEblack [Eblack0 gÞ is the output of inter-

connect(). Note that interconnect() let each node

Wireless Netw

123

u in the graph G connects to all its neighbors v 2 MIS�ðuÞ.
Recall that each node in G is a piconet formed in Phase 1.

According to Theorem 2, G is connected. Therefore, the

connectivity follows from Theorem 3. h

Theorem 5 The graph G ¼ ðV ; fEblack [Eblack0 gÞ is a

scatternet.

Proof We prove that no two pair of nodes are slaves and

masters to each other at the same time. G = (V, Eblack) is a set

of disjoint piconets. Thus, we consider only the added master/

slave relationships at Phase 2, which are in Eblack0 . The proof

follows from three arguments. First, If two piconets q(u) and

q(v) are interconnected in procedure interconnect(),

then u is larger than v (see line 6 in interconnect()).

Second, note that q(u) contacts a neighbor piconet q(v) only

once (see line 15 ininterconnect()). Third, according to

Lemma 3, a slave su belongs to only one piconet and each node

is either a slave or a master according to Lemma 2. Therefore if

a gateway su was assigned to be a master or slave to another

gateway sv, then sv cannot have the same role in a later stage of

interconnect(). h

5.4 Heuristic optimization

We introduce in the following a heuristic that improves the

qualities of the generated scatternets.

5.4.1 Heuristic H1: Decreasing the number of outdegree

unlimited piconets

One property of the previous interconnection procedure is

that if no red edges used for interconnection, then the

algorithm forms outdegree limited scatternets. Note that

black and silver edges do not cause excess on the outdegree

limitation of the scatternet (see Lemma 4). Note also that

blue edges are not used in the scatternet construction and do

not cause disconnectivity of the scatternet. Therefore, it

remains to show that green edges do not cause excess in the

outdegree limitation of the scatternet. Consider a scenario in

which a node u is master to node v. In the interconnection

piconet, node v shall use more than 7 green edges to connect

with neighboring piconets. Assume that node v must be the

master of all the nodes on the other end of its green edges

(call them green nodes of v). Let assume that interconnection

rules not involving red edges are not used. Then, there is a

maximal independent set of the green nodes of v that is of

size at most five. This is because edges between these green

nodes are either silver or green. This result, however, that red

edges are not used in the interconnection process.

We adapt to these results by introducing a heuristic that

improves the properties of the scatternet formed. It should

be noted that the number of outdegree limited piconets in

scatternets formed by BSF-UED is acceptable as simula-

tion experiments show. This heuristic eliminates virtually

all outdegree unlimited piconets, while not increasing the

execution time of the algorithm. The heuristic is as follows.

Assume that piconet u assigned gateway su to become

master of gateway sv. Assume su is already a master to 7

slaves. Note that sv may have slaved some nodes in the

interconnection phase. Node su checks if sv is a master to

less than 7 slaves. If this is the case, then sv becomes the

master of su instead. If su had less than 7 slaves, this

heuristic is not executed. Interestingly, such a simple rule

can improve the properties of the scatternet significantly, as

shown by the simulation results in Sect. 6.

6 Simulation experiments

We study the performance of our algorithm with simulation

experiments. We compare BSF-UED against BlueStars,

BlueMesh, BlueMIS I and BlueMIS II which are consid-

ered as the reference BSF algorithms from the literature.

The performance metrics we consider are: (1) execution

time, (2) maximum piconet size (or maximum outdegree),

(3) average piconet size, (4) number of piconets (masters),

(5) number of M/S bridges, (6) number of S/S bridges and

(7) average number of role per node.

Our simulation experiments are conducted with the

UCBT (University of Cincinnati BlueTooth) simulator

A B C

Fig. 2 Example illustrating the procedures of phase 2, taking over

the resulting graph of the example in Phase 1 (Fig. 1). (B: Blue, R:

Red, G: Green, S: Silver). Those piconets that have no larger piconets

are the ones to start, while others wait. Piconet 35 starts the execution.

The smaller neighbor piconets are piconet 30. The highest priority

interconnection between these piconets is through the edge (25,1) (I-

Rule 1). Node 25 captures node 1 since its master 35 is larger than 30.

Piconet 30 then starts. It creates a connection with its smaller

neighboring piconet 21 through the edge (1, 14) (I-Rule 1). In this

case, 1 becomes the master of 14 because the master of 1 is larger

than the master of 14 (Color figure online)

Wireless Netw

123

[39], which is an NS-2 [40] based library for Bluetooth

networks simulation. The networks are modeled as unit

disk graphs. Each graph is constructed by placing points

uniformly at random in a 30 9 30 m2 plane. An edge

connects two points if the euclidean distance between them

is less than a threshold t set to 10 m, which is generally

taken as the radio range of Bluetooth. A graph is consid-

ered for experiment only if it was connected. We form five

sets of graphs, each with a different size (30, 50, 70, 90 and

110 nodes). Each set consists of 1000 graphs. Unfortu-

nately, theoretical analysis is hard in the case of BSF-UED

as it is in most BSF algorithms in literature.

Our findings show that BSF-UED is a time-efficient BSF

algorithm. It has a similar execution time to BlueMIS I and

about 1/3 the execution time of BlueMesh. Algorithms

BlueStars cannot be compared with the other algorithms

because BlueStars does not guarantee outdegree limitation,

which as a result significantly simplifies the algorithm

design. We include BlueStars in our comparison study a a

benchmark. In term of other performance metrics, our

results show that BSF-UED is always considered among

the best algorithms. In term of outdegree limitation, most

of the scatternets BSF-UED forms are outdegree limited to

7. Only one experiment among 5000 generated a scatternet

that is not outdegree limited. In our analysis, any node

considering itself a master without having any slaves is

treated as a non-master. This is applied to all algorithms.

All figures are represented as bars plots. Deviation from the

mean value is shown with error bars that represents the

standard deviation.

6.1 Execution time

Figure 3 shows a comparison of the execution time of the

algorithms in hand. BlueStars outperforms the other algo-

rithms because of its simplicity. This is obtained with the

cost of having piconets with very large size. The execution

time of BSF-UED is about 1/3 of that of BlueMesh. BSF-

UED and BlueMIS I have similar execution times. However,

note that this is an optimized version of BlueMIS I which we

introduced in [9]. The execution time of the original Blu-

eMIS I is about 2 times what is indicated in Fig. 3. This

difference should be taken into consideration when analyz-

ing BlueMIS II since it runs on top of BlueMIS I. In fact, we

introduced in [9] algorithm Eliminate which forms scatter-

nets that have very similar properties to those formed by

BlueMIS but with an execution time significantly shorter

than that of the optimized version of BlueMIS I.

The simulation experiments show an interesting prop-

erty of Bluetooth networks. First, note that the time com-

plexity of algorithm BlueMIS (I and II) is O(1) whereas the

time complexity of the other algorithms is O(n) on average.

A detailed analysis is given in ‘‘Appendix 1’’. This analysis

states that in large sized networks, it is expected that

BlueMIS outperforms the other algorithms in term of

execution time. Yet, this is not the case in our simulation

experiments. This phenomenon is related to another result

studied in [10]. We argued in [10] that the implementation

of communication rounds in Bluetooth networks affect

significantly the execution time of BSF algorithms. We

define a communication round as a period of time in which

each node sends and receives a message to and from all its

neighbors. The link establishment procedures of Bluetooth

complicates the implementation of communication rounds.

We studied two implementations: RandomExchange and

OrderedExchange. In RandomExchange, each node ran-

domly alternates between the PAGE (i.e., establishing a

connection) and PAGE SCAN (i.e., listening to a connec-

tion) states and during this time the node attempts to

contact all its neighbors. The alternation is required since a

node cannot be in both states at the same time. In Or-

deredExchange, the communication round is initiated by

the nodes which have the largest identifiers among their

neighbors. These nodes send messages to all their smaller

neighbors (with respect to identifier). If a node receives a

message from every larger neighbor, the node starts send-

ing messages to all its smaller neighbors. This guarantees

that every edge in the network is visited exactly once. We

found that OrderedExchange is significantly faster than

RandomExchange in relatively small networks, which is

typical to Bluetooth networks, although RandomExchange

is theoretically better.

BlueStars and BlueMesh use a maximal independent

set algorithm that, by its nature, uses OrderedExchange.

BlueStars requires three communication rounds for (1)

forming the piconets, (2) identifying the neighbor piconets,

and (3) interconnecting the neighbor piconets. On the other

hand, each phase of BlueMesh requires four rounds: (1) a

communication round to exchange the 1-hop neighborhood

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

n = 30

n = 50

n = 70

n = 90

n = 110

T
im

e
(s

ec
on

ds
)

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 3 Comparison of the execution time

Wireless Netw

123

relationship between neighbor nodes in order to construct

the 2-hop neighborhood relationships, (2) a communication

round to form outdegree limited piconets, (3) a commu-

nication round for masters to discover their neighboring

piconets (i.e. slaves sends information about their neigh-

bors to their masters), and (4) a communication round for

each node surviving the current phase to find its neighbors

in the next phase (i.e. its neighbors in Gi where i is the

number of the next phase). Therefore, BlueStars requires

less communication rounds. This explains why BlueStars is

fast, whereas BlueMesh is not. We suggest therefore that

calculating the number of communication rounds required

by a certain algorithm gives a good indication of its

empirical execution time.

BlueMIS I originally uses RandomExchange. We

implemented it using OrderedExchange. More details can

be found in [9]. The OrderedExchange BlueMIS imple-

mentation requires two communication rounds (see

‘‘Appendix 1’’). This is equivalent to BlueStars. Never-

theless, simulation experiments show that BlueStars is

faster. The main reason behind this is that, in BlueMIS, a

node is required to visit its neighbors in order from the

smallest to largest neighbors. This order causes an

increased delay, since the probability of contacting a node

that is busy is higher, where a busy node is a node that is in

communication with another node. For example, assume a

network where nodes v10 (i.e. with identifier 10) and v9

share the neighborhood of node v1. Assume that v10 and v9

have other different smaller neighbors all with identifier

larger than v1. In BlueMIS, both v10 and v9 must first

contact v1, but v1 can be contacted by one node at the same

time. Therefore, one of the nodes v9 or v10 is delayed until

v1 is free. This causes an extended time execution. Blue-

Stars does not have this order. BlueMIS II is analyzed

using the same principles mentioned above. A BSF-UED

node, on the other hand, requires sometimes an order of

contacting its neighbors (such in line 3, capture() in

Algorithm 2), while in other cases this order is not

required. Also, BSF-UED requires only 3 communication

rounds, similar to BlueStars (see ‘‘Appendix 1’’ for more

details).

6.2 Number and size of piconets

We study the number of piconets in the formed scatternets.

This is shown in Fig. 4. BlueStars outperforms all the other

algorithms in this metric. However, this is a trade-off with

the number of outdegree unlimited piconets. We performed

the following experiment in order to study this trade-off.

Essentially, each master node in BlueStars becomes a slave

and each slave node becomes a master. This led to a sig-

nificant increase in the number of masters in BlueStars and

to heuristically limiting the size of BlueStars piconets to

about 3 slaves per piconet at the most. BlueMIS I is the

worst algorithm in term of the number of piconets. This is

because all nodes initially consider themselves masters in

BlueMIS I. A node u becomes slave only in one case;

which occurs if each slave v of u has larger identifier and

has also considered u as a slave. In such case, each slave

v becomes the master of u and thus u is left with no slaves.

Hence, u become a slave only with no master role. The

rules of BlueMIS II significantly decreases the number of

piconets of BlueMIS I. We should note, however, that this

significant decrease caused the piconets of BlueMIS II to

be not limited to 7 slaves. BlueMesh forms scatternets with

a logical number of piconets (about 50 %). This number

increases as the number of nodes increases. BSF-UED and

BSF-UED H1 have approximately similar results to Blue-

Mesh. Heuristic H1 causes an increase in the number of

piconets as the number of nodes increases.

We study the maximum size of piconets. We compute

the average maximum outdegree of the formed scatternets.

Note that BlueMIS II and BlueStars are the worst algo-

rithms with respect of this metric as shown in Table 1. This

is a significant weakness of these algorithms since a pic-

onet with more than 7 slaves introduces a penalty in its

throughput and the throughput of the scatternet in general.

This is because a master with more than 7 slaves must park

all of them except 7 of them. Parked nodes are part of the

piconet but do not collaborate in its activities and do not

send or receive messages within the piconet. Outdegree

limitation is one of the most important quality metrics. This

is why it has been the main concern of many BSF algo-

rithms (see Sects. 1, 4 or [11]).

BlueMIS I forms scatternets with the smallest average

maximum piconet size. This is because the slaves of a

master in BlueMIS I is a maximal independent set of its

neighbors, which is of size at most 5 in unit disk graph and

in average is less. BlueMesh on average forms scatternets

0

 20

 40

 60

 80

 100

 120

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 m

as
te

rs

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 4 Comparison of the number of piconets

Wireless Netw

123

of at most 7. For BSF-UED, the average maximum size of

piconet can reach 14.37 slaves. Piconets with such large

size are few. For instance, our simulation analysis show

that only 4 piconets out of 66 piconets have more than 7

slaves in the case of networks with 110 nodes networks.

Table 2 shows that a piconet on average has 2.4 slaves in

BSF-UED. When applying the heuristics H1, we find that

most scatternets formed are outdegree limited. In fact, in

our experiments, we find that only one scatternet (out of

5000 experiments) was outdegree unlimited (with maximal

degree 8!). BSF-UED is therefore very close to the opti-

mum, which makes us believe the heuristics could be

further improved to achieve this deterministically.

Regarding the average piconet size, BSF-UED is only

outperformed by BlueMIS I. This is one of the advantages

of BSF-UED.

0

1

2

3

4

5

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 r

ol
es

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 5 Comparison of the average role per node

Table 1 Comparison of the average maximum piconet size with standard deviation (in brackets)

Number of nodes BlueStars BlueMesh BlueMIS I BlueMIS II BSF-UED BSF-UED H1

30 8.64 (1.70) 6.90 (0.25) 3.02 (0.31) 8.21 (1.6) 5.99 (0.76) 5.99 (0.76)

50 13.28 (2.38) 7.00 (0) 3.48 (0.49) 12.86 (3.04) 6.39 (0.54) 6.38 (0.52)

70 18.42 (3.55) 7.00 (0) 3.79 (0.40) 18.06 (4.40) 6.94 (1.37) 6.51 (0.49)

90 23.37 (3.76) 7.00 (0) 3.94 (0.23) 22.06 (4.90) 10.16 (2.87) 6.91 (0.27)

110 27.87 (4.09) 7.00 (0) 3.98 (0.18) 27.62 (6.33) 14.56 (3.58) 7 (0.03)

Table 2 Comparison of the average piconet size with standard deviation (in brackets)

Number of nodes BlueStars BlueMesh BlueMIS I BlueMIS II BSF-UED BSF-UED H1

30 3.92 (0.57) 2.36 (0.48) 1.71 (0.12) 3.46 (0.54) 2.28 (0.32) 2.28 (0.320)

50 5.56 (0.97) 3.54 (0.29) 1.93 (0.13) 4.18 (0.75) 2.13 (0.18) 2.13 (0.18)

70 7.13 (1.27) 3.42 (0.52) 2.12 (0.12) 4.99 (1.03) 2.17 (0.18) 2.14 (0.16)

90 8.78 (1.40) 3.78 (0.27) 2.21 (0.12) 5.21 (1.17) 2.52 (0.22) 2.37 (0.15)

110 10.41 (1.73) 3.92 (0.21) 2.31 (0.11) 5.72 (1.40) 2.96 (0.30) 2.53 (0.19)

0

 20

 40

 60

 80

 100

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 b

rid
ge

s

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 6 Comparison of the number bridges

0

 10

 20

 30

 40

 50

 60

 70

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 M

/S
 b

rid
ge

s

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 7 Comparison of the number of M/S bridges

Wireless Netw

123

6.3 Average number of roles per node

The number of roles of a node is the number of piconets it

belongs to. The average number of roles per node is the sum

of number of roles among all nodes divided by the number of

nodes. The results are shown in Fig. 5. First, note that heu-

ristics H1 of BSF-UED does not change the average number

of role per node significantly. We see that BlueStars out-

performs all other algorithms in this metrics. The superiority

of BlueStars is caused by the small number of piconets, the

large size of piconets and the condition that phase 1 forms

disjoint piconets. The second best algorithm is BSF-UED.

6.4 Number of bridges

We study in this section the number of bridges, M/S

bridges and S/S bridges in the formed scatternets. The

results are given in Figs. 6, 7 and 8. One of the main

weaknesses of BSF-UED is the number of M/S bridges.

BlueStars and BlueMesh outperforms BSF-UED in this

metric. We relate this result to the delegation process fol-

lowed by BSF-UED. That is, (1) the procedure Find-

CommonNeighbors() and (2) the fact that nodes cannot

be captured twice. This delegation process generates a

large number of piconets that shall be interconnected. On

the other hand, the same delegation process improves the

average size of the piconets. Moreover, BSF-UED inter-

connection rules (see Sect. 5.3.2) give priorities to rules

that generates new M/S bridges. On the other hand, the

priorities order of these rules improve the execution time of

BSF-UED. For instance, note that a master m, and not one

of its slaves, may be involved in the interconnection rule

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 S

/S
 b

rid
ge

s

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 8 Comparison of the number of S/S bridges

0

1

2

3

4

5

6

7

8

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 h

op
s

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 9 Comparison of the average shortest path

0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes

BlueStars
BlueMesh
BlueMIS I

BlueMIS II
BSF-UED

BSF-UED H1

Fig. 10 Comparison of the number of messages sent in total

Fig. 11 An example scenario with Bluemesh

Wireless Netw

123

I-Rule 2b and I-Rule 2c. That is, assume that m is waiting

for a message from a gateway of a neighbor piconet to be

interconnected via one of these rules. In such case, m is

blocked until the interconnection occurs. Meanwhile, all

slaves of m waits for messages from m that inform them to

become gateways or not. This causes a higher execution

time in general. The high number of M/S bridges is the cost

of achieving heuristically outdegree limited scatternets in

short execution time which was our main objective when

designing BSF-UED. At the same time, we believe that this

result is acceptable given that BSF-UED forms piconets

with fewer number of slaves on average (see Table 2) and

the nodes have less roles on average (see Fig. 5). As a

result, an M/S bridge can achieve a balance between the

role of being a master and the role of being a slave. Also,

many of these slaves that are mastered by an M/S bridge

will not be significantly affected when their masters works

as a slave. That is, let assume that v is an M/S bridge and it

has u as its slave and w as its master. When v is active in

the piconet of its master w, the slaves of piconet

v (including u) are set to inactive in the piconet of v. This is

because the master v controls the flow of packets in its

piconet. However, because there is a large number of M/S

bridges, it is possible that the slave u belongs also to

another piconet. Therefore, u is active in a piconet other

that of v while its master v is not active in its own piconet.

BlueMIS I does not suffer from a large number of M/S

bridges despite the significantly large number of piconets in its

scatternets. This is because there are some nodes in the scat-

ternet that have many masters (i.e. very high indegree). Such

nodes may cause bottleneck in the scatternet. The involve-

ment of these nodes as bridges to multiple piconets at the same

time may delay the transmission of messages between these

piconets, causing thus issues in the scatternet throughput.

6.5 Average shortest path

Figure 9 shows the results of the average shortest paths of

the formed scatternets. The measure gives an indication of

the cost of routing in networks, in general. It is calculated

Fig. 12 Flow diagram of Phase 1 of BSF-UED

Wireless Netw

123

by the minimum number of hops between every pair of

nodes on average. In Bluetooth scatternets, the path con-

necting two nodes is not affected only by the number of

hops, but also by the properties of the path nodes (e.g.,

masters, slaves, bridges, average role per node and number

of slaves per master). We see that BlueMIS outperforms

the other algorithm in this measure. BSF-UED and Blue-

Stars have approximately similar measurements. For BSF-

UED, this is a direct result of deleting the unnecessary

edges in BSF-UED. We may improve this measure by

increasing the number of edges in the scatternet. For

instance, masters that do not have their piconets filled with

7 slaves may slave random neighbors. Note however that

the difference between BSF-UED and the best algorithm

with respect to this metric is about 1 to 1.5 hops on aver-

age. This difference is not significant in our opinion.

6.6 Number of messages

We study the number of messages sent by all the net-

work nodes. This is an approximative measure of the

energy consumed by the network during the execution of

the algorithm. Note however that the study of the energy

consumption of the algorithms may be more accurate if a

detailed energy model of Bluetooth is used. Moreover,

this measure is common to asynchronous distributed

algorithms. The results are listed in Fig. 10. A theoretical

analysis shows that the number of messages in each of

the algorithms is within a constant to the number of

edges of the network. We find algorithm BSF-UED sig-

nificantly outperforms algorithms BlueMesh, BlueMIS I

and BlueMIS II. This is one of the advantages of BSF-

UED.

Fig. 13 Flow diagram of Phase

2 of BSF-UED

Wireless Netw

123

7 Conclusion and future work

We introduced in this paper a comparative study of some of

the major algorithms in the literature. We also introduced

algorithm BSF-UED, which is a time-efficient algorithm

for the Bluetooth Scatternet Formation problem. The

algorithm forms connected scatternets deterministically,

and outdegree limited scatternets heuristically. The algo-

rithm can be seen as a modification of BlueStars, BlueMesh

and BlueMIS in order to form outdegree limited scatter-

nets. BSF-UED was compared against BlueStars, Blue-

Mesh, BlueMIS I and BlueMIS II. Our algorithm

outperformed the other algorithms in a number of impor-

tant performance metrics. Of particular significance is the

fact that BSF-UED outperforms BlueMesh in the average

piconet size, average role per node and number of mes-

sages; it is also about 3 times faster in execution time. The

main weakness of BSF-UED is the high number of M/S

bridges. This weakness is tolerable to some degree as we

explained in Sect. 6.4, especially as the average number of

slave per piconet and the average roles per node are low..

In term of other metrics, BSF-UED and BlueMesh generate

similar results to a certain degree. A future research

direction is to solve the issues of BSF-UED, and to adapt it

to mobile scenarios.

The comparative study that we performed in this paper

shows that it is a challenging task to achieve a perfect

balance between the many performance metrics of Blue-

tooth scatternets. Every algorithm that we studied is found

to suffer from at least one weakness with respect to a

certain performance metric. In order to solve this issue, we

suggest forming scatternets by using simple heuristics.

These heuristics shall take into account the execution time

as a main priority. This approach leads in general to faster

BSF algorithms as it is the case of BlueStars and BSF-

UED. We believe that more work should be done in the

field of BSF as the results of this comparative study show

that many issues shall be addressed despite the numerous

studies in the field.

We suggest a change in the specifications of Bluetooth

in order to make it more suitable for ad-hoc networking. A

change in the link establishment procedures is necessary in

order to achieve faster BSF algorithms. We also suggest

that the restriction of outdegree limited piconets shall be

relaxed. We believe that more focus shall be given to inter-

piconet and intra-piconet scheduling algorithms.

The nature of Bluetooth scatternets led to the adoption

of quality metrics that are different than those used in non-

Bluetooth networks. However, the large number of quality

metrics of Bluetooth scatternets complicates the study of

the scatternet performance. Therefore, we see that a set of

new generalized quality metrics to study the performance

of Bluetooth scatternets must be introduced in future work.

These quality metrics shall be few in number, be easy to

implement, and give a good indication of the scatternet

performance.8 We believe that such generalized quality

metrics shall take into consideration the inter-piconet and

intra-piconet scheduling in the scatternets. Solving this

problem would simplify the design of new BSF algorithms

and leads to the introduction of more efficient BSF

algorithms.

Appendix 1: Time complexity analysis

In this section, we study the time complexity of BlueStars,

BlueMesh, BlueMIS and BSF-UED. We start with

BlueStars.

Theorem 6 The time complexity of BlueStars is

O(n) where n is the number of nodes in the network.

Proof The most expensive procedure in BlueStars is the

procedure of forming disjoint piconets (i.e. the first phase).

A node vi with identifier i starts executing this phase if all

its larger neighbors (i.e. with larger identifiers) sent a

message to vi. We say vi waits for vj if vj is a larger

neighbor of vi. According to this definition, vi may wait for

vk where vk is a larger neighbor of vj. We may construct

thus a chain v1; _;vn of length n such that vi waits for vj if

i [j. Therefore, a node vi waits for all the larger nodes in

the network, and respectively the smallest node v1 waits for

all the other nodes. Therefore, the time complexity of this

phase is O(n). In the second phase of BlueStars, there is a

message exchange between (1) the slaves and masters (in

order for the masters to identify the neighbor piconets), (2)

the masters and gateways (to inform the gateways which

piconets they must interconnect), and (3) the gateways and

neighbor gateways (to interconnect the neighbor piconets).

This requires O(1) time complexity, and therefore the time

complexity of BlueStars is O(n). h

BlueMesh runs in iterations (as explained in Sect. 4.4).

Each iteration is similar with respect to time complexity to

BlueStars, since both constructs a maximal independent set

in a similar manner. Therefore, each iteration requires

O(n). In the following, we analyzes the worst case number

of iterations of BlueMesh.

Theorem 7 The number of iterations run by BlueMesh is

in the worst case O(log n) in arbitrary graphs and O(1) in

unit disk graphs, where n is the number of nodes in the

network.

8 We thank the anonymous reviewer for directing our attention to this

important issue in the field of Bluetooth Scatternet Formation

algorithms

Wireless Netw

123

Proof We build the worst case scenario as follows. We

start with the simple graph of two nodes u and v linked by

the edge (u, v). Let’s assume that nodes u and v are the last

surviving nodes in iteration k, where k is the index of the

last phase of the algorithm. Note that if a node u survived

iteration k - 1 and moved to iteration k, then it must have

a larger neighbor u0. This means that there is at least 4

nodes u; u0; v and v0 in iteration k - 1. Therefore, the

maximum number of nodes that move to iteration i is |Pi-1|/

2 where |Pi| is the number of nodes in iteration i. Therefore,

the maximum number of phases is at O(log n). The worst

case scenario of BlueMesh is shown in Fig. 11.

Note that if a node has more than 5 neighbors in a unit

disk graph then at least two of them are also neighbors.

Following the previous argument, if a node survived

k iterations then it must have at least k largest neighbors

that are not neighbors to each other. This means that k is at

most 5 in unit disk graphs. Therefore, the maximum

number of BlueMesh iterations if run over unit disk graphs

is O(1). h

Therefore, the time complexity of BlueMesh in unit disk

graphs is O(n). Note that the time complexity of BlueMesh

remains O(n) in arbitrary graphs. The result of Theorem 7

matces simulation results in this paper and in [6], whereas a

theoritical analysis of this aspect of BlueMesh is first

studied here.

BlueMIS I complexity is straightforward. Each node

exchanges its neighbors list with all its neighbors in a first

round. In a second round, each node u sends to all its

neighbors the set S(u) which is the set of nodes that u may

be master to. Therefore, the time complexity of BlueMIS I

is O(1). Thus, BlueMIS I is a local distributed algorithm.

Local distributed algorithms has the advantage that their

execution time does not depends on the size of the input

network, making them suitable to solve scalability issues.

The case is different in BlueMIS II. To achieve the exact

same results given in [7], BlueMIS II time complexity may

be at least in O(n). This is because, in order to avoid certain

worst-case conflicting scenarios, each node must execute

the rules of BlueMIS II while every other is waiting (that

is, in a sequential manner). This is one of the major issues

in BlueMIS II. In our implementation, every node executes

its rules locally after collecting sufficient neighborhood

information. Therefore, we assumed that the time com-

plexity of BlueMIS II remains O(1).

BSF-UED time complexity is similar to that of Blue-

Stars. The first phase is similar to the first phase of Blue-

Stars and thus has O(n) time complexity. In the second

phase of BSF-UED, there is a communication exchange

between, (1) slaves and masters, (2) masters and gateways,

and 3) gateways and gateways from neighbor piconets.

Therefore, the time complexity of BSF-UED is O(n).

Appendix 2: Flow diagrams of BSF-UED

In this appendix section, we present the flow diagrams of

our algorithm BSF-UED without the heuristics. We believe

that this simplifies the understanding of our algorithm and

its pseudocode (see Figs. 12 and 13).

References

1. Nokia. 5 surprising facts about Bluetooth, May (2011).

2. Bluetooth SIG. Bluetooth specifications ver 4.0, (2010).

3. Petrioli, C., Basagni, S., & Chlamtac, I. (2003). Configuring

BlueStars: Multihop scatternet formation for Bluetooth networks.

IEEE Transactions on Computers, 52, 779–790.

4. Li, X. Y., Stojmenovic, I., & Wang, Y. (2004). Partial delaunay

triangulation and degree limited localized Bluetooth scatternet

formation. IEEE Transactions on Parallel and Distributed Sys-

tems, 15(4), 350–361.

5. Wang, Z., Thomas, R. K., & Haas, J. (2009). Performance

comparison of Bluetooth scatternet formation protocols for multi-

hop networks. Wireless Networks, 15(2), 209–226.

6. Petrioli, C., Basagni, S., & Chlamtac, I. (2004). BlueMesh:

Degree-constrained multi-hop scatternet formation for Bluetooth

networks. Mobile Networks and Applications, 9(1), 33–47.

7. Zaguia, N., Daadaa, Y., & Stojmenovic, I. (2008). Simplified Blue-

tooth scatternet formation using maximal independent sets. Integrated

Computer-Aided Engineering, 15(3), 229–239. ISSN 1069-2509.

8. Howell, F., & McNab, R. (1998). SimJava: A discrete event

simulation library for java. Simulation Series, 30, 51–56.

9. Jedda, A., Jourdan, G. V., & Mouftah, H. T. (July 2012). Time-

efficient algorithms for the outdegree limited Bluetooth scatternet

formation problem. In Proceedings of the IEEE symposium on

computers and communications (ISCC) 2012, pp. 000132–000138.

doi:10.1109/ISCC.2012.6249281.

10. Jedda, A., Jourdan, G. V., & Zaguia, N. (2012). Towards better

understanding of the behaviour of Bluetooth networks distributed

algorithms. International Journal of Parallel, Emergent and

Distributed Systems, 27(6), 563–586.

11. Stojmenovic, I., & Zaguia, N. (2006). Bluetooth scatternet formation

in ad-hoc wireless networks. In: J. Misic, V. Misic (Eds.), Chapter 9

in: Performance modeling and analysis of Bluetooth networks: Net-

work formation, polling, sceduling, and traffic control (pp. 147–171).

12. Whitaker, R. M., Hodge, L., & Chlamtac, I. (2005). Bluetooth

scatternet formation: A survey. Ad Hoc Networks, 3(4), 403–450.

ISSN 1570-8705. doi:10.1016/j.adhoc.2004.02.002.

13. Vergetis, E., Guérin, R., Sarkar, S., & Rank, J. (2005). Can Blue-

tooth succeed as a large-scale ad hoc networking technology? IEEE

Journal on Selected Areas in Communication, 23(3), 644–656.

14. Basagni, S., Bruno, R., Mambrini, G., & Petrioli, C. (2004). Com-

parative performance evaluation of scatternet formation protocols for

networks of Bluetooth devices. Wireless Networks, 10(2), 197–213.

ISSN 1022-0038. doi:10.1023/B:WINE.0000013083.41155.fa.

15. Song, W. Z., Wang, Y., Ren, C., & Wu, C. (2009). Multi-hop

scatternet formation and routing for large scale Bluetooth net-

works. International Journal of Ad Hoc and Ubiquitous Com-

puting, 4(5), 251–268.

16. Salonidis, T., Bhagwat, P., Tassiulas, L., & LaMaire, R. (2001).

Distributed topology construction of Bluetooth personal area

network. In IEEE INFOCOM 2001.

17. Sreenivas, H., & Ali, H. (2004). An evolutionary Bluetooth scat-

ternet formation protocol. In System sciences. (2004). Proceedings of

the 37th annual hawaii international conference on, p. 8–pp. IEEE.

Wireless Netw

123

http://dx.doi.org/10.1109/ISCC.2012.6249281
http://dx.doi.org/10.1016/j.adhoc.2004.02.002
http://dx.doi.org/10.1023/B:WINE.0000013083.41155.fa

18. Hodge, L. E., Whitaker, R. M., & Hurley, S. (2006). Multiple

objective optimization of Bluetooth scatternets. Journal of

Combinatorial Optimization, 11(1), 43–57.

19. Marsan, M. A., Chiasserini, C. F., Nucci, A., Carello, G., & De

Giovanni, L. (2002). Optimizing the topology of Bluetooth

wireless personal area networks. In INFOCOM 2002. Twenty-first

annual joint conference of the IEEE computer and communica-

tions societies. Proceedings. IEEE, vol. 2, pp. 572–579. IEEE.

20. Huang, L., Chen, H., Sivakumar, T., Kashima, T., & Sezaki, K. (2005).

Impact of topology on Bluetooth scatternet. International Journal of

Pervasive Computing and Communications, 1(2), 123–134.

21. Kiss Kalló, C., Chiasserini, C. F., Jung, S., Brunato, M., & Gerla,

M. (2007). Hop count based optimization of Bluetooth scatter-

nets. Ad Hoc Networks, 5(3), 340–359.

22. Daptardar, A. (2004). Meshes and cubes: Distributed scatternet

formations for Bluetooth personal area networks.

23. Song, W. Z., Li, X. Y., Wang, Y., & Wang, W. Z. (2005).

dBBlue: Low diameter and self-routing Bluetooth scatternet.

Journal of Parallel and Distributed Computing, 65(2), 2.

24. Zhang, H., Hou, J. C., & Sha, L. (2003). A Bluetooth loop scat-

ternet formation algorithm. In Communications. (2003). ICC’03.

IEEE International Conference on, vol. 2, pp. 1174–1180. IEEE.

25. Wang, Y., Stojmenovic, I., & Li, X.-Y. (2004). Bluetooth scat-

ternet formation for single-hop ad hoc networks based on virtual

positions. In Computers and Communications. (2004). Proceed-

ings. ISCC 2004. Ninth International Symposium on, vol. 1,

pp. 170–175. IEEE.

26. Barrière, L., Fraigniaud, P., Narayanan, L., & Opatrny, J. (2003).

Dynamic construction of Bluetooth scatternets of fixed degree

and low diameter. In Proceedings of the fourteenth annual ACM-

SIAM symposium on discrete algorithms (pp. 781–790). Society

for Industrial and Applied Mathematics.

27. Yu, C. M., & Lin, J. H. (2012). Enhanced Bluetree: A mesh

topology approach forming Bluetooth scatternet. IET Wireless

Sensor Systems, 2(4), 409–415.

28. Cuomo, F., Melodia, T., & Akyildiz, I. F. (2004). Distributed

self-healing and variable optimization algoritms for QoS provi-

sioning in scatternets. IEEE Journal on Selected Areas in Com-

munication, 22(7), 1220–1236.

29. Law, C., Mehta, A. K., & Siu, K. (2003). A new Bluetooth scatternet

formation protocol. Mobile Networks and Applications, 8(5), 485–498.

30. Gallager, R. G., Humblet, P. A., & Spira, P. M. (1983). A distributed

algorithm for minimum-weight spanning trees. ACM Transactions

on Programming Languages and systems (TOPLAS), 5(1), 66–77.

31. Tan, G., Miu, A., Guttag, J., & Balakrishnan, H. (2002). An

efficient scatternet formation algorithm for dynamic environ-

ments. In Proceedings of the IASTED communications and

computer networks (CCN), pp. 4–6.

32. Huang, T. C., Yang, C. S., Huang, C. C., & Bai, S. W. (2006).

Hierarchical Grown Bluetrees (HGB): An effective topology for

Bluetooth scatternets. International Journal of Computational

Science and Engineering, 2(1), 23–31.

33. Zaruba, G., Basagni, S., & Chlamtac, I. BlueTrees-Scatternet

formation to enable Bluetooth-based personal area networks. In

Proceedings of the IEEE international conference on communi-

cations, vol. 1, pp. 273–277, 6 (2001).

34. Dong, Y., & Wu, J. (2003). Three bluetree formations for con-

structing efficient scatternets in Bluetooth. In Proceedings of the

7th joint conference on information sciences, pp. 385–388.

35. Pagani, E., Rossi, G., & Tebaldi, S. (2004). An on-demand

Bluetooth scatternet formation algorithm. Wireless On-Demand

Network Systems, pp. 51–61.

36. Methfessel, M., Peter, S., & Lange, S. (2011). Bluetooth

scatternet tree formation for wireless sensor networks. In

Mobile adhoc and sensor systems (MASS), 2011 IEEE 8th

international conference on, pp. 789–794. IEEE.

37. Dubhashi, D., Häggström, O., Mambrini, G., Panconesi, A., &

Petrioli, C. (2007). Blue pleiades, a new solution for device dis-

covery and scatternet formation in multi-hop Bluetooth networks.

Wireless Networks, 13, 107–125, January 2007. ISSN 1022-0038.

38. Wattenhofer, R., & Zollinger, A. (2004). XTC: A practical

topology control algorithm for ad-hoc networks. In Parallel and

distributed processing symposium, (2004). Proceedings. 18th

international, p. 216, April 2004.

39. Wang, Q. (2006). Scheduling and simulation of large scale

wireless personal area networks. PhD thesis, University of

Cincinnati, Cincinnati, USA.

40. VINT. The VINT Project, The Network Simulator-ns-2, URL:

http://www.isi.edu/nsnam/ns/. Page accessed on (9-7-2013). In

Zealand: University of Otago, pages 181–186. (2003).

Author Biographies

Ahmed Jedda obtained his

M.Sc. in Computer Science from

University of Ottawa. He is cur-

rently a Ph.D. candidate in

Computer Science in University

of Ottawa, where he works in the

WiSense laboratory. His

research interest is network for-

mation algorithms in Bluetooth,

RFID and P2P.

Arnaud Casteigts is an Asso-

ciate Professor at the University

of Bordeaux, France, where he

joined after spending 5 years at

the University of Ottawa, Can-

ada. His research interests

include distributed computing in

static and dynamic networks,

private data analysis and visu-

alization of algorithms. He is

the main developer of the

JBotSim Library.

Guy-Vincent Jourdan joined

University of Ottawa as an

Associate Professor in June

2004, after 7 years in the private

sector as C.T.O. and then C.E.O.

of Ottawa based Decision Aca-

demic Graphics. He received his

Ph.D. from l’Université de

Rennes/INRIA in France in 1995

in the area of distributed systems

analysis. His research interests

include distributed systems

modeling and analysis, software

engineering, software security

and ordered sets.

Wireless Netw

123

http://www.isi.edu/nsnam/ns/

Hussein T. Mouftah received

his B.Sc. and M.Sc. from

Alexandria University, Egypt,

in 1969 and 1972 respectively,

and his Ph.D. from Laval Uni-

versity, Quebec, Canada in

1975. He joined the School of

Information Technology and

Engineering (now School of

Electrical Engineering and

Computer Science) of the Uni-

versity of Ottawa in 2002 as a

Tier 1 Canada Research Chair

Professor, where he became a

Distinguished University Pro-

fessor in 2006. He has been with the ECE Department at Queen’s

University (1979–2002), where he was prior to his departure a Full

Professor and the Department Associate Head. He has 6 years of

industrial experience mainly at Bell Northern Research of Ottawa

(then known as Nortel Networks). He served as Editor-in-Chief of the

IEEE Communications Magazine (1995–1997) and IEEE ComSoc

Director of Magazines (1998–1999), Chair of the Awards Committee

(2002–2003), Director of Education (2006–2007), and Member of the

Board of Governors (1997–1999 and 2006–2007). He has been a

Distinguished Speaker of the IEEE Communications Society

(2000–2007). He is the author or coauthor of 8 books, 60 book

chapters and more than 1200 technical papers, 12 patents and 140

industrial reports. He is the joint holder of 14 Best Paper and/or

Outstanding Paper Awards. He has received numerous prestigious

awards, such as the 2007 Royal Society of Canada Thomas W. Eadie

Medal, the 2007–2008 University of Ottawa Award for Excellence in

Research, the 2008 ORION Leadership Award of Merit, the 2006

IEEE Canada McNaughton Gold Medal, the 2006 EIC Julian Smith

Medal, the 2004 IEEE ComSoc Edwin Howard Armstrong

Achievement Award, the 2004 George S. Glinski Award for Excel-

lence in Research of the U of O Faculty of Engineering, the 1989

Engineering Medal for Research and Development of the Association

of Professional Engineers of Ontario (PEO), and the Ontario Distin-

guished Researcher Award of the Ontario Innovation Trust. Dr.

Mouftah is a Fellow of the IEEE (1990), the Canadian Academy of

Engineering (2003), the Engineering Institute of Canada (2005) and

the Royal Society of Canada RSC Academy of Science (2008).

Wireless Netw

123

	Bluetooth scatternet formation from a time-efficiency perspective
	Abstract
	Introduction
	Bluetooth basics
	Problem statement
	Performance metrics

	Related work
	Centralized BSF algorithms
	Single-hop BSF algorithms
	Tree-based BSF algorithms
	Mesh-based BSF algorithms

	BSF-UED: A new BSF algorithm based on unnecessary-edges deletion
	Assumptions
	Phase 1: piconet construction
	Informal strategy
	Detailed strategy
	Procedure FindCommonNeighbors(v)
	Example
	Correctness

	Phase 2: piconets interconnection
	Informal strategy
	Detailed strategy
	Implementation details
	Correctness

	Heuristic optimization
	Heuristic H1: Decreasing the number of outdegree unlimited piconets

	Simulation experiments
	Execution time
	Number and size of piconets
	Average number of roles per node
	Number of bridges
	Average shortest path
	Number of messages

	Conclusion and future work
	Appendix 1: Time complexity analysis
	Appendix 2: Flow diagrams of BSF-UED
	References

