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Abstract. We propose an extension of the Finite State Machine frame-
work in distributed systems, using input/output partial order automata
(IOPOA). In this model, transitions can be executed non-atomically,
reacting to asynchronous inputs on several ports, and producing asyn-
chronous output on those ports. We develop the formal framework for
distributed testing in this architecture and compare with the synchronous
I/O automaton setting. The advantage of the compact modelling by
IOPOA combines with low complexity : the number of tests required
for concurrent input in our model is polynomial in the number of inputs.

1 Introduction

Finite State Machines (FSMs) have been used to model many types of sequential
systems. However, it is distributed applications over networks that become in-
creasingly important; they do not fit into this sequential model, because inputs
may be applied simultaneously and events are not necessarily totally ordered.
In the context of testing, distributed testing models use multi-port automata in
which each transition is guarded by a required vector of inputs (possibly ⊥, i.e.
no input on some channels) on a collection of channels, and produces a vector
of outputs (possibly ⊥) on those channels. This model, often called Multiports
Deterministic FSM in the literature, but that we call sequential input automata
in this paper, has been widely studied from a distributed system testing per-
spective; emphasis is given in that work to the coordination messages, between
testers at different ports, that are necessary to avoid controllability and observ-
ability problems in distributed systems testing [1–16]. However, this model is
intrinsically sequential regarding the inputs, which must be specified one at a
time (although one such single input can generate several, concurrent outputs
on different ports). In order to specify that from a given state, two concurrent
inputs a and b are required, one has to specify either ’a then b’ or ’b then a’.



Consider the more detailed example in Figure 1. In that context, we need to
specify that in order to go from state si to state sf , we need to input i1, i2
and i3 on ports 1, 2 and 3 respectively. On port 1, the output o1 should be
produced after i1 was input. On port 3, output o3 should be produced after i3
was input, and on port 2, o2 should be produced after i1, i2 and i3 have all been
input. In general, when n inputs must be provided concurrently, the only option
is to enumerate all n! ordering for the inputs, leading to a specification that
is large and difficult to create, hard to interpret and thus to understand, and
whose size makes it difficult to test. Another approach would be to arbitrarily
impose a given ordering for the inputs, which seems a poor option and which
adds needless constraints at the implementation level.
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Fig. 1. (Partial) Multiports Deterministic FSM.

We therefore endeavour to explore a model that allows specifications to
relax synchronization constraints: equipping partial order automata with in-
put/output capabilities. We define a class of IO-PO-automata (IOPOA) in which

– inputs can arrive asynchronously, and
– transitions may occur partially, and in several steps, reacting to inputs as

they arrive and producing outputs as soon as they are ready, without dedi-
cated synchronization.

The important additional feature (in addition to state transition and output
production) of transitions is then a causal order : for p channels, we have a
bipartite graph of (p inputs) ∗ (p outputs) such that input on channel i precedes
output on channel i produced by that transition. Cross-channel dependencies
may persist between input on some channel j and output on channel i 6= j; at
most, the input on j can trigger a broadcast to all channels. However, inputs are
not ordered among one another, neither are outputs.
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Fig. 2. The IOPOA corresponding to the multiports deterministic FSM of Figure 1.

Figure 2 shows the IOPOA corresponding to the set of transitions of Fig-
ure 1. Clearly, the result is a much simpler model, with two states and one
transition. The role of states for testing in this model will be redefined, and
a new role emerges for the partially ordered patterns ; the theoretical toolbox
of distinguishing sequences etc. needs to be adapted, yet keeps its importance.
Concerning the complexity of checking, one might have expected that the new
model were just a concise way of specifying the same behavior, and thus that
testing would be the same in both cases (that is, that all combinations of con-
current inputs would have to be tested anyways). It turns out not to be the
case; in fact, the number of tests required for concurrent input in our model is
polynomial in the number of inputs.

The rest of the paper is structured as follows. In section 2, the IOPOA
Framework is introduced, section 3 focuses on the differences between the partial
order model and the classical one regarding conformance testing. Finally, section
4 discusses future extensions to more general IOPOA classes, and shows that
IOPOA can have homing and synchronizing sequences, but may not have state
identification or state verification sequences. Section 5 concludes.

2 IOPOA Framework

We introduce the model of IOPO Automaton with I/O vector sequences. The
definition of conformance, given in 2.3 in this framework needs the notions of
well-behavedness and of completion, which we discuss in 2.4.

2.1 IOPO Automata

Definition 1. An Input/Output Partial Order Automaton (or IOPO Automa-
ton, IOPOA) is a tuple M = (S, sin,Chn, I,O, δ, λ, ω), where

1. S is a finite set of states and s1 = sin ∈ S is the initial state; the number of
states of M is denoted n , |S| and the states of M are enumerated, giving
S = {s1, . . . , sn};

2. Chn = π1, . . . , πp is the set of I/O channels (ports),



3. I is the common input alphabet, and O the common output alphabet for all
channels. Note that the literature often notes different alphabets I1, . . . , Ip

for different channels ; the above implies no loss of generality provided that
the port to which an input is applied is uniquely identifiable. Taking

I ,

p
⋃

i=1

Ii ; I , I × Chn,

such that (a, i) denotes input a on port i, one can switch from one repre-
sentation to the other. We require a special symbol ⊥ ∈ I ∩ O to represent
empty input/output. Let Θ be the p-tuple Θ , (⊥, . . . ,⊥), and

X , Ip\{Θ}, XΘ , X ∪ {Θ}

Y , Op

be the sets of input/output p-vectors, respectively.
4. δ : S × X → S is a (partial) next state function: s′ = δ(s,x) for states

s, s′ ∈ S and x = (x1,x2, . . . ,xp) ∈ X means that if M is in state s, and
inputs x1,x2, . . . ,xp are applied to ports 1, 2, . . . , p, respectively, then M will
enter state s′;

5. λ : S × X → Y is the output function; if M is in state s, and input
x = (x1,x2, . . . ,xp) ∈ X is applied, then the output λ(s,x) = (y1,y2, . . . ,yp)
is observed; write λi(s,x) = yi to indicate that yi is observed at port i;

6. ω is a PO transition label function: For any (s,x) ∈ S × X such that
δ(s,x) = s′ and λ(s,x) = y ∈ Y, ω(s,x) ⊆ ({x1, . . . ,xp} × {y1, . . . ,yp}) is
a partial order that satisfies
(a) xi < yi for all i ∈ {1, . . . , p} such that xi 6= ⊥ and yi 6= ⊥, and
(b) if xi = ⊥, then xi 6≤ yj for all j ∈ Chn.

We assume throughout this paper that the underlying transition graph is
strongly connected for all IOPOA considered. δ and λ extend to sequence-valued
functions S×X ∗ → S∗ and S×X ∗ → Y∗, which we denote by the same function
names.

2.2 I/O vector sequences

We allow I/O with restricted concurrency. That is, in each round, one input
may be given and one output be received on each channel, and I/O on different
channels in that round are pairwise concurrent; in particular, inputs can be made
in any order. By contrast, I/Os in different rounds are never concurrent: earlier
rounds strictly precede all subsequent ones, for all channels.

For x,x′ ∈ XΘ, say that x ≤ x′ iff for all i ∈ {1, . . . , p}, xi 6= x′
i implies xi = ⊥.

Write x < x′ iff x ≤ x′ and x 6= x′. Intuitively, if x < x′, x can be seen as
an incomplete input of x′; one may ”enter x first, and later add the rest of x′”.
This is in fact a key to our technique for transition identification, see below. For
vector sequences α, β ∈ X ∗, write α ⊑ β iff



1. α1 . . . α|α|−1 is a prefix of β, and

2. α|α| ≤ β|α|.

Note that this is more restrictive than the general partial order prefix relation.

Subtraction:

– For vectors x ≤ x′, let x′ ⊖ x be the vector w such that wi = x′
i iff xi = ⊥,

and wi = ⊥ otherwise.

– For vector sequences α ⊑ β, let

β ⊖ α , (β|α| ⊖ α|α|) ◦ β|α|+1 . . . β|β|.

2.3 Completion of an IOPOA

Intermediate states: Suppose states s, s′ and vectors x,x′ ∈ X such that
δ(s,x) = s′ and Θ < x′ < x. In general, δ(s,x′) may be undefined; remedy this
by using an extended state space, with an intermediate state sx

′

6∈ S such that
input x′ leads from s to sx

′

, and input x ⊖ x′ leads from sx
′

to s′. Formally,
we extend S to a superset S and assume δ, λ, ω extend to partial functions
δ : (S × X ) → S, λ : (S × X ) → Y and ω : (S × X ) → 2(X×Y) such that the
following properties hold:

1. δ|(S×X ) ≡ δ, λ|(S×X ) ≡ λ, and ω|(S×X ) ≡ ω;

2. Monotonicity: Changing the order in which inputs are received must not
alter the behavior of δ, λ and ω. Formally, α ⊑ β must imply for all s ∈ S
(◦ denotes concatenation):

(a) δ(s, β) = δ(δ(s, α), β ⊖ α);

(b) λ(s, β) = λ(s, α) ◦ λ(δ(s, α), β ⊖ α);

(c) ω(s, β) = ω(s, α) ◦ λ(δ(s, α), β ⊖ α);

If the above are satisfied by M, we say that M is well-behaved. If M ,

(S, sin, I,O,Chn, δ, λ, ω) is well-behaved, call M , (S, sin, I,O,Chn, δ, λ, ω) its
completion.

Well-behavedness captures the strong input determinism of a transition in a
IOPOA. If one transition specifies several inputs, then necessarily these inputs
are concurrent, and thus can be input in the system in any order without impact
on the state reached at the end of the transition. This is a reasonable assumption
since if the state reached was different for different orderings of the input, it
would imply that the inputs were in fact causally related, and therefore the
specification should not have treated them as concurrent.

Thus, in the following, we require all IOPOAs to be well-behaved, thus we
are dealing with strongly deterministic IOPOAs for which no order needs to be
enforced for concurrent inputs.



2.4 Morphisms and Conformance

Let M and M′ be two IOPO automata over the same in/output alphabets:

M = (S, s1, I,O,Chn, δ, λ, ω)

and M′ = (S′, s2, I,O,Chn, δ′, λ′, ω′).

A morphism from M to M′ is a total mapping Φ : S → S′ with the property
that for all (s,x) ∈ S ×X such that δ(s,x) is defined,

1. δ′(Φ(s),x) is defined, and δ′(Φ(s),x) = Φ(δ(s,x));
2. λ′(Φ(s),x) = λ(s,x);
3. Φ induces a partial order isomorphism ω(s,x) → ω′(Φ(s),x).

We say that M′ conforms to M iff there exists a bijective morphism Φ : S → S′,
called a conformal map. Φ is an isomorphism iff (i) it is bijective and (ii) Φ−1 is
a morphism from M′ to M. Note that conformance is not a symmetric relation,
and strictly weaker than isomorphism. We note that:

Lemma 1. The composition of conformal maps yields a conformal map, i.e.
conformance is transitive.

Theorem 1. Let M1 and M2 be well-behaved IOPO automata. If M2 conforms
to M1 under Φ : S2 → S1, then M2 conforms to M1.

Proof. Suppose M2 conforms to M1 under Φ : S2 → S1. Let u1 be an intermedi-
ate state of M, and (s1, α) ∈ S1 ×X ∗ such that δ1(s1, α) = u1. By construction
of M1, there exists s′1 ∈ S1 and α′ ∈ X ∗ such that α ⊑ α′ and

δ1(s1, α
′) = δ1(s1, α

′) = u′
1. (1)

Isomorphism of M1 and M2 implies that

δ2(s2, α
′) = δ2(s2, α

′) = u′
2, (2)

where s2 , Φ(s1), s′2 , Φ(s′1), and u′
2 , Φ(u′

1). By construction of M2, there
exists an intermediate state u′ of M′ such that δ2(s2, α) = u2. Input determinism
implies that u2 is unique with this property. Set Φ(u1) , u2. One obtains an
extension Φ : S1 → S2 of Φ : S1 → S2, and checks that Φ is bijective and defines
a morphism M1 → M2.

3 Conformance Testing for Automata with Distinguishing
Sequences

The utility of the theorem 1 lies in the following application: Suppose we are given
an implementation M = (S, sin,Chn, I,O, δ, λ, ω) and a specification M1 =
(S1, s

in
1 ,Chn, I,O, δ1, λ, ω). Let L1 ⊆ X ∗ be the set of all input vector sequences

α such that δ1(s
in
1 , α) is defined, i.e. application of α in sin takes M1 to some



specification state sα = δ(sin1 , α) ∈ S1. Let M2 be the IOPO automaton obtained
by applying L1 in M, i.e. let

M2 , (S2, s
in

1 , I,O,Chn, δ2, λ2, ω2),

where : S2 ,
{

s ∈ S | ∃ α ∈ L1 : δ(sin, α) = s
}

,

δ2 , δ|S2×L1
,

λ2 , λ|S2×L1
,

ω2 , ω|S2×L1
.

Here, L1 denotes the closure of L1 under subtraction of prefixes. By construction,
M conforms to M2. Using well-known techniques [17], conformance of M2 to
M1 can be tested. If the test is passed, we know by Theorem 1 that M2 conforms
to M1; thus Lemma 1 yields that M conforms to M1. Hence the task of testing
conformance for IOPO automata is indeed completed.

In order to actually perform a test of conformance, we use a checking se-
quence. Let C(M) be the set of IOPOA having no more states than M, the
same number of ports and the same input and output alphabet.

Definition 2 (Checking Sequence). Let M1 = (S1, s
in
1 ,Chn, I,O, δ1, λ1, ω1)

be an IOPOA. A checking sequence of M1 is an input sequence I which dis-
tinguishes M1 from any IOPOA M2 = (S2, s

in
2 , I,O,Chn, δ2, λ2, ω2) in C(M1)

that does not conform to M1, i.e. such that ∀s ∈ S2, λ1(s
in
1 , I) 6= λ2(s, I) or

ω1(s
in
1 , I) 6= ω2(s, I).

Distinguishing sequences are usually defined as a sequence of inputs that will
produce a different output for every state [17]. In the case of IOPOAs, we need
to expand this definition to include the possibility of having the same output
but different partial order labels.

Definition 3 (Distinguishing Sequence). An IOPOA M admits an adap-
tive distinguishing sequence if there is a set of n input sequences {ξ1, . . . , ξn},
one per state of S, such that for all i, j ∈ [1, . . . , n], i 6= j, ξi and ξj have a
non-empty common prefix ξijand λ(si, ξij) 6= λ(sj , ξij) or ω(si, ξij) 6= ω(sj , ξij).

The automaton has a preset distinguishing sequence if there is an adaptive
one such that for all i, j ∈ [1, . . . , n], ξi = ξj; in that case, ξi distinguishes state
si.

Not all automata have adaptive distinguishing sequences, but by definition,
if an automaton has a preset checking sequence, it has an adaptive one.

3.1 Assumptions

In the following, we assume that the number q of states in the implementation
does not exceed the number of states in the specification, i.e. q ≤ n. We also
assume that the directed graph induced by δ on S in strongly connected (and
thus, by construction, the directed graph induced by δ̄ on S̄ is also strongly
connected). We finally assume that the IOPOA has an adaptive distinguishing
sequence.



3.2 Sequential Input Automata

Since sequential input automata form a special case of IOPOA, it is instruc-
tive to look at that class first. It is known that we can construct a checking
sequences of polynomial length [17–19], using polynomial time algorithms [20].
One example of such an algorithm is the following [19]. We call a transfer se-
quence τ(si, sj) a sequence taking the machine from state si to state sj . Such a
sequence always exists, since the state graph is strongly connected. In order to
prove the morphism between the specification and the implementation, we need
to show that every state on the specification exists in the implementation, and
that every transition of the specification is in the implementation as well, going
from the correct state to the correct state and generating the correct output
when given the correct input.

Assuming that the machine starts in its initial state sin = s1 and that we
have a distinguishing sequence ξi for every state si, the following test sequence
checks that the implementation has n states, each of which reacts correctly when
input the distinguishing sequence for that state:

ξ1 ◦ τ(δ(s1, ξ1), s2) ◦ ξ2 ◦ τ(δ(s2, ξ2), s3) ◦ . . . ◦ ξn ◦ τ(δ(sn, ξn), s1) ◦ ξ1 (3)

In order to test a transition a/b going from state si to sj , assuming the imple-
mentation is currently in a state sk, we can use the following test sequence:

τ(sk, si−1) ◦ ξi−1 ◦ τ(δ(si−1, ξi−1), si) ◦ a ◦ ξj (4)

Applying the test sequence 3, then applying the test sequence 4 for each
transition provides a checking sequence. Unfortunately, this simple approach will
not directly work with IOPOAs, because causal relationships between inputs and
outputs between processes are not directly observable. In order to overcome this
issue, we need to create longer test sequences that check causal relationships as
well.

In order to explain our solution, we first illustrate our technique on a single
transition, assuming that the implementation is correct.

3.3 Complete Transition Identification

We will test transitions by delaying input on only one channel, i; let us formalize
this as input in the i-test mode: Let 1 ≤ i ≤ p, and suppose an input vector
x ∈ X given. Then define input vector x̌i as

x̌i
j ,

{

⊥ : i = j
xj : i 6= j,

and let x̂i , x ⊖ x̌i; i.e.

x̂i
j ,

{

xi : i = j
⊥ : i 6= j.



Let x be an input vector occurring in some input sequence α = α1 . . ., such that
αm = x for some m. Applying x in i-test mode in α means applying, instead
of α, the sequence α′ , α1 . . . αm−1x̌

ix̂iαm+1 . . ..
Denote as ∆i(α) the sequence obtained from α = α1 . . . by replacing each αk

by the pair α̌i
kα̂i

k, i.e. in ∆i(α), input i is delayed in all rounds. It is important
to note that delaying creates equivalent sequences, in the sense that for all α
and i,

λ (∆i(α)) = λ(α),

δ (∆i(α)) = δ(α),

and ω (∆i(α)) = ω(α).

Fix some input vector x and state s, and set y , λ(s,x). Assume we are inter-
ested in the label ω(s,x); more precisely, since input and output are given, look
for the partial order <ω⊆ (x × y). Denote as τx

s
, τ(δ(s,x), s) a sequence that

brings the machine back to state s after having input x from state s. The test
is now performed by inputting

σ , x̌1x̂1τx

s
x̌2x̂2τx

s
. . . τx

s
x̌px̂pτx

s
, (5)

that is, return to state s and test the same input vector x, delaying a different
channel in each round. Call si , δ(x̌i, s) and y̌i , λ(x̌i, s). Now, exactly those
outputs that are generated only after input xi are causal consequences of xi.
That is, we obtain <ω as follows:

<ω , {(xi,yi) | i ∈ Chn,xi 6= ⊥ and yi 6= ⊥} (6)

∪
{

(xi,yj) | j ∈ Chn − {i} ∧ y̌i
j = ⊥ ∧ yj 6= ⊥

}

. (7)

In fact, consider i 6= j and xi 6= ⊥ and yj 6= ⊥.

– If xi <ω yj , then output yj cannot be produced before input xi arrives,
hence y̌i

j = ⊥; and
– conversely, if xi 6<ω yj , then yj = ⊥.

Note that we assume here that all enabled outputs are produced and observed
immediately, that is, we can actually decide whether or not output has been
produced; reading ⊥ means that no output was produced, we do not consider
delayed outputs (where ⊥ could mean ’no output yet ’).

3.4 Algorithm for IOPOA conformance testing

Single State Identifying Sequence: The implementation can be said to have
implemented a state sk if it can be shown that there is a state in the implemen-
tation that behaves like sk when the input ξk is entered. The state sk has been
identified in the implementation. As already pointed out, the difficulty lies in
the inter-channels causal relationships: We can easily observe that λ(sk, ξk) is
produced by the implementation, but checking that ω(sk, ξk) is correct requires
more work.



Theorem 2. An implementation of an IOPOA, assumed to be in a state sk for
which ξk is a distinguishing sequence, can be verified to have implemented sk

with the following test sequence:

[

∆1 (ξk) ◦ τ ξk

sk

]n
◦

[

∆2 (ξk) ◦ τ ξk

sk

]n
◦ . . . ◦

[

∆p (ξk) ◦ τ ξk

sk

]n
, (8)

where [I]n stands for the application of input sequence I n times.

Proof. By assumption, the IOPOA is deterministic and the implementation has
at most n states. Thus, after entering the same input n times, the implementation
is necessarily “locked” in a cycle of states and will not leave that cycle while the
same input is entered. The input sequence will thus clearly loop between states
that output λ(sk, ξk) when input ξk. There are between 1 and n such states.
By entering [∆i (ξk) .τ(δ(sk, ξk), sk)]

n
for some i ∈ [1, . . . , p], we can verify that

the (at most n) states we are looping through do exhibit the correct causal
relationships on port i. Since we test all ports, at the end of the test sequence
we have identified in the implementation between 1 and n states that produce
λ(sk, ξk) and ω(sk, ξk) when input ξk.

Denote by Γ (si) the input sequence (8) for state si. When adaptive distin-
guishing sequences exist, it is possible to find one of size O(n2) [21]. Moreover,
transfer sequences have size O(n), so the entire test sequence is of size O(pn3)
when using adaptive distinguishing sequence.

3.5 Checking Sequence Construction

As a direct consequence of Theorem 2, it is easy to see that, assuming that
the machine starts in its initial state sin = s1 and that {ξ1, . . . , ξn} is a set
of adaptive distinguishing sequences, the following test sequence checks that
the implementation has n states, each of which reacts correctly when input the
corresponding distinguishing sequence:

Γ (s1) ◦ τ(s1, s2) ◦ Γ (s2) ◦ τ(s2, s3) ◦ . . . ◦ Γ (sn) ◦ τ(sn, s1) ◦ Γ (s1) (9)

When using adaptive checking sequences, this test sequence is of size O(pn4),
since we have seen that a state identification sequence Γ (si) can be executed in
size O(pn3) and a transfer sequence in O(n), and since we have n states to verify.

In order to check the transitions, let us assume that in the IOPOA we have
x ∈ X , si, sj ∈ S such that sj = δ(si,x). We need to test that when the imple-
mentation is in a state identified as si, if x is input the implementation outputs
λ(si,x) to move into a state identified as sj , while respecting ω(si,x).

The test sequence Γ (si).x.Γ (sj) can be used to check the transition’s end
states and λ(si,x). In order to verify ω(si,x), the test sequence (5) can be
used, but we have to ensure that τ(δ(si,x), si) brings indeed the implementation
back to a state identified as si, which can be achieved by the test sequence
Γ (si).x.τ(δ(si,x), si).Γ (si). So, writing τx

si
= τ(δ(si,x), si), the entire test of

the transition x can be done with the test sequence:



Γ (si) ◦ x ◦ Γ (sj) ◦ τx

si
◦ Γ (si) ◦∆1 (x) ◦ τx

si
◦∆2 (x) ◦ τx

si
◦ . . . ◦∆p (x) ◦ τx

si
(10)

When using adaptive checking sequences, this test sequence is of size O(pn3).
It must be done for every transition. If we assume t transitions, and since it is
possible to go from any state to any other state in O(n), testing every transition
can be done in O(tpn3). The following result immediately follows:

Theorem 3. Given an IOPOA of n states and t transitions having an adaptive
checking sequence, assuming that the implementation is in the initial state, the
following test sequence is a checking sequence of size O(tpn3 + pn4):

1. Check all states with the test sequence (9)

2. For all transitions do:

(a) transfer to the starting state of the transition

(b) check the transition with the test sequence (10)

Note that given that the IOPOA modeling leads to an exponential reduction
of the size of the model compared to the multiport deterministic model, the
checking sequence constructed with theorem 3 is also considerably shorter than
one for a multiport deterministic model of the same system when dealing with
sufficiently large and concurrent systegms.

4 Extensions and Outlook

4.1 Conformance Testing for Automata without Distinguishing
Sequences

Not every automaton has distinguishing sequences. In the absence of distinguish-
ing sequences, one can always create checking sequences based on separating
families of sequences. Adapting the definition of [17] to IOPOAs, a separating
family of sequences for an IOPOA is a collection of n sets Z1, Z2, . . . , Zn, one
collection per state. Each collection is made of up to n− 1 sequences, such that
for every pair of states si, sj ∈ S, there is an input string α such that α is a
prefix of some sequence of Zi and of some sequence of Zj and λ(si, α) 6= λ(sj , α)
or ω(si, α) 6= ω(sj , α).

Separating families always exist for minimized automata, and can be used
to create checking sequences based on identifying sequences; these checking se-
quences are in the worst case of exponential length in the number of separating
sequences.

The construction carries over to the IOPOA case; the details will be given in
an extended version of the present paper.



4.2 State identification and State Verification

The state identification and state verification problems are two common and well
known questions: find out the state the implementation is in (state identification)
and verify that the implementation is indeed in a given state (state verification).
With sequential input automata, the former can be answered if the automata
has a distinguishing sequence, while the latter can be answered if the state has
a unique input output (UIO).

Unfortunately, neither questions can be answered with IOPOAs, even with
a distinguishing sequence. The problem lies again in the inter-channel causal
relationships that cannot be directly observed, and yet can be the only difference
between two states. In order to uncover these differences, several tests of the
states can be necessary, which is simply impossible when the state is unknown
or unsure.
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Fig. 3. An IOPOA for which states can neither be identified nor verified.

The figure 3 illustrate the problem. In this IOPOA, the simple input (a, b)
is a distinguishing sequence. Yet, the only strategies, a then b or b then a can-
not distinguish between states s2 and s3 or s1 and s3 respectively. And since,
whatever strategy, the implementation should be in state s4 afterward, it is not
possible to extend the test any further to clarify the situation, and thus state
identification is not possible. For the same reason, it is not possible to ensure
that the implementation is currently in state s3.

4.3 Homing and Synchronizing sequences

As opposed to the state identification and verification problems outlined in Sec-
tion 4.2, homing sequences and synchronizing sequences are not difficult with
IOPOAs.



A synchronizing sequence is a sequence that always takes the implementation
to a particular state regardless of the state it was in when the sequence was
entered. Clearly, not every automaton has such a synchronizing sequence. On
the other hand, a synchronizing sequence does not involve any observation of
the outputs of the implementation. Thus, if such a sequence exists, it can be
used even with an IOPOA.

A homing sequence has the weaker property of taking the implementation
to some known state, although not necessarily the same state depending on the
unknown initial state. If the automaton is reduced, then such a homing sequence
necessarily exists. In this case, the output plays a key role, since allows us to
know the ending state. Yet, the classical way of constructing such an homing
sequence is to pick two random states and build a sequence that tells them apart
(such a sequence always exists in a reduced machine), and keep going until we
have told all states pairwise apart. This can be easily achieved with IOPOAs,
even if the two states differ only by non directly observable inter channels causal
relationships, since we know what we are trying to uncover, and we can thus test
for it. As an example, consider the IOPOA of Figure 4. Initially, we do not know
the current steate, so it could be {s1, s2, s3, s4}. Say we want to separate s1 from
s2; this can been done by delaying input a and observe whether d is output. Thus,
the input sequence < ⊥, b >,< a,⊥ > will generate either < ⊥,⊥ >< c, d >
or < ⊥, d >< c,⊥ >. In the first case, we were on s1 or s4, and we are now on
{s2, s1}, and in the other case we were on s2 or s3, and we are now on {s3, s4}.
The very same input again will tell apart the elements of these two sets.

So, the homing sequence is < ⊥, b >,< a,⊥ >,< ⊥, b >,< a,⊥ >, and the
interpretation of the observation is, for the final state:

< ⊥,⊥ >< c, d >< ⊥,⊥ >< c, d > ⇒ s2

< ⊥,⊥ >< c, d >< ⊥, d >< c,⊥ > ⇒ s3

< ⊥, d >< c,⊥ >< ⊥,⊥ >< c, d > ⇒ s1

< ⊥, d >< c,⊥ >< ⊥, d >< c,⊥ > ⇒ s4

5 Conclusion

We have introduced a generalized testing framework that includes and gener-
alizes the classical I/O automaton setup. Using I/O partial order automata,
asynchrony in inputs can be easily and concisely specified. Where a listing of
all possible combinations of concurrent inputs is required with the Multiports
Deterministic FSM model usually seen in the literature, a single transition is
necessary with I/O partial order automata, leading to a model that can be ex-
ponentially smaller. I/O partial order automata allow also to specify the causal
order between inputs and outputs, including unobservable interprocess causal
relationships.



�� �!
�"�#

$% &� $% & � $% &� $% &
Fig. 4. Homing sequences can be found for IOPOA.

We have provided a test method to check the correctness of an implementa-
tion for a specification provided with an I/O partial order automata that has an
adaptive distinguishing sequence. We show that in this case, we can produce a
checking sequence of polynomial size in the number of transitions and the num-
ber of ports, thus we are not “paying back” the exponential reduction achieved
by the model. This non intuitive result shows that I/O partial order automata
are a powerful model when it comes to specifying and testing concurrency in
distributed systems.
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