
Representing Web Data:
XML

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 2

XML

Example XML document:

An XML document is one that follows

certain syntax rules (most of which we

followed for XHTML)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 3

XML Syntax

An XML document consists of

 Markup

 Tags, which begin with < and end with >

 References, which begin with & and end with ;

 Character, e.g.

 Entity, e.g. <

 The entities lt, gt, amp, apos, and quot are recognized in
every XML document.

 Other XHTML entities, such as nbsp, are only recognized in
other XML documents if they are defined in the DTD

 Character data: everything not markup

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 4

XML Syntax

Comments

 Begin with <!--

 End -->

 Must not contain –

CDATA section

 Special element the entire content of which is interpreted

as character data, even if it appears to be markup

 Begins with <![CDATA[

 Ends with]]> (illegal except when ending CDATA)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 5

XML Syntax

The CDATA section

is equivalent to the markup

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 6

XML Syntax

< and & must be represented by references

except

 When beginning markup

 Within comments

 Within CDATA sections

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 7

XML Syntax

Element tags and elements

 Three types

 Start, e.g. <message>

 End, e.g. </message>

 Empty element, e.g.

 Start and end tags must properly nest

 Corresponding pair of start and end element tags plus

everything in between them defines an element

 Character data may only appear within an element

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 8

XML Syntax

Start and empty-element tags may contain

attribute specifications separated by white

space

 Syntax: name = quoted value

 quoted value must not contain <, can contain &

only if used as start of reference

 quoted value must begin and end with matching

quote characters („ or “)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 9

XML Syntax

Element and attribute names are case

sensitive

XML white space characters are space,

carriage return, line feed, and tab

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 10

XML Documents

A well-formed XML document

 follows the XML syntax rules and

 has a single root element

Well-formed documents have a tree structure

Many XML parsers (software for

reading/writing XML documents) use tree

representation internally

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 11

XML Documents

An XML document is written according to

an XML vocabulary that defines

 Recognized element and attribute names

 Allowable element content

 Semantics of elements and attributes

XHTML is one widely-used XML

vocabulary

Another example: RSS (rich site summary)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 12

XML Documents

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 13

XML Documents

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 14

XML Documents

Valid names and content for an XML

vocabulary can be specified using

 Natural language

 XML DTDs (Chapter 2)

 XML Schema (Chapter 9)

If DTD is used, then XML document can

include a document type declaration:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 15

XML Documents

Two types of XML parsers:

 Validating

 Requires document type declaration

 Generates error if document does not

 Conform with DTD and

 Meet XML validity constraints

 Example: every attribute value of type ID must be unique within
the document

 Non-validating

 Checks for well-formedness

 Can ignore external DTD

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 16

XML Documents

Good practice to begin XML documents with

an XML declaration

 Minimal example:

 If included, < must be very first character of the

document

 To override default UTF-8/UTF-16 character

encoding, include encoding declaration

following version:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 17

XML Documents

Internal subset of DTD

 Entity vsn will be defined by any XML parser,

validating or not

Declaration of

internal subset of DTD

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 18

XML Namespaces

XML Namespace: Collection of element and

attribute names associated with an XML vocabulary

Namespace Name: Absolute URI that is the name

of the namespace

 Ex: http://www.w3.org/1999/xhtml is the namespace

name of XHTML 1.0

Default namespace for elements of a document is

specified using a form of the xmlns attribute:

http://www.w3.org/1999/xhtml

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 19

XML Namespaces

Another form of xmlns attribute known as a

namespace declaration can be used to

associate a namespace prefix with a

namespace name:
Namespace prefix

Namespace declaration

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 20

XML Namespaces

Example use of namespace prefix:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 21

XML Namespaces

In a namespace-aware XML application, all

element and attribute names are considered qualified

names

 A qualified name has an associated expanded name that

consists of a namespace name and a local name

 Ex: item is a qualified name with expanded name

<null, item>

 Ex: xhtml:a is a qualified name with expanded name

<http://www.w3.org/1999/xhtml, a>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 22

XML Namespaces

Other namespace usage:
A namespace can be declared and used on the same element

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 23

XML Namespaces

Other namespace usage:

A namespace prefix can be redefined for

an element and its content

These elements belong to http://www.example.org/namespace

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 24

JavaScript and XML

JavaScript DOM can be used to process

XML documents

JavaScript XML Dom processing is often

used with XMLHttpRequest

 Host object that is a constructor for other host

objects

 Sends an HTTP request to server, receives back

an XML document

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 25

JavaScript and XML

Example use:

 Previous visit count servlet: must reload

document to see updated count

 Visit count with XMLHttpRequest: browser

will automatically update the visit count

periodically without reloading the entire page

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

26

JavaScript and XML
Document

generated by

GET request to

VisitCountUpdate

servlet

JavaScript file using

XMLHttpRequest object

span that will be updated by JavaScript code

Jackson, Web Technologies: A Computer Science Perspective, © 2007 Prentice-Hall, Inc. All rights reserved. 0-13-185603-0

27

JavaScript and XML

XMLHttpRequest

request is processed

by doPost() method of

servlet

Response is XML document

Current visit count is returned as content

of count XML element

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 28

JavaScript and XML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 29

JavaScript and XML

Typical code for creating an instance of XMLHttpRequest

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 30

JavaScript and XML

Return immediately after sending request

(asynchronous behavior)

Function called as

state of connection

changes

Body of request (empty in this example)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 31

JavaScript and XML

Indicates response received

successfully

Root of

returned

XML

document

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 32

JavaScript and XML

Ajax: Asynchronous JavaScript and XML

Combination of

 (X)HTML

 XML

 CSS

 JavaScript

 JavaScript DOM (HTML and XML)

 XMLHttpRequest in asynchronous mode

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 33

Java-based DOM

Java DOM API defined by org.w3c.dom

package

Semantically similar to JavaScript DOM

API, but many small syntactic differences

 Nodes of DOM tree belong to classes such as

Node, Document, Element, Text

 Non-method properties accessed via methods

 Ex: parentNode accessed by calling

getParentNode()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 34

Java-based DOM

Methods such as

getElementsByTagName() return

instance of NodeList

 getLength() method returns # of items

 item() method returns an item

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 35

Java-based DOM

Example: program to count link elements

in an RSS document:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 36

Java-based DOM

Imports:

From Java

API for XML

Processing

(JAXP)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 37

Java-based DOM

Default parser is non-validating and non-

namespace-aware.

Overriding:

Also setValidating(true)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 38

Java-based DOM

Namespace-aware versions of methods end

in NS:
Namespace name

Local name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 39

SAX

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 40

SAX

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 41

SAX

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 42

SAX

Used if not namespace-aware or

if qualified name does not belong

to any namespace.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 43

SAX

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 44

Transformations

JAXP provides API for transforming

between DOM, SAX, and Stream (text)

representations of XML documents

Example:

 Input from stream to DOM

 Modify DOM

 Output as stream

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 45

Transformations

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 46

Transformations

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 47

Transformations

“SAX output” means that a SAX event

handler is called:

 Example: the code

feeds the XML document represented by DOM

document through the SAX event handler

CountElementsHelper()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 48

XSL

The Extensible Stylesheet Language (XSL)

is an XML vocabulary typically used to

transform XML documents from one form to

another form

XSL document

Input XML

document XSLT Processor
Output XML

document

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 49

XSL

XSL

markup

Everything in the body

of the document that is

not XSL markup is

template data

Example XSL document

HelloWorld.xsl

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 50

XSL

Input XML document HelloWorld.xml:

Output XML document:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 51

XSL

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 52

XSL

Components of XSL:

 XSL Transformations (XSLT): defines XSL

namespace elements and attributes

 XML Path Language (XPath): used in many

XSL attribute values (ex: child::message)

 XSL Formatting Objects (XSL-FO): XML

vocabulary for defining document style (print-

oriented)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 53

XPath

XPath operates on a tree representation of an
XML document

 Similar to DOM tree in that nodes have different
types (element, text, comment, etc.)

 Unlike DOM, attributes are also nodes in the
XPath tree

 Root of XPath tree called document root

 One of the children of the document root, called
the document element, is the root element of the
XML document

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 54

XPath

Location path: expression representing one

or more XPath tree nodes

 / represents document root

 child::message is an example of a location

step and has two parts:

Axis name Node test

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 55

XPath

Attribute nodes are

only seen along the attribute axis

XSLT specifies

context node

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 56

XPath

Node test:

 Name test: qualified name representing an

element (or attribute, for attribute axis) type

 Example: child::message uses a name test

 May use * as wildcard name test

 Node-type test:

 text(): true if node is a text node

 comment(): true if node is a comment node

 node(): true of any node

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 57

XPath

A location step can have one or more

predicates that act as filters:

This predicate

applied first

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 58

XPath

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 59

XPath

Abbreviations:

 Axis defaults to child if not specified

 child::para = para

 @ can be used in place of attribute::

 attribute::display = @display

 parent::node() = ..

 self::node() = .

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 60

XPath

A location path is one or more location steps

separated by /

 Ex: child::para/child::strong (or

just para/strong)

 Ex: para/strong/emph

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 61

XPath

Evaluating a two-step location path:

 Evaluate first location step, producing node list
L1

 For each node ni in L1

 Temporarily set context node to ni

 Evaluate second location step, producing node list Li

 Result is union of Lis

Continue process for paths with more steps

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 62

XPath

If body is context node, then:

 para/strong represents {s1,s2,s4}

 para[strong] represents {p1, p3}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 63

XPath

An absolute location path begins with / and uses

the document root as the context node

 Ex: /body/para represents all para nodes that are

children of body which is child of document root

 Ex: / represents list consisting only of the document

root

A relative location path does not begin with / and

uses an element determined by the application (e.g.,

XSLT) as the context node

 Ex: body/para

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 64

XPath

Another abbreviation:

 /descendant-or-self::node()/ = //

 Examples:

 //strong: All strong elements in document

 .//strong: All strong elements that are

descendants (or self) relative to the context node

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 65

XPath

Combining node lists:

 Use | to represent union of node lists produced

by individual location paths

 Ex: strong|descendant::emph

represents all nodes that are either

 children of the context node of type strong; or

 descendants of the context node of type emph

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 66

XSLT

Template

rule

Pattern of template rule

Template

of template

rule

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 67

XSLT

XSLT processor deals with three XPath

trees:

 Input trees: source and style-sheet

 Elements containing only white space are normally

not included in either input tree (exception:

xsl:text element)

 White space retained within other elements

 Output tree: result

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 68

XSLT

XSLT processing (high level):

 Construct input trees

 Initialize empty result tree

 Search source tree for a node that is matched by a

template rule, i.e., a node that is contained in the node list

represented by the pattern of some template rule

 Instantiate the template of the matching template rule in

the result tree

 Context node for XPath expressions is matched node

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 69

XSLT

Matches source tree document root

Context node for relative location

path is source tree document root

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 70

XSLT

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 71

XSLT

Restrictions on XPath in template rule

pattern (value of match attribute):

 Only child and attribute axes are allowed

directly (can indirectly use descendant-or-

self axis via // notation)

 XPath expression must evaluate to a node list

(some XPath expressions are functions that

produce string values)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 72

XSLT

…

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 73

XSLT

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 74

XSLT

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 75

XSLT

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 76

XSLT

Adding attributes:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 77

XSLT
Source document elements are in a namespace

We want to copy

all h1 elements

plus all of their

descendants

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 78

XSLT

XPath expressions must

use qualified names (because source

includes namespace)

Copy

element

and content

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 79

XSLT

Template markup

in the result tree becomes

 Most browsers will not accept this notation!

XSLT does not recognize

Solution:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 80

XSLT

Adding XML special characters to the result

 Template:

 Result:

disable-output-escaping also
applies to value-of

Becomes & on input

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 81

XSLT

Output formatting:

 Add xml:space=“preserve” to

transform element of template to retain white

space

 Use xsl:output element:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 82

XML and Browsers

An XML document can contain a processing

instruction telling a browser to:

 Apply XSLT to create an XHTML document:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 83

XML and Browsers

An XML document can contain a processing

instruction telling a browser to:

 Apply CSS to style the XML document:

