
Chapter 4
Client-Side Programming:
the JavaScript Language

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript History and
Versions

JavaScript was introduced as part of the

Netscape 2.0 browser

Microsoft soon released its own version

called JScript

ECMA developed a standard language

known as ECMAScript

ECMAScript Edition 3 is widely supported

and is what we will call “JavaScript”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Let’s write a “Hello World!” JavaScript
program

Problem: the JavaScript language itself has
no input/output statements(!)

Solution: Most browsers provide de facto
standard I/O methods

 alert: pops up alert box containing text

 prompt: pops up window where user can enter
text

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

File JSHelloWorld.js:

HTML document executing this code:

script element used

to load and execute

JavaScript code

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Web page and alert box generated by

JSHelloWorld.html document and

JSHelloWorld.js code:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Prompt window example:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

Note that JavaScript code did not need to be

compiled

 JavaScript is an interpreted language

 Portion of browser software that reads and

executes JavaScript is an interpreter

Interpreted vs. compiled languages:

 Advantage: simplicity

 Disadvantage: efficiency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

JavaScript is a scripting language: designed
to be executed within a larger software
environment

JavaScript can be run within a variety of
environments:

 Web browsers (our focus in next chapter)

 Web servers

 Application containers (general-purpose
programming)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

Components of a JavaScript implementation:

 Scripting engine: interpreter plus required

ECMAScript functionality (core library)

 Hosting environment: functionality specific to

environment

 Example: browsers provide alert and prompt

 All hosting environment functionality provided via

objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

All data in JavaScript is an object or a

property of an object

Types of JavaScript objects

 Native: provided by scripting engine

 If automatically constructed before program

execution, known as a built-in object (ex: window)

 Host: provided by host environment

 alert and prompt are host objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Writing JavaScript code

 Any text editor (e.g., Notepad, Emacs)

 Specialized software (e.g., MS Visual InterDev)

Executing JavaScript

 Load into browser (need HTML document)

 Browser detects syntax and run-time errors

 Mozilla: JavaScript console lists errors

 IE6: Exclamation icon and pop-up window

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Mozilla JavaScript console (Tools | Web

Development | JavaScript Console):

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

IE6 error window:

Error indicator;

double-clicking icon

opens error window

Click to see

error messages

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Firefox (2.0 and up): the JavaScript console

has been renamed “Error Console”

(Tools|Error Console) and shows JavaScript

errors, CSS errors etc…

Enhancements available as extensions (e.g.

Console2, firebug)

Chrome (4) has excellent dev support

(developer|JavaScript Console)

IE8: Tools|Developer tools

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Debugging

 Apply generic techniques: desk check, add debug

output (alert’s)

 Use specialized JavaScript debuggers: later

Re-executing

 Overwrite .js file

 Reload (Mozilla)/Refresh (IE) HTML document

that loads the file

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Notice that there is no main() function/method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Comments like Java/C++ (/* */ also allowed)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax
Variable declarations:

- Not required

- Data type not specified

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Semi-colons are usually

not required, but always

allowed at statement end

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Arithmetic operators same as Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

String concatenation operator

as well as addition

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Arguments can be any expressions

Argument lists are comma-separated

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Object dot notation for method calls as in Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Many control constructs and use of

{ } identical to Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Most relational operators syntactically

same as Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Automatic type conversion:

guess is String,

thinkingOf is Number

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Type of a variable is dynamic: depends on the type
of data it contains

JavaScript has six data types:

 Number

 String

 Boolean (values true and false)

 Object

 Null (only value of this type is null)

 Undefined (value of newly created variable)

Primitive data types: all but Object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

typeof operator returns string related to

data type

 Syntax: typeof expression

Example:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Common automatic type conversions:

 Compare String and Number: String value

converted to Number

 Condition of if or while converted to Boolean

 Array accessor (e.g., 3 in records[3])

converted to String

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Special Number values (“Not a Number” and number too large to represent)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Syntax rules for names (identifiers):

 Must begin with letter or underscore (_)

 Must contain only letters, underscores, and digits

(or certain other characters)

 Must not be a reserved word

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

A variable will automatically be created if a

value is assigned to an undeclared identifier:

Recommendation: declare all variables

 Facilitates maintenance

 Avoids certain exceptions

var is not

required

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Expression statement: any statement that

consists entirely of an expression

 Expression: code that represents a value

Block statement: one or more statements

enclosed in { } braces

Keyword statement: statement beginning

with a keyword, e.g., var or if

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

var syntax:

Java-like keyword statements:

Comma-separated declaration list with

optional initializers

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

JavaScript

keyword

statements

are very similar

to Java with

small exceptions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Operators are used to create compound

expressions from simpler expressions

Operators can be classified according to the

number of operands involved:

 Unary: one operand (e.g., typeof i)

 Prefix or postfix (e.g., ++i or i++)

 Binary: two operands (e.g., x + y)

 Ternary: three operands (conditional operator)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Associativity:

 Assignment, conditional, and prefix unary

operators are right associative: equal-precedence

operators are evaluated right-to-left:

 Other operators are left associative: equal-

precedence operators are evaluated left-to-right

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Binary operators +, -, *, /, % convert both

operands to Number

 Exception: If one of operands of + is String then

the other is converted to String

Relational operators <, >, <=, >= convert

both operands to Number

 Exception: If both operands are String, no

conversion is performed and lexicographic string

comparison is performed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Operators ==, != convert both operands to Number

 Exception: If both operands are String, no conversion is

performed (lex. comparison)

 Exception: values of Undefined and Null are equal(!)

 Exception: instance of Date built-in “class” is converted

to String (and host object conversion is implementation

dependent)

 Exception: two Objects are equal only if they are

references to the same object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Operators ===, !== are strict:

 Two operands are === only if they are of the
same type and have the same value

 “Same value” for objects means that the
operands are references to the same object

Unary +, - convert their operand to Number

Logical &&, ||, ! convert their operands to
Boolean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Numbers

Syntactic representations of Number

 Integer (42) and decimal (42.0)

 Scientific notation (-12.4e12)

 Hexadecimal (0xfa0)

Internal representation

 Approximately 16 digits of precision

 Approximate range of magnitudes

 Smallest: 10-323

 Largest: 10308 (Infinity if literal is larger)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Strings

String literals can be single- or double-

quoted

Common escape characters within Strings

 \n newline

 \” escaped double quote (also \’ for single)

 \\ escaped backslash

 \uxxxx arbitrary Unicode 16-bit code point

(x’s are four hex digits)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Declaration

always begins

with keyword

function,

no return type

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax
Identifier representing

function’s name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Formal parameter list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

One or more statements representing

function body

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Function call is an expression, can

be used on right-hand side of assignments,

as expression statement, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Function name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Argument list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Argument value(s)

associated with corresponding

formal parameters

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Expression(s) in body

evaluated as if formal

parameters are variables

initialized by argument

values

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

If final statement executed

is return-value, then value of

its expression becomes value

of the function call

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Value of function call is then used

in larger expression containing

function call.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics details:

 Arguments:

 May be expressions:

 Object’s effectively passed by reference

 Formal parameters:

 May be assigned values, argument is not affected

 Return value:

 If last statement executed is not return-value, then
returned value is of type Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Number mismatch between argument list and

formal parameter list:

 More arguments: excess ignored

 Fewer arguments: remaining parameters are

Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables
Global variable: declared outside any function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Local

variable

declared

within

a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Local

declaration

shadows

corresponding

global

declaration
Output is 6

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Output is 7

In browsers,

global

variables

(and functions)

are stored as properties

of the window built-in object.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Recursive functions

 Recursion (function calling itself, either directly

or indirectly) is supported

 C++ static variables are not supported

 Order of declaration of mutually recursive

functions is unimportant (no need for prototypes

as in C++)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Explicit type conversion supplied by built-in

functions

 Boolean(), String(), Number()

 Each takes a single argument, returns value

representing argument converted according to

type-conversion rules given earlier

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

An object is a set of properties

A property consists of a unique (within an

object) name with an associated value

The type of a property depends on the type of

its value and can vary dynamically
prop is Boolean

prop is now String

prop is now Number

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

There are no classes in JavaScript

Instead, properties can be created and deleted

dynamically

Create an object o1

Create property testing

Delete testing property

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

Objects are created using new expression

A constructor is a function

 When called via new expression, a new empty

Object is created and passed to the constructor

along with the argument values

 Constructor performs initialization on object

 Can add properties and methods to object

 Can add object to an inheritance hierarchy

Constructor and argument list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

The Object() built-in constructor

 Does not add any properties or methods directly

to the object

 Adds object to hierarchy that defines default

toString() and valueOf() methods (used

for conversions to String and Number, resp.)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Property Creation

Assignment to a non-existent (even if

inherited) property name creates the property:

Object initializer notation can be used to

create an object (using Object()

constructor) and one or more properties in a

single statement:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Enumerating Properties

Special form of for statement used to iterate

through all properties of an object:

Produces three

alert boxes;

order of names

is implementation-dependent.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Accessing Property Values

The JavaScript object dot notation is actually

shorthand for a more general associative array

notation in which Strings are array indices:

Expressions can supply property names:

Converted to String

if necessary

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

o2 is another

name for o1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

o1 is

changed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

Output is Hello World!

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

...}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

JavaScript functions are stored as values of

type Object

A function declaration creates a function

value and stores it in a variable (property of

window) having the same name as the

function

A method is an object property for which the

value is a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates global variable named leaf with function value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates isLeaf() method that is

defined by leaf() function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Refers to object that “owns” method when

leaf() is called as a method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates two objects each with

method isLeaf()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Calls to isLeaf() method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Original version: leaf() can be called as

function, but we only want a method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Alternative:

Function expression syntactically

the same as function declaration but

does not produce a global variable.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Alternative

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

User-defined constructor is just a function

called using new expression:

Object created using a constructor is known

as an instance of the constructor

Constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Original

function

Function

intended

to be used

as constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object is

constructed

automatically

by new

expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object

referenced

using this

keyword

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

No need

to return

initialized

object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object created using a constructor is known

as an instance of the constructor

instanceof operator can be used to test

this relationship:

Instances of BTNode

Evaluates to true

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array built-in object can be used to

construct objects with special properties and

that inherit various methods

ary1

length (0)

toString()

sort()

shift()

…

Properties

Inherited

methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array built-in object can be used to

construct objects with special properties and

that inherit various methods

ary2

length (3)

“0” (4)

“1” (true)

“2” (“OK”)

toString()

…

Elements

of array

Accessing array elements:

ary2[1]

ary2[“1”]

ary2.1

Must follow identifier

syntax rules

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array constructor is indirectly called if

an array initializer is used

Array initializiers can be used to create

multidimensional arrays
ttt[1][2]

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Changing the number of elements:

ary2

length (4)

“0” (4)

“1” (true)

“2” (“OK”)

“3” (-12.6)

toString()

…

Creates a new element dynamically,

increases value of length

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Changing the number of elements:

ary2

length (2)

“0” (4)

“1” (true)

toString()

…

Decreasing length can delete elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Value of length is not necessarily the same

as the actual number of elements

var ary4 = new Array(200);

ary4

length (200)

toString()

sort()

shift()

…

Calling constructor with single argument

sets length, does not create elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Argument to sort

is a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Return negative if first value should

come before second after sorting

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Add element with value 2.5 at

index 2, shift existing elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Remove 3 elements starting

at index 5

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

push() adds an element to the end of the

array

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

pop() deletes and returns last

element of the array

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Use shift() instead to implement queue

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The global object

 Named window in browsers

 Has properties representing all global variables

 Other built-in objects are also properties of the

global object

 Ex: initial value of window.Array is Array object

 Has some other useful properties

 Ex: window.Infinity represents Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The global object and variable resolution:

This is why we can refer to built-in objects

(Object, Array, etc.) without prefixing

with window.

i = 42; What does i refer to?

1. Search for local variable or formal parameter

named i

2. If none found, see if global object (window)

has property named i

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

String(), Boolean(), and Number()

built-in functions can be called as

constructors, created “wrapped” Objects:

Instances inherit valueOf() method that

returns wrapped value of specified type:

Output is “number”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Other methods inherited by Number

instances:

Outputs

5.63

5.63e+0

101.101

Base 2

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Properties provided by Number built-in

object:

 Number.MIN_VALUE: smallest (absolute

value) possible JavaScript Number value

 Number.MAX_VALUE: largest possible

JavaScript Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Instances of String have a length

property (number of characters)

JavaScript automatically wraps a primitive

value of type Number or String if the value is

used as an object:

Output is “Str”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The Date() built-in constructor can be used to

create Date instances that represent the current date

and time

Often used to display local date and/or time in Web

pages

Other methods: toLocaleDateString() ,

toLocaleTimeString(), etc.

var now = new Date();

window.alert(“Current date and time: “

+ now.toLocaleString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

valueOf() method inherited by Date

instances returns integer representing number

of milliseconds since midnight 1/1/1970

Automatic type conversion allows Date

instances to be treated as Numbers:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Math object has methods for performing

standard mathematical calculations:

Also has properties with approximate values

for standard mathematical quantities, e.g., e (

Math.E) and π (Math.PI)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

A regular expression is a particular

representation of a set of strings

 Ex: JavaScript regular expression representing

the set of syntactically-valid US telephone area

codes (three-digit numbers):

 \d represents the set {“0”, “1”, …, “9”}

 Concatenated regular expressions represent the

“concatenation” (Cartesian product) of their sets

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Variable containing string to be tested

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Regular expression as String (must escape \)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Built-in constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Method inherited by RegExp instances:

returns true if the argument contains a

substring in the set of strings represented by

the regular expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Represents beginning of string Represents end of string

This expression matches only strings with

exactly three digits (no other characters,

even white space)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Alternate syntax:

Represents all strings that begin

with three digits

Regular expression literal.

Do not escape \.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Simplest regular expression is any character

that is not a special character:

 Ex: _ is a regular expression representing

{“_”}

Backslash-escaped special character is also a

regular expression

 Ex: \$ represents {“$”}

JavaScript Regular Expressions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Special character . (dot) represents any

character except a line terminator

Several escape codes are regular expressions

representing sets of chars:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Three types of operations can be used to

combine simple regular expressions into more

complex expressions:

 Concatenation

 Union (|)

 Kleene star (*)

XML DTD content specification syntax

based in part on regular expressions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Concatenation

 Example:

String consisting entirely of four characters:

 Digit followed by

 A . followed by

 A single space followed by

 Any “word” character

 Quantifier shorthand syntax for concatenation:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Union

 Ex:

Union of set of strings represented by regular
expressions

 Set of single-character strings that are either a digit or
a space character

Character class: shorthand for union of one
or more ranges of characters

 Ex: set of lower case letters

 Ex: the \w escape code class

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Unions of concatenations

 Note that concatenation has higher precedence

than union

Optional regular expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Kleene star

 Ex: any number of digits (including none)

 Ex:

 Strings consisting of only “word” characters

 String must contain both a digit and a letter (in either

order)

