
Server-side Programming:
Java Servlets

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 2

Server-side Programming

The combination of

 HTML

 JavaScript

 DOM

is sometimes referred to as Dynamic HTML

(DHTML)

Web pages that include scripting are often

called dynamic pages (vs. static)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 3

Server-side Programming

Similarly, web server response can be static
or dynamic

 Static: HTML document is retrieved from the
file system and returned to the client

 Dynamic: HTML document is generated by a
program in response to an HTTP request

Java servlets are one technology for
producing dynamic server responses

 Servlet is a class instantiated by the server to
produce a dynamic response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 4

Servlet Overview

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 5

Servlet Overview

1.When server starts it instantiates servlets

2.Server receives HTTP request, determines need
for dynamic response

3.Server selects the appropriate servlet to generate
the response, creates request/response objects,
and passes them to a method on the servlet
instance

4.Servlet adds information to response object via
method calls

5.Server generates HTTP response based on
information stored in response object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 6

Hello World! Servlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 7

Hello World! Servlet
All servlets we will write

are subclasses of

HttpServlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 8

Hello World! Servlet

Server calls doGet() in response to GET request

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 9

Hello World! Servlet

Interfaces implemented by request/response objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 10

Hello World! Servlet

Production servlet should

catch these exceptions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 11

Hello World! Servlet

JWSDP Tomcat server exception handling:

 Stack trace appended to

logs/jwsdp_log.*.txt

 HTML document returned to client may (or may

not) contain partial stack trace

Servlet output to System.out.print(),

printStackTrace(), etc. is appended to

logs/launcher.server.log

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 12

Hello World! Servlet

First two

things done

by typical servlet;

must be in this

order

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 13

Hello World! Servlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 14

Hello World! Servlet

HTML generated by calling print() or

println() on the servlet’s

PrintWriter object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 15

Hello World! Servlet

Good practice to explicitly close

the PrintWriter when done

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 16

Servlets vs. Java Applications

Servlets do not have a main()

 The main() is in the server

 Entry point to servlet code is via call to a method
(doGet() in the example)

Servlet interaction with end user is indirect
via request/response object APIs

 Actual HTTP request/response processing is
handled by the server

Primary servlet output is typically HTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 17

Running Servlets

Simple way to run a servlet (better later):

1. Compile servlet (make sure that JWSDP

libraries are on path)

2. Copy .class file to shared/classes

directory

3. (Re)start the Tomcat web server

4. If the class is named ServletHello, browse

to

http://localhost:8080/servlet/ServletHello

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 18

Dynamic Content

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 19

Dynamic Content

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 20

Dynamic Content

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 21

Dynamic Content

Potential problems:

 Assuming one instance of servlet on one server,

but

 Many Web sites are distributed over multiple servers

 Even a single server can (not default) create multiple

instances of a single servlet

 Even if the assumption is correct, this servlet

does not handle concurrent accesses properly

 We’ll deal with this later in the chapter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 22

Servlet Life Cycle

Servlet API life cycle methods

 init(): called when servlet is instantiated;

must return before any other methods will be

called

 service(): method called directly by server

when an HTTP request is received; default

service() method calls doGet() (or related

methods covered later)

 destroy(): called when server shuts down

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 23

Servlet Life Cycle
Example life cycle method:

attempt to initialize visits variable

from file

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 24

Servlet Life Cycle

Exception to be thrown

if initialization fails and servlet

should not be instantiated

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 25

Parameter Data

The request object (which implements

HttpServletRequest) provides

information from the HTTP request to the

servlet

One type of information is parameter data,

which is information from the query string

portion of the HTTP request

Query string with

one parameter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 26

Parameter Data

Parameter data is the Web analog of

arguments in a method call:

Query string syntax and semantics

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 27

Parameter Data

Query string syntax and semantics

 Multiple parameters separated by &

 Order of parameters does not matter

 All parameter values are strings

Value of arg is empty string

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 28

Parameter Data

Parameter names and values can be any 8-bit

characters

URL encoding is used to represent non-

alphanumeric characters:

URL decoding applied by server to retrieve

intended name or value

Value of arg is

„a String‟

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 29

Parameter Data

URL encoding algorithm

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 30

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 31

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 32

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 33

Parameter Data
Must escape XML special characters in

all user-supplied data before adding to HTML

to avoid cross-site scripting attacks

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 34

Parameter Data

Cross-site scripting

Attacker

Blogging Web

site

Comment containing

<script> element

Document containing

attacker’s comment (and script)Victim

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 35

Parameter Data

Also need to escape quotes within

attribute values.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 36

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 37

Parameter Data

A form automatically generates a query

string when submitted

 Parameter name specified by value of name

attributes of form controls

 Parameter value depends on control type

Value for checkbox

specified by value attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 38

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 39

Parameter Data

username

lifestory

boxgroup1 (values same as labels)
doit

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 40

Parameter Data

Query string produced by browser (all one

line):

Checkbox parameters have same name values;

only checked boxes have corresponding parameters

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 41

Parameter Data

GET vs. POST method for forms:

 GET:

 Query string is part of URL

 Length of query string may be limited

 Recommended when parameter data is not stored but

used only to request information (e.g., search engine

query)

 The URL can be bookmarked or emailed and the same data

will be passed to the server when the URL is revisited

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 42

Parameter Data

Browser content copyright 2004 Google, Inc. Used by permission.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 43

Parameter Data

GET vs. POST method for forms:

 POST:

 Query string is sent as body of HTTP request

 Length of query string is unlimited

 Recommended if parameter data is intended to cause

the server to update stored data

 Most browsers will warn you if they are about to

resubmit POST data to avoid duplicate updates

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 44

Parameter Data

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 45

Parameter Data

GET vs. POST in a Web application:

According to the HTTP 1.1 specification (RFC 2616):

In particular, the convention has been established that the
GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval

A consequence of this is that “web accelerators” might pre-
fetch your GET-based URL, with possible disastrous
consequences if you actually use GET for processing.

(note that because of this, accelerators such as Google’s
won’t pre-fetch GET-based URLs with parameters)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 46

Sessions

Many interactive Web sites spread user data

entry out over several pages:

 Ex: add items to cart, enter shipping information,

enter billing information

Problem: how does the server know which

users generated which HTTP requests?

 Cannot rely on standard HTTP headers to

identify a user

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 47

Sessions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 48

Sessions

Server sends back

new unique

session ID when

the request has

none

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 49

Sessions

Client that supports

session stores the

ID and sends it

back to the server

in subsequent

requests

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 50

Sessions

Server knows

that all of these

requests are

from the same

client. The

set of requests

is known as a

session.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 51

Sessions

And the server

knows that all

of these

requests are

from a different

client.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 52

Sessions

Returns HttpSession object associated

with this HTTP request.

• Creates new HttpSession object if no

session ID in request or no object with

this ID exists

• Otherwise, returns previously created

object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 53

Sessions

Boolean indicating whether returned

object was newly created or already

existed.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 54

Sessions

Incremented once per session

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 55

Sessions

Three web

pages produced

by a single servlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 56

Sessions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 57

Sessions

,,,

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 58

Sessions

,,, Session attribute is a

name/value pair

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 59

Sessions

,,,

Session attribute will

have null value until

a value is assigned

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 60

Sessions

,,,

Generate

sign-in form

if session is

new or

signIn

attribute has no value,

weclome-back page

otherwise.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 61

Sessions

Sign-in form

Welcome-back

page

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 62

Sessions

Second argument

(“Greeting”) used as

action attribute value

(relative URL)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 63

Sessions

Form will be sent using POST HTTP

method (doPost() method will be called)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 64

Sessions

Text field containing

user name is named

signIn

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 65

Sessions

…

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 66

Sessions

…

Retrieve

signIn

parameter value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 67

Sessions

…

Normal

processing:

signIn

parameter

is present in

HTTP request

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 68

Sessions

…

Generate

HTML for

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 69

Sessions

Thank-you page Must escape

XML special

characters in

user input

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 70

Sessions

…

Assign a

value to the

signIn session

attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 71

Sessions

Session attribute methods:

 setAttribute(String name, Object

value): creates a session attribute with the

given name and value

 Object getAttribute(String name):

returns the value of the session attribute named

name, or returns null if this session does not

have an attribute with this name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 72

Sessions

…

Error

processing

(return user

to sign-in form)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 73

Sessions

By default, each session expires if a server-
determined length of time elapses between a
session’s HTTP requests

 Server destroys the corresponding session object

Servlet code can:

 Terminate a session by calling invalidate()
method on session object

 Set the expiration time-out duration (secs) by
calling setMaxInactiveInterval(int)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 74

Cookies

A cookie is a name/value pair in the Set-

Cookie header field of an HTTP response

Most (not all) clients will:

 Store each cookie received in its file system

 Send each cookie back to the server that sent it

as part of the Cookie header field of subsequent

HTTP requests

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 75

Cookies

Tomcat sends

session ID as value

of cookie named

JSESSIONID

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 76

Cookies

Cookie-enabled

browser returns

session ID as value

of cookie named

JSESSIONID

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 77

Cookies

Servlets can set cookies explicitly

 Cookie class used to represent cookies

 request.getCookies() returns an array of

Cookie instances representing cookie data in

HTTP request

 response.addCookie(Cookie) adds a

cookie to the HTTP response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 78

Cookies

Cookies are expired by

client (server can request

expiration date)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 79

Cookies

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 80

Cookies

Return array of cookies

contained in HTTP request

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 81

Cookies

Search for

cookie

named

COUNT and

extract value

as an int

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 82

Cookies

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 83

Cookies

Send

replacement

cookie value

to client

(overwrites

existing cookie)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 84

Cookies

Should call

addCookie()

before writing

HTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 85

Cookies
Privacy issues

Client

Web site

providing

requested

content

HTTP request to

intended site

HTTP response:

HTML document

including ad

Web site

providing

banner

ads

HTTP request for

ad image

Image

plus Set-Cookie

in response:

third-party cookie

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 86

Web site

providing

requested

content

Cookies
Privacy issues

Client

Second

Web site

providing

requested

content

HTTP request to 2nd

intended site

HTTP response:

HTML document

including ad

Web site

providing

banner

ads

HTTP request for

ad image plus Cookie (identifies user)

Image Based on

Referer, I know two

Web sites that

this user has

visited

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 87

Cookies
Privacy issues

Due to privacy concerns, many users block

cookies

 Blocking may be fine-tuned. Ex: Mozilla allows

 Blocking of third-party cookies

 Blocking based on on-line privacy policy

Alternative to cookies for maintaining

session: URL rewriting

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 88

URL Rewriting

Tomcat adds

session ID within

HTML document

to all URL’s

referring to the

servlet Session ID = 4235

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 89

URL Rewriting

Subsequent

request will contain

session ID in the

URL of the request
Session ID = 4235

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 90

URL Rewriting

Next response must

again add session ID

to all URL’s Session ID = 4235

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 91

URL Rewriting

Original (relative) URL:

href=“URLEncodedGreeting”

URL containing session ID:

href=“URLEncodedGreeting;jsessionid=0157B9E85”

Path parameter is treated differently than

query string parameter

 Ex: invisible to getParameter()

Path parameter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 92

URL Rewriting

HttpServletResponse method

encodeURL() will add session id path

parameter to argument URL

Relative URL of servlet

Original

servlet

Servlet

using URL

rewriting

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 93

URL Rewriting

Must rewrite every servlet URL in every

document

Security issues
Web site using

URL rewriting

User A

URL with

session ID

7152

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 94

URL Rewriting

Must rewrite every servlet URL in every

document

Security issues
Web site using

URL rewriting

User A User B
Email URL

URL with

session ID

7152

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 95

URL Rewriting

Must rewrite every servlet URL in every

document

Security issues
Web site using

URL rewriting

User A

URL with

session ID

7152

User B
Email URL

Visit Web site with

session ID 7152

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 96

More Servlet Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 97

More Servlet Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 98

More Servlet Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 99

More Servlet Methods

Response buffer

 All data sent to the PrintWriter object is
stored in a buffer

 When the buffer is full, it is automatically
flushed:

 Contents are sent to the client (preceded by header
fields, if this is the first flush)

 Buffer becomes empty

 Note that all header fields must be defined before
the first buffer flush

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 100

More Servlet Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 101

More Servlet Methods

In addition to doGet() and doPost(),

servlets have methods corresponding to other

HTTP request methods

 doHead(): automatically defined if doGet()

is overridden

 doOptions(), doTrace(): useful default

methods provided

 doDelete(), doPut(): override to support

these methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 102

Data Storage

Almost all web applications (servlets or related

dynamic web server software) store and retrieve data

 Typical web app uses a data base management system

(DBMS)

 Another option is to use the file system

 Not web technologies, so beyond our scope

Some Java data storage details provided in

Appendices B (file system) and C (DBMS)

One common problem: concurrency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 103

Concurrency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 104

Concurrency

Tomcat creates a separate thread for each

HTTP request

Java thread state saved:

 Which statement to be executed next

 The call stack: where the current method will

return to, where that method will return to, etc.

plus parameter values for each method

 The values of local variables for all methods on

the call stack

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 105

Concurrency

Some examples of values that are not saved

when a thread is suspended:

 Values of instance variables (variables declared

outside of methods)

 Values of class variables (variables declared as

static outside of methods)

 Contents of files and other external resources

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 106

Concurrency

// Output HTML document

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 107

Concurrency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 108

Concurrency

Java support thread synchronization

 Only one synchronized method within a class

can be called at any one time

Only one thread at

at time can call doGet()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 109

Concurrency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 110

Concurrency

Web application with multiple servlet classes

and shared resource:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 111

Concurrency

Solution: create a shared class with

synchronized static methods called by both

servlets

CounterFileCounterReader CounterWriter
readAndReset() incr()

File

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 112

Common Gateway Interface

CGI was the earliest standard technology

used for dynamic server-side content

CGI basics:

 HTTP request information is stored in

environment variables (e.g., QUERY_STRING,

REQUEST_METHOD, HTTP_USER_AGENT)

 Program is executed, output is returned in HTTP

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides 113

Common Gateway Interface

Advantage:

 Program can be written in any programming

language (Perl frequently used)

Disadvantages:

 No standard for concepts such as session

 May be slower (programs normally run in

separate processes, not server process)

