CSI 3140
WWW Structures, Techniques and Standards

Chapter 4
Client-Side Programming:
the JavaScript Language

JavaScript History and
Versions

¢ JavaScript was introduced as part of the
Netscape 2.0 browser

*Microsoft soon released Its own version
called JScript

*ECMA developed a standard language
known as ECMAScript

*ECMAScript Edition 3 iIs widely supported
and 1s what we will call “JavaScript”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

¢ ct’s write a “Hello World!™ JavaScript
program

*Problem: the JavaScript language Iitself has
no Input/output statements(!)

+Solution: Most browsers provide de facto
standard 1/0O methods
» alert: pops up alert box containing text

= prompt: pops up window where user can enter
text

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

*File JSHel loWorld. js:

window.alert ("Hello World!"):

*HTML document executing this code:

<IDOCTYFE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll /DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.org/1995/xhtml">
<head>
<title>
J5HelloWorld.html

</title>) script element used
<gscript type="text/javascript" 5rc=“JSHell@WGr1d.js”>}
</script> to load and execute

</head> JavaScript code
<body>
</body>
</html>
Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

+\Web page and alert box generated by
JSHelloWorld.html document and
JSHel loWorld. js code:

B JSHelloWorld. html - Mozilla M=

[JawvaScript Application] [5__<|

& Hello Wharld!

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

*Prompt window example:

var inString = window.prompt("Enter JavaScript code to be tested:",

H‘Ir:] ;

[JavaScript Application]

@ Enter JavasScript code to be kested:

window, alert{ 124+-77;

I Ok l [Cancel

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

+Note that JavaScript code did not need to be
compiled
= JavaScript is an interpreted language

= Portion of browser software that reads and
executes JavaScript Is an interpreter

*|nterpreted vs. compiled languages:
= Advantage: simplicity
» Disadvantage: efficiency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

+JavaScript Is a scripting language: designed
to be executed within a larger software
environment

+JavaScript can be run within a variety of
environments:

= Web browsers (our focus in next chapter)
= Web servers

= Application containers (general-purpose
programming)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

+Components of a JavaScript implementation:

= Scripting engine: interpreter plus required
ECMAScript functionality (core library)

= Hosting environment: functionality specific to
environment

e Example: browsers provide alert and prompt

e All hosting environment functionality provided via
objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

+All data Iin JavaScript is an object or a
property of an object

+Types of JavaScript objects
= Native: provided by scripting engine

e If automatically constructed before program
execution, known as a built-in object (ex: window)

= Host: provided by host environment
e alertand prompt are host objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

+\Writing JavaScript code
= Any text editor (e.g., Notepad, Emacs)
= Specialized software (e.g., MS Visual InterDev)

*EXxecuting JavaScript

= Load into browser (need HTML document)

= Browser detects syntax and run-time errors
e Mozilla: JavaScript console lists errors
e IEG: Exclamation icon and pop-up window

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

+*Mozilla JavaScript console (Tools | Web
Development | JavaScript Console):

[JavaScript Console

?EEiIe Edit Wiew Toaols Window Help
i Al Errors Warnings Messages | Clear

-

Evaluate

Warning: The skvleshest e
hikkp: f fillurninations, nckm, arg/Design)'Styles, css, aspxroolor=357 288
was loaded as £55 even though its MIME tyvpe, “textfhkml”, is nok
"teukfoss",

Error: uncaught exception: Permission denied to call method
0 Location. boString

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

A TestJs. html - Microsoft Internet Ex... [Z”E|E|

‘ I E6 error Wi ndOW: . Flle Edit Miew Favorites Tools Help

Error indicator;
double-clicking icon]
opens error window %J Local intranet

3 Internet Explorer

ar functioning praperly. 1n the future, vou can dizplay this meszage by

Froblernz with thiz \eb page might prevent it from being dizplayed properly
& double-clicking the warning icon dizplaved in the status bar.

[] Always dizplay thiz meszage when a page containg erars.

| Click to see
0k | [Ehow Detais 55 error messages

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

*Firefox (2.0 and up): the JavaScript console
has been renamed “Error Console™

(Tools|Error Console) and shows JavaScript
errors, CSS errors etc...

*Enhancements available as extensions (e.qg.
Console?, firebug)

+*Chrome (4) has excellent dev support
(developer|JavaScript Console)

+|E8: Tools|Developer tools

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

*Debugging
= Apply generic techniques: desk check, add debug
output (alert’s)
s Use specialized JavaScript debuggers: later
*Re-executing

s Overwrite .js file

» Reload (Mozilla)/Refresh (IE) HTML document
that loads the file

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess

// Initialize the computer’s number
thinkingOf = Math.ceil (Math.random()*1000);

/{ Play until user guesses the number

guess = windew.prompt("I'm thinking of a number between 1 and 1000." +
" What is it?", "");

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLow.js Notice that there is no main() function/method

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess

// Initialize the computer’s number
thinkingOf = Math.ceil (Math.random()*1000);

/{ Play until user guesses the number

guess = windew.prompt("I'm thinking of a number between 1 and 1000." +
" What is it?", "");

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Comments like Java/C++ (/* */ also allowed)

var thinkingOf; // Number the computer has cheosen (1 through 1000)
Var guess; // User’s latest guess

/{ Initialize the computer’'s number
thinkingOf = Math.ceil (Math.random()*1000);

/{ Play until user guesses the number

guess = windew.prompt("I'm thinking of a number between 1 and 1000." +
" What is it?", "");

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Variable declarations:

- Not require
// HighLow.js - Data type not specified

var thinkingOf;
Var guess;

// Number the computer has cheosen (1 through 1000)
// User’s latest guess

// Initialize the computer’s number
thinkingOf = Math.ceil (Math.random()*1000);

/{ Play until user guesses the number
guess = windew.prompt("I'm thinking of a number between 1 and 1000." +
" What is it?", "");

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingO lumber the computer has chosen (1 through 1000)
var EHEEQW Semi-colons are usually
not required, but always

// Initialize the computer’s number
@‘/ allowed at statement end

thinkingOf = Math.ceil (Math.random()*1000
/{ Play until user guesses the number

guess = windew.prompt("I'm thinking of a n er between 1 and 1000." +
" What i= 1t?", "“]@

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess

// Initialize the computer’s number
thinking0f (8 Math.ceil (Math.random({*1000);

/{ Play until user guesses number
guess window. prompt ("}2m thinking of a number between 1 and 1000." +
" What is it?", "");

Arithmetic operators same as Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess

// Initialize the computer’s number
thinkingOf = Math.ceil (Math.random()*1000);

/{ Play until user guesses the number
guess = windew.prompt("I'm thinking of a number between 1 and 1DGG.“<)

" Wh&t iE it?", "“j; /

String concatenation operator
as well as addition

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess
Arguments can be any expressions

// Initialize the computer’s numbe
thinkingOf = Math.ceil ({lath.random()+1000);
/{ Play until user guesses the number

guess = windew.prompt("I'm thinking of a number between 1 and 1000." +
" What is it?‘@ ny

Argument lists are comma-separated

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

// HighLlow.js

var thinkingOf; // Number the computer has chesen (1 through 1000)
Var guess; // User’s latest guess

// Initialize the computer’s number

thinkingOf = Mat :@ Hat}*lﬂﬂm;

// Play until user guesses the number

guess = windc:‘l’m thinking of a number between 1 and 1000." +

' What is it?", "v);

Object dot notation for method calls as in Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

while (guess !'= thinking0f)

{
// Evaluate the user’s guess
if (guess < thinking0f) {
guess = window.prompt("Your guess of " + guess +
" was too low. Guess again.", "");
+
else {
guess = window.prompt("Your guess of " + guess +
" was too high. Guess again.”, "");
1
F

// Game over; congratulate the user
window.alert(guess + " is correct!’);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Lguess '= thinking0f)
0 <

Many control constructs and use of

M { }identical to Java/C++
// 2 the user’s g 5

(guess < thinkin {
guass]

win .prompt ("Your gusss of " + guess +
" was too low. Guess again.", "");

guess = window.prompt("Your guess of " + guess +
" was too high. Guess again.", "");

// Game over; congratulate the user
window.alert(guess + " is correct!’);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

while (guess <:>thinkingﬂf}

{ . .
Most relational operators syntactically

same as Java/C++

// Evaluate the us

if (guess inking0f) {
guess = window.prompt("Your guess of " + guess +
" was too low. Guess again.", "");
}
alse {
guess = window.prompt("Your guess of " + guess +
" was too high. Guess again.", "");
}

// Game over; congratulate the user
window.alert(guess + " is correct!’);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

{ T Automatic type conversion:
guess is String,

// Evaluate the user’s guess thinkingOf is Number
if (guess < thinking0f) {

guess = window.prompt("Your guess of " + guess +

" was too low. Guess again.", "");
1
alse {
guess = window.prompt("Your guess of " + guess +
" was too high. Guess again.", "");
1

// Game over; congratulate the user
window.alert(guess + " is correct!’);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

+ Type of a variable is dynamic: depends on the type
of data It contains

¢ JavaScript has six data types:
= Number
= String
= Boolean (values true and false)
= Object
= Null (only value of this typeis nul 1)
= Undefined (value of newly created variable)

* Primitive data types: all but Object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

*typeoTf operator returns string related to

data type
» Syntax: typeof expression

*Example:

// TypeOf.js
var 1;

var j; . .
j = "Not a mumber": & i is undefined
’]is skring

alert ("1 is " + (typeof i) + "\n" +
"j iz " + (typeof j));

[JavaScript Application]

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

TAELE 4.1: Values returned by typeof for varions operands.

Operand Value sString typeof Returns
null "object”

Boolean "boolean”

Number "nunber"

String "string"

native Object representing function "function"

native Ohject not representing function | "object”

declared variable with no value "undefined"

undeclared variable "undefined"

nonexistent property of an Object "undefined"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

+Common automatic type conversions:

= Compare String and Number: String value
converted to Number

= Condition of 1f or whi 1e converted to Boolean

» Array accessor (e.g., 3 in records[3])
converted to String

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

TABLE 4.2: Data tyvpe conversions to Boolean.

Original Value Value as Boolean
nndefined false

null falzse

0 falze

NaMN false

"" {empty string) | false

any other value true

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

TABLE 4.3: Data type conversions to String.

Original Value Value as String

nndefined "undefined"

null "null"”

true. false "true”, "false"

NalN "Nall"

[ufinity, -Infinity "Infinity". "-Infinity"

other Number up to =20 digits | integer or decimal representation
Number over =220 digits sclentific notation

Object call to teString () method on the object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

TABLE 4.3: Data type conversions to String.

Original Value Value as String
nndefined "undefined"
null "null"”
true. false "true”, "false"
%Tjg@\ "Nall®
]nﬁﬂit@ —\I\x\kﬁnir}' "Infinity". "-Infinity"
other Nunihedup to =20 digits | integer or decimal representation
MNumhber over miﬁi@ﬂ_jﬂ;\ sclentific notation
Object call to teString () method on the object

Special Number values (“Not a Number” and number too large to represent)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

TAEBLE 4.4: Data tvpe conversions to Number.

Original Value Value as Number

undefined Nall

null, false. "" (empty string) | 0

trus 1

String representing number represented number

other String Nall

Ohject call to value0f () method on the object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

+Syntax rules for names (identifiers):
= Must begin with letter or underscore ()

= Must contain only letters, underscores, and digits
(or certain other characters)

= Must not be a reserved word

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

abstract boolean break byte case catch
char class const continue debugger default
delete do double alae enum axXport
extends falzse final finally float for
function goto if implements import in
instanceof int interface long native new
null package private protected public return
short static super switch synchronized

this throw throws translent true try
tyvpeoct var vold volatile while with

FIGURE 4.6: JavaScript reserved words,

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

+ A variable will automatically be created if a
value Is assigned to an undeclared identifier:

var_is not testing = "Doss this work?";
required window.alert(testing) ;

*Recommendation: declare all variables
= Facilitates maintenance
= Avoids certain exceptions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

*EXxpression statement: any statement that
consists entirely of an expression

s EXpression: code that represents a value
1 = 5;
J++;

*Block statement: one or more statements
enclosed in { } braces

+Keyword statement: statement beginning
with a keyword, e.g., varorif

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

*var Syntax: var i1, meg="hi", o=null;
Comma-separated declaration list with
optional initializers

+Java-like keyword statements:
TABLE 4.5: JavaScript kevword statements.

Statement Name | Syntax
if-then if (expr) stmi
if-then-elze if (expr) stmit else simi
do do stmf while (expr)
while while (expr) stmi
for for (partl ; part? ; parti) stmt
continue continue
break break
return-void return
return-value return erpr
switch switch (expr) { cases |
try try try-block catch-part
throw throw erpr

C les

JavaScript Statements

// Can use ’'var’ to define a loop variable inside a ‘for’
for (var i=1; i<=3; i++) {

Javascript switch (i) {
keyword
statements /f 'case’ value can be any expression and data type,
are very similar // net just constant int as in Java. Automatic
to Java with // type conversion is performed if needed.
. case 1.0 + 2:

small exceptlons window.alert("i = " + 1i);

break;

default:
try {

throw("A JavaScript exception can be anything");
window.alert ("This is not executed.");

}
// Do not supply exception data type in ’catch’
catch () {
window.alert ("Caught: " + e&);
}
break;
}
}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

// Can use ’var’ tuqﬂéiiﬁ%ia loop %%EEEEIE)iHEidE a 'for’
for @aD i=1; i<=3; i++)

switch (1) {

/f 'case’ value can be any expression and data type,
// mot just constant int as in Java. Automatic
// type conversion is performed if needed.
case 1.0 + 2:
window.alert("i = " + 1i);
break;
default:
try {
throw("A JavaScript exception can be anything");
window.alert ("This is not executed.");

}
// Do not supply exception data type in ’catch’
catch () {
window.alert ("Caught: " + e&);
}
break;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

// Can use ’'var’ to define a loop variable inside a ‘for’
for (var i=1; i<=3; i++) {

switch (1) {

// <case’ value can be any a%égéggiﬁﬁihnd data type,

// mot just constant int as in Java. Automatic
// type conversion is performed if needed.
case :
window.alert("i = " + 1i);
break;
default:
try {
throw("A JavaScript exception can be anything");
window.alert ("This is not executed.");

}
// Do not supply exception data type in ’catch’
catch () {
window.alert ("Caught: " + e&);
}
break;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

// Can use ’'var’ to define a loop variable inside a ‘for’
for (var i=1; i<=3; i++) {

switch (1) {

/f 'case’ value can be any expression and data type,
// mot just constant int as in Java. Automatic
// type conversion is performed if needed.
case 1.0 + 2:
window.alert("i = " + 1i);
break;
default:
try {
throw("A JavaScript exception can be anything");
window.alert ("This is not executed.");

}

// Do not supplj.r in ‘catch’

catch 1

window.alert ("Caught: " + e);

}

break;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

+(QOperators are used to create compound
expressions from simpler expressions

*Operators can be classified according to the
number of operands involved:
= Unary: one operand (e.g., typeof 1)
e Prefix or postfix (e.g., ++1 or 1++)
= Binary: two operands (e.g., X + V)

= Ternary: three operands (conditional operator)
(debuglevel>2 7 details : "")

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

TABLE 4.6: Precedence (high to low) for selected JavaScript operators.

Operator Category Operators

Ohject Creation new

Postfix Unary ++, ——

Prefix Unary delete, typeof, ++, —— , +, -, 7. |

Multiplicative * /%

Additive +, -

Shift <L B BB

Relational <, >, €= b=

(In Jequality == l= === I==

Bitwise AND &

Bitwise XOR -

Bitwise OR |

Logical AND bl

Logical OR ||

Conditional and Assignment | 7:, =, #®=_ /= j= 4=, -= <<= >>=>>>=
k=, "= |=

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

+ Assoclativity:

= Assignment, conditional, and prefix unary
operators are right associative: equal-precedence
operators are evaluated right-to-left:

a *= b 4= ¢ — a *= (b += ¢

= Other operators are left associative: equal-
precedence operators are evaluated left-to-right

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

*Binary operators +, -, *, /, % convert both
operands to Number
= EXxception: If one of operands of + Is String then
the other is converted to String
*Relational operators <, >, <=, >= convert
both operands to Number

= Exception: If both operands are String, no
conversion Is performed and lexicographic string
comparison Is performed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

* Operators ==, = convert both operands to Number

= EXxception: If both operands are String, no conversion is
performed (lex. comparison)

= EXxception: values of Undefined and Null are equal(!)

= EXxception: instance of Date built-in “class” is converted
to String (and host object conversion is implementation
dependent)

= EXxception: two Objects are equal only if they are
references to the same object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

*Operators ===, ! == are strict:

= TWO operands are === only If they are of the
same type and have the same value

= “Same value” for objects means that the
operands are references to the same object

*Unary +, — convert their operand to Number

*Logical &&, | |, ! convert their operands to
Boolean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Numbers

+Syntactic representations of Number
= Integer (42) and decimal (42.0)
= Scientific notation (-12.4e12)
= Hexadecimal (0xfa0)

*|nternal representation

= Approximately 16 digits of precision

= Approximate range of magnitudes
e Smallest: 1033
o Largest: 10308 (Infinity if literal is larger)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Strings

+String literals can be single- or double-
quoted

+Common escape characters within Strings
= \Nh newline
= \" escaped double quote (also \’ for single)
= \\ escaped backslash

= \UXXXX arbitrary Unicode 16-bit code point
(X’s are four hex digits)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function declaration syntax

function oneTo(high) {
return Math.ceil (Math.random()+*high) ;

}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function declaration syntax

Declaration oneTe (high) {
always begins

with keyword return Math.ceil (Math.random()+high) ;

function,
no return type

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function declaration syntax

|dentifier representing
function’s name

function high] {

return Math.ceil (Math.random()+high) ;
}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function declaration syntax

Formal parameter list

function oneTolChigh) {

return Math.ceil (Math.random()+high) ;
}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function declaration syntax

function oneTol(high) {

return Math.ceil (Math.random() *high);
hy

One or more statements representing
function body

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call syntax
thinkingOf = oneTo(1000);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call syntax

thinking0f = @neTa (1000 ;

Function call is an expression, can
be used on right-hand side of assignments,
as expression statement, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call syntax
thinking0f = @eTaX1000) ;

Function name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call syntax

thinkinglf = c::-neTc::;

Argument list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics:

function oneTo(high) {
return Math.ceil (Math.random()+high);

}
thinkingOf = oneTe (1000);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics:

function oneTo (@igh) {
return Math.ceil{Math.random()*high) ;

+ o Argument value(s)
thinkingOf = cneTo :’i associated with corresponding
formal parameters

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics:

function oneTo(high) {

return(ﬂgigzggg?{Hath.randam(}#high .

b Expression(s) in body

thinking0f = eneTo(1000); eyaluated as if formal
parameters are variables
initialized by argument
values

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics:

function oneTo(high) {

<:§EE§E:E§th.ciil{Hath.ranﬂnmiiiﬁiﬁﬁl}>

+ '

thinkingDf = If final statement executed
IS return-value, then value of

its expression becomes value
of the function call

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics:

function oneTo(high) {
return Math.ceil (Math.random()+high);

+

4—
hinking0f>=ConeTo (1000D;

Value of function call is then used
in larger expression containing
function call.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Function call semantics detalls:

. ArgumentS: cneTo (999+1),
e May be expressions:
e Object’s effectively passed by reference

= Formal parameters:
e May be assigned values, argument is not affected

s Return value:

e If last statement executed is not return-value, then
returned value is of type Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

+*Number mismatch between argument list and
formal parameter list:

= More arguments: excess ignored

= Fewer arguments: remaining parameters are
Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

+| ocal vs. gllobal variables

obal variable: declared outside any function

// global variable declaration and initialization
function test()

{
var j; // local variable declaraticon
j=7; // Which variable(s) does this change?
return;

F

test();

window.alert(j);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

+|_ocal vs. global variables

var j=6; // global variable declaration and initialization

function test()

Local
variable
declared // local wvariable declaration
ithi =75 // Which variable(s) does this change?
within et -
a function

test();
window.alert(j);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

+|_ocal vs. global variables

// global variable declaration and initialization
function test()

Local C
declaration v @
shadows @
corresponding returm;
global }

declaration test(); _
windaw.alert@ » Outputis 6

// local variable declaration
// Which variable(s) does this change?

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

+|_ocal vs. global variables

// global variable declaration and initialization
est ()

1
il I /Y local variable declaraticon
|"Il Which variable(s) does this change?
return;
In browsers,
global sest();
variables window.alert(j); Outputis 7

(and functions)
are stored as properties
of the window built-in object.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Recursive functions

= Recursion (function calling itself, either directly
or indirectly) Is supported

= C++ static variables are not supported

= Order of declaration of mutually recursive
functions is unimportant (no need for prototypes

as In C++)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

*Explicit type conversion supplied by built-in
functions
= Boolean(), String(), Number()

= Each takes a single argument, returns value
representing argument converted according to
type-conversion rules given earlier

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

* An object Is a set of properties

* A property consists of a unique (within an
object) name with an assocliated value

*The type of a property depends on the type of
Its value and can varv dynamically

O.prop = trus; prop is Boolean
o.prop = "true"; propis now String
o.prop = 1; prop is now Number

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

*There are no classes In JavaScript

+|nstead, properties can be created and deleted
dynamically

var ol = new Object(); Create an object ol
ol.testing = "This is a test"; Create property testing
delete ol.testing; Delete testing property

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

*QObjects are created using new expression

new @BJECEL)D Constructor and argument list

¢ A constructor 1s a function

= When called via new expression, a new empty
Object Is created and passed to the constructor
along with the argument values

= Constructor performs initialization on object
e Can add properties and methods to object
e Can add object to an inheritance hierarchy

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

*The Object () built-in constructor

= Does not add any properties or methods directly
to the object

= Adds object to hierarchy that defines default
toString() and valueOf () methods (used
for conversions to String and Number, resp.)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Property Creation

+ Assignment to a non-existent (even If
Inherited) property name creates the property:

ol.testing = "This 1s a test";

+QObject initializer notation can be used to

create an object (using Object ()
constructor) and one or more properties in a

single statement:

var o2 = { pl:5+49, p2:null, testing:"Thiz i= a test" };

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Enumerating Properties

*Special form of for statement used to iterate
through all properties of an object:

var hash = new Object();

hash.kim = "85";
hash.sam = "92";
hash.lynn = "78";

for (var alame in hash) {

Produces three)
window.alert (allame + " is a property of hash.");

alert boxes:
order of names +
IS Implementation-dependent.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Accessing Property Values

*The JavaScript object dot notation Is actually
shorthand for a more general associative array
notation In which Strings are array indices:

hash.kim —— hash["kim"]

*EXxpressions can supply property names:

window.alert (allame + " scored " + hash]I;

Converted to String
if necessary

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

*Value of Object is reference to object:

var ol = new Object();
ol.data = "Hello";

var o2 = ol;
oL.data += " World!";
window.alert(ocl.data)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

*Value of Object is reference to object:

var ol = new Object();

. ol.data = "Hello";
02 is another
name for 01 ol data += " World!":

window.alert(ocl.data)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

*Value of Object is reference to object:

var ol = new Object();
ol.data = "Hello";

var o2 = ol;
olis @#'@
changed yindew.alert(ol.data):

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

*Value of Object is reference to object:

var ol = new Object();
ol.data = "Hello";

var o2 = ol;
o2.data += " World!";

window.alert } : OutputisHello World!

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

+QObject argument values are references

// Create two different objects with identical data
var ol = new Object();

ol.data = "original”;

var o2 = new Object();

oZ.data = "original”;

/{ Call the function on these objects and display the results
objArgs(ol, ol);

function objArgs(paraml, param2) { . }

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

+QObject araument values are references

patram1 param:
l l
data data
original original
| |
ol oy

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

+QObject argument values are references

function objArgs(paraml, param2) {
// Change the data in paraml and its argument
paraml .data = ’ ;

param] paramz

¥ ¥
data data

@ original

ol 02

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

+QObject argument values are references

function objArgs(paraml, param2) {
// Change the data in paraml and its argument
paraml .data = "changed";
the object referenced by paramZ, but not 1ts argument

paramm] parame
l -
data data
changed ariginal
| |
ol o

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeftrey C. Jackson’s slides

Object Values

+QObject argument values are references

param] param2 [JavaScript Application]
| = & paraml is changed
i / param?z is changed
data data 5
changed original
x T & ol is changed
| | 0z is original
ol 0

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

+JavaScript functions are stored as values of
type Object

+ A function declaration creates a function
value and stores It in a variable (property of
w1ndow) having the same name as the
function

* A method Is an object property for which the
value Is a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

function leaf() {

return this.left == null && this.right == null;
F

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null,;
node . value = value;
node . 1sleaf = leaf;
return nods;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates global variable named 1eaf with function value

function leaf ()){
return this.left == null && this.right == null;

F

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null,;
node .. value = value;
node . 1sleaf = leaf;
return nods;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

function leaf() {
return this.left == null && this.right == null;

F

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null,;
node .. value = value;
@L&:ﬁ = 1888 Creates isLeaf() method that is
return node, defined by Teaf () function

F

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Refers to object that “owns” method when

_~ leaf() is called as a method
function leaf () o
return .left == null && .right == null;
}

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null,;
node .. value = value;
node . 1sleaf = leaf;
return nods;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

var nodel = makeBTNode (3):
var node?2 = makeBTNode (7):
nodel . right = nodeZ;

// Output the value of isLeaf() on sach node

window.alert("nodel iz a leaf: " + nodel.isLeaf());
window.alert("node2 iz a leaf: " + nodeZ.isLeaf());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates two objects each with

var nodel = makeBTNode(3);
method isLeaf ()

var node2 = makeBTNode(7);
nodel . right = nodeZ;

// Output the value of isLeaf() on sach node
window.alert("nodel iz a leaf: " + nodel.isLeaf());
window.alert("node2 iz a leaf: " + nodeZ.isLeaf());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

var nodel = makeBTNode (3):

var node?2 = makeBTNode (7):
nodel . right = nodeZ;

// Output the value of isLeaf() on sach node
window.alert("nodel iz a leaf: " +|nodel.isleaf());
window.alert ("node2 iz a leaf: " +|nodeZ.isleaf());:

Calls to isLeaf () method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

+Original version: Teaf () can be called as
function, but we only want a method

function leaf() {

return this.left == null && this.right == null;
F

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null,;
node . value = value;
node . 1sleaf = leaf;
return nods;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

¢ Alternative:

function makeBTNode (value) {

var node = new Object();
node.left = node.right < null,;
node.value = value;

_ Function expression syntactically
node. 13LEZ-'E _ .’ the same as function declaration but
return node; does not produce a global variable.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

. -————————
¢ Alternative

function makeBTNode (value) {

var node = new Object();
node.left = node.right = null;
node.value = value;

return node;

+

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

+User-defined constructor is just a function
called using new expression:

var nodel = new |[ETNode (3):
var node2 = new [ETNods (7)) :

Constructor

*(Object created using a constructor Is known
as an Instance of the constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

function makeBTNode(value) {

iqinal var node = new Object();
()ngn1a node.left = node.right = null;

function node.value = value:
node.isleaf =

function leaf() {
return this.left == null && this.right == null;

F;
return nods;
}
_ function BTNode(value) {
Function this.left = this.right = null;
intended

this.value = value;
tobeused this.isLeaf =

as constructor function leaf() {

return this.left == null && this.right == null;
F;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

node.left = node.right = null;
node.value = value;
node.l1sleaf =
function leaf() {
return this.left == null && this.right == null;
F;

return nods;

F

_ _ function BTNode(value) {
Objectis _—"thiz.left = this.right = null;
constructed this.value = value;
automatically this.isLeaf =
by new function leaf() {
expresskn1 return this.left == null && this.right == null;
F;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

function makeBTNode (value) {

ar node = new Object();

nodel left = node.right = null;

node | value = value;

node|. icsleaf =
function leaf() {

return this.left == null && this.right == null;
regﬁrn nodea ;
}
_ function BTNode(wvalue) {
Object this). left = this.right = null;
referenced thigl.value = value;
using thi1s |this| isLeaf =
keyword function leaf() {
return this.left == null && this.right == null;
F;
}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

function makeBTNode (value) {
var node = new Object();
node.left = node.right = null;
node.value = value;

node.lsleaf =

function leaf() {
return this.left == null && this.right == null;

F

function BTNode (value) {
this.left = this.right = null;
this.value = value;

No need this.isLeaf =
to return function leaf() {
initialized return this.left == null && this.right == null;

object — T
+

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

*(Object created using a constructor Is known
as an Instance of the constructor
var medel) = new BETNode(3):
Var = new BETNode(7);
Instances of BTNode

*instanceof operator can be used to test
this relationship:

window.alert("nodel 1= instance of ETNaode +
(nodel 1nstanceof BTNode)) :

Evaluates to true

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

+The Array built-in object can be used to
construct objects with special properties and
that inherit various methods

var aryl = mnew Array();

aryl
Tength (0) Properties
toString() Inherited
sort() methods
shift()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

+The Array built-in object can be used to
construct objects with special properties and
that inherit various methods

var ary2 = new Array(4, true, "OK");

ary2
; ”gth (3) Accessing array elements:
Elements “g,, (4) v ary2[1]
of array (true) voary2[“1”]
11 J) (13 K!!)
"0 X ary2 @
_ Must follow identifier
toString () syntax rules

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

*The Array constructor is indirectly called if
an array Initializer 1s used

var ary2 = new Array(4, true, "OK");

I

var ary3 = [4, true, "OK"];

*Array Initializiers can be used to create

multidimensional arrays
var ttt = [[11:.:H’ H|:|1|" |-||:,1r .
[11[:|rr’ H:."Lﬂ',]’
[11[:|rr! I'I:l:.ﬂ’ H:.Lﬂ :l :l;

tt[1][2]

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

+Changing the number of elements:

var ary2 = new Array(4, true, "OK");

Creates a new element dynamically,

increases value of length

e e on)

ary?2

Tength @/
“O!! (4)

toString()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

+Changing the number of elements:

var ary2 = new Array(4, true, "OK");
ary2[3] = -12.6;

Erys length = 28y Decreasing length can delete elements

ary?2

Tength @/
“O!! (4)
“1” (true)

toString()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

*Value of Tength is not necessarily the same
as the actual number of elements

var ary4 = new Array(; Calling constructor with single argument
sets length, does not create elements

ary4

lTength

toString()
sort()
shift()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

TABLE 4.7: Methods inherited by array objects. Unless otherwise specified, methods
return a reference to the array on which they are called.

Method Description

toString () Return a String value representing this array as a comma-
separated list.

sort (Object) Modity this array by sorting it, treating the Object argu-

ment as a funetion that specifies sort order (see below).

splice (Number, | Modify this array by adding the third argnment as an el-
0, any type) ement at the index given by the first argument. “shifting”
elements up one index to make room for the new element.

splice (Number, | Maodify this array by removing a nnmber of elements spec-
Nunber ified by the second argument (a positive integer). starting
with the index specified by the first element, “shifting” el-
ements down to take the place of those elements removed.
Returns an array of the elements removed.

push(any Modify this array by appending an element having the

typa) riven argument value. Returns length value for modified
array.

pop() Modify this array by removing its last element | the element

at mmdex length — 1). Returns the value of the element
removed.

shift () Modity this array by removing its first element (the el-
ement at index 0) and “shifting” all remaining elements
down one index. Returns the value of the element removed.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// ArrayMethods.js I

var numArray = [1,3,8,4,9,7,6,2,5];

// Bort in ascending order
nunArray.sort (
function compare (first, second) {
return first - second;

}
);
// nmumArray.teString(): 1,2,3,4,5,6,7,8,9

numArray.splice(2, 0, 2.5);
// numArray.toeString(): 1,2,2.5,3,4,5,6,7,8,9

/f output of following: 5,8,7

window.alert (numArray.splice(5,3) .toString());
// nmumArray.teString(): 1,2,2.5,3,4,8,9
window.alert (numArray.toString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Argument to sort
IS a function

JavaScript Arrays

// ArrayMethods.js I

var numArray = [1,3,8,4,9,7,6,2,5];

// Bort in ascending order
nunArray.sort (
function compare (first, second) {
return first - second;

}
);
// nmumArray.teString(): 1,2,3,4,5,6,7,8,9

numArray.splice(2, 0, 2.5);
// numArray.toeString(): 1,2,2.5,3,4,5,6,7,8,9

/f output of following: 5,8,7

window.alert (numArray.splice(5,3) .toString());
// nmumArray.teString(): 1,2,2.5,3,4,8,9
window.alert (numArray.toString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// ArrayMethods.js .-
var numArray = [1,3,8,4,9,7,6,2,5];

// Bort in ascending order
nunArray.sort (
function compare (first, second) {
return Return negative if first value should

+ come before second after sorting
);
// nmumArray.teString(): 1,2,3,4,5,6,7,8,9

numArray.splice(2, 0, 2.5);
// numArray.toeString(): 1,2,2.5,3,4,5,6,7,8,9

/f output of following: 5,8,7

window.alert (numArray.splice(5,3) .toString());
// nmumArray.teString(): 1,2,2.5,3,4,8,9
window.alert (numArray.toString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// ArrayMethods.js I

var numArray = [1,3,8,4,9,7,6,2,5];

// Bort in ascending order
nunArray.sort (

function compare (first, second) {

return first - second;

}
);
// nmumArray.teString(): 1,2,3,4,5,6,7,8,9

Add element with value 2.5 at

m.aplicaiﬂ,m index 2, shift existing elements

// numArray.toString(): 1,2&2::)3,4,5,5,?,3,9

/f output of following: 5,8,7

window.alert (numArray.splice(5,3) .toString());
// nmumArray.teString(): 1,2,2.5,3,4,8,9
window.alert (numArray.toString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// ArrayMethods.js I

var numArray = [1,3,8,4,9,7,6,2,5];

// Bort in ascending order
nunArray.sort (
function compare (first, second) {
return first - second;

}
);
// nmumArray.teString(): 1,2,3,4,5,6,7,8,9

numArray.splice(2, 0, 2.5);
// numArray.toeString(): 1,2,2.5,3,4,5,6,7,8,9
Remove 3 elements starting
/f output of following: 6.7 atindex 5
window.alert {.t@String{}) ;
// nmumArray.teString(): 1,2,2.5,3,4,8,9
window.alert (numArray.toString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// stack.js
var stack
stack.push('H");
stack.push(’1i?);
stack.push(’!?);

new Array():

var c3 = stack.pop(); // pops 'V’
var c2 = stack.pep(); // pops 1’
var cl = stack.pop(); // pops 'H’
window.alert(cl 4+ c2 + ¢3); // displays "Hi!'"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// stack.js
var stack

new Array():

stack.push('H?); push() adds an element to the end of the
array

stack.push(’1i?);
stack.push(’!");

var c3 = stack.pop(); // pops 'V’
var c2 = stack.pep(); // pops 1’
var cl = stack.pop(); // pops 'H’
window.alert(cl 4+ c2 + ¢3); // displays "Hi!'"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// stack.js
var stack

stack.push('H");
stack.push(’1i?);

stack.push(’!?); popQ deletes and returns last
element of the array

new Array():

var c3 = stack.pep(); // pops 'V’
var c2 = stack.pep(); // pops 1’
var cl = stack.popl); // pops 'H’
window.alert(cl 4+ c2 + ¢3); // displays "Hi!'"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

// stack.js
var stack
stack.push('H");
stack.push(’1i?);

stack.push(’!?);
Use shift () instead to implement queue

new Array():

var c3 = stack.pep(); // pops 'V’
var c2 = stack.pep(); // pops 1’
var cl = stack.popl); // pops 'H’
window.alert(cl 4+ c2 + ¢3); // displays "Hi!'"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

+The global object
= Named window in browsers
= Has properties representing all global variables

= Other built-in objects are also properties of the
global object
e EX: initial value of window.Array is Array object

= Has some other useful properties
e Ex: window.Inf1in1ty represents Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*The global object and variable resolution:

@ = 42; Whatdoes 1 refer to?
1. Search for local variable or formal parameter
named 1
2. If none found, see if global object (window)
has property named 1

*This I1s why we can refer to built-in objects
(Object, Array, etc.) without prefixing
with window.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*String(), Boolean(), and Number ()
built-in functions can be called as
constructors, created “wrapped” Objects:

var wrappediumber = new Number(5.825);

+|nstances inherit valueOf () method that
returns wrapped value of specified type:

window.alert (typeof wrappedNumber.valu=0f());

Output is “number”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*Other methods inherited by Number
Instances:

var wrappedlumber = new Number(5.825); Outputs

window.alert (wrappedlumber .toFixed(2)) ; 5.63

window.alert (wrappediumber . toExponential (2)) 5.63e+0

window.alert (wrappedlumber.toString(2)) ; 101.101
Base 2

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*Properties provided by Number built-in
object:
» Number .MIN_VALUE: smallest (absolute
value) possible JavaScript Number value

» Number .MAX_VALUE: largest possible
JavaScript Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

TABLE 4.8 Some of the methods inherited by String instances.

Method

Description

charht (Nunber)

Return string consisting of single character at position (0-based)
Number within this string.

concat (3tring)

Return concatenation of this string to String argument.

index0f (String, | Heturn location of leftmost ocenrrence of String within this string
Number) at or after character Number, or -1 if no ocourrence exists.
replace(String, | Return string obtained by replacing first oceurrence of first String
String) m this string with second String.

slice(Number, Return substring of this string starting at location given by first
Number) Number and ending one character hefore location given by second

Number.

toLowerCase()

Return this string with each character having a Unicode Standard
lowercase equivalent replaced by that character.

tollpperCase ()

Return this string with each character having a Unicode Standard
uppercase equivalent replaced by that character.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*|nstances of String have a 1ength
property (number of characters)

+JavaScript automatically wraps a primitive
value of type Number or String If the value Is

used as an object:

window.alert("a String value".slice(2,5));

Output is “Str”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*The Date () built-in constructor can be used to
create Date instances that represent the current date
and time

var now = new Date();

+ Often used to display local date and/or time in Web
pages

window.alert(“Current date and time: *“
+ now.tolLocaleString());

* Other methods: toLocaleDateString() ,
toLocaleTimeString(), etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*valueOf () method inherited by Date
Instances returns integer representing number
of milliseconds since midnight 1/1/1970

+ Automatic type conversion allows Date
Instances to be treated as Numbers:

var startTime = new Date():
// Perform some processing

var endTime = new Date();
window.alert ("Processing required " +

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

*Math object has methods for performing

standard mathematical calculations:
Math.sqrt(15.3)

+ Also has properties with approximate values
for standard mathematical quantities, e.g., e (
Math.E)and n (Math.PI)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

TABLE 4.9: Methods of the Math built-in object.

Method Return Value

abs (Nlumber) Absolute value of Number.

acos (Number) Are cosine of Number (treated as radians).
asin(Number) Are sine of Number.

atan(Number) Are tangent of Number (range -Math.'I/2

to Math.PI/2).

atan? (Number, Nunber)

Are tangent of first Number divided by sec-

ond (range -Math.PI to Math.PI).

ceil (Number)

Smallest integer no greater than Number.

cos (Nunber)

Cosine of Number (in radians).

exp (Number) Math.E raised to power Number.
floor (Number) Largest integer no less than Number.
log(Number) Natural logarithm of Number.

max (Munber, Number,

Maximum of given values.

min (Numbar, Number,

Minimum of given values.

pow (Nunber, Number)

First Number raised to power of second
Number.

random () Pseudo-random foating-point number in
range () to 1.

round (Number) Nearest integer value to Number,

sin(Number) Sine of Number.

sqrt (Number) Square root of Number.

tan (Number)

Tangent of Number.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

* A regular expression Is a particular
representation of a set of strings
= EX: JavaScript regular expression representing

the set of syntactically-valid US telephone area
codes (three-digit numbers):

e \d represents the set {0, “1”, ..., “9”}

e Concatenated regular expressions represent the
“concatenation” (Cartesian product) of their sets

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions in JavaScript

var acTest = new RegExp(" ‘\\d\\d\\d$");
if (lacTest.test(areaCode)) {
window.alert(areaCode + " 1z not a valid area code.");

1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions in JavaScript

var acTest = new RegExp(" ‘\\d\\d\\d$");

if (lacTest.test (@reacod®) {

window.alert(areaCode|+ " 1z not a valid area code.");

I
Variable containing string to be tested

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions In JavaScriQ)t

Regular expression as String (must escape
var acTest = new RegExp QT \\d\\d\\d$®) ;
if (lacTest.test(areaCode)) {
window.alert(areaCode + " 1z not a valid area code.");

1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions in JavaScript

Built-in €onstructor

var acTest = new(RegExp) " ‘\\d\\d\\d$");
if (lacTest.test(areaCode)) {

window.alert(areaCode + " 1z not a valid area code.");

1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions in JavaScript

var acTest = new RegExp(" ‘\\d\\d\\d$");

if (lacTest @esthareaCods)) {

window.ale:;l{areaﬂmde + " 1z not a valid area code.");
}

ethod inherited by RegEXxp instances:
returns true if the argument contains a
substring in the set of strings represented by
the regular expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

OUsin gular ex ressmnsm JavaScript
|

Represe s bedinning of strin Represents end of strin

var acTest = new Regﬁp{@idﬁﬁdhk@”};
if (lacTest.test(areaCode)) {
window.alert(areaCode + " 1z not a valid area code.");

1

This expression matches only strings with
exactly three digits (no other characters,
even white space)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Using regular expressions in JavaScript

var acTest = new Reg&p(‘@i\dﬂﬂdi"ad”};

Represents all strings that begin
with three digits

¢+ Alternate syntax:

var acTest = /7\d\d\d/;

e

Regular expression literal.
Do not escape \.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Simplest regular expression Is any character

that 1s not a special character:
TFN x4+ 7T C)LT ALY

s EX; _Is aregular expression representing
{H_H
*Backslash-escaped special character iIs also a
regular expression

» Ex: \$ represents {“$”}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Special character . (dot) represents any
character except a line terminator

*Several escape codes are regular expressions

representing sets of chars:
TABLE 4.10: JavaScript multi-character escape codes.

Escape Code | Characters Represented

hd digit: 0 through 9.

4D Any character except those matched by \d.

s space: any JavaScript white space or line terminator
(space. tab, line feed. ete.).

\8 Any character except those matched by '\ s.

"W “word” character: any letter (a through z and A through
Z). digit (0 through 9}, or underscore (_)

W W Any character except those matched by '\ w.

Guy-Vincent Jourdan :: CS1 3140 :: based on Jettrey C. Jackson's slides

JavaScript Regular Expressions

*Three types of operations can be used to
combine simple regular expressions into more
complex expressions:

= Concatenation

= Union (|)

= Kleene star (*)

* XML D

D content specification syntax

based in part on regular expressions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Concatenation

» Example: "\d\. Awd
String consisting entirely of four characters:
e Digit followed by
e A . followed by
e A single space followed by
e Any “word” character

= Quantifier shorthand syntax for concatenation:
ZA{3} —> dh\d\d

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

eUnion
s EX vd | \s

Union of set of strings represented by regular
expressions

e Set of single-character strings that are either a digit or
a space character

+Character class: shorthand for union of one
or more ranges of characters

s EX: [a-z15et of lower case letters

s EX [a-za-z0-911_ the \w escape code class

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Unions of concatenations

Za{3,6} < did\d|\d\d\dNd[NdNdNdNANd NN dNdNd DN

= Note that concatenation has higher precedence
than union

+QOptional regular expression

(+]=)7\d *— (+|-3{0,13\d

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

+Kleene star
s EX: \ax any number of digits (including none)

m EXC \w+(\d\w#[a-zA-Z] | [a—zA-Z] \wH\d) \w#

e Strings consisting of only “word” characters

e String must contain both a digit and a letter (in either
order)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

