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Abstract. A wireless sensor can detect the presence of an intruder in its sensing
range, and is said to cover the portion of a given barrier that intersects with its
sensing range. Barrier coverage is achieved by a set of sensors if every point on
the barrier is covered by some sensor in the set. Assuming n identical, anony-
mous, and relocatable sensors are placed initially at arbitrary positions on a line
segment barrier, we are interested in the following question: under what circum-
stances can they independently make decisions and movements in order to reach
final positions whereby they collectively cover the barrier? We assume each sen-
sor repeatedly executes Look-Compute-Move cycles: it looks to find the positions
of sensors in its visibility range, it computes its next position, and then moves to
the calculated position. We consider only oblivious or memoryless sensors with
sensing range r and visibility range 2r and assume that sensors can move at most
distance r along the barrier in a move. Under these assumptions, it was shown
recently that if the sensors are fully synchronized, then there exists an algorithm
for barrier coverage even if sensors are unoriented, that is, they do not distinguish
between left and right [7]. In this paper, we prove that orientation is critical to
being able to solve the problem if we relax the assumption of tight synchroniza-
tion. We show that if sensors are unoriented, then barrier coverage is unsolvable
even in the semi-synchronous setting. In contrast, if sensors agree on a global ori-
entation, then we give an algorithm for barrier coverage, even in the completely
asynchronous setting. Finally, we extend the result of [4] and show that conver-
gence to barrier coverage by unoriented sensors in the semi-synchronous model
is possible with bounded visibility range 2r+ρ (for arbitrarily small ρ > 0) and
bounded mobility range r.
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1 Introduction

1.1 The Problem

A wireless sensor network consists of several sensors, each equipped with a sensing
module. Among the many applications of sensor networks (e.g., [15]), the establishment

� Research supported by NSERC, Canada.
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of barrier coverage has an important place, and it has been studied intensively in the
literature; it guarantees that any intruder attempting to cross the perimeter of a protected
region (e.g., crossing an international border) is detected by one or more of the sensors
(e.g., see [1, 2, 5, 6, 11, 16, 18]). By protecting the access to the region, barrier coverage
provides a less expensive alternative to a complete coverage of the region (e.g., [18]).
A barrier can be modelled as a line segment of length L ∈ Z covering the interval [0,L]
on the x-axis; sensors are deployed along the barrier. Intruders may traverse the line
segment at any point; an intruder is detected only if it is within the sensing range r of at
least one sensor. The barrier is covered if no intruder can cross the line segment without
being detected. Clearly, at least n̄ = � L

2r � sensors are needed, where r is the sensing
range.

Barrier coverage, in the case of static sensors, can be achieved by careful (i.e., non
ad hoc) deterministic deployment of n̄ sensors, but this could be unfeasible in some
situations. Alternatively, a large number N � n̄ of sensors can be randomly deployed,
but barrier coverage can only be probabilistically guaranteed [11–13]. Finally, in ad
hoc deployment of sensors, the sensors are initially located at arbitrary positions on the
line. In sensor networks composed of relocatable sensors, every sensor has a movement
module that enables the sensor to move along the barrier. Hence, although initially they
are located at arbitrary positions on the line without providing barrier coverage, they
may move to new points on the line so that the entire barrier is covered (e.g., [3, 5–
7, 17]). In this paper we study the problem of barrier coverage with relocatable sensors.

The centralized version of the problem has been studied and solutions proposed,
focusing on minimizing some cost measures (e.g., traveled distances) [3, 5, 6, 14]. In
these centralized solutions, the algorithm knows the initial positions of all sensors, and
uses this information to determine the final positions that the sensors should occupy; no-
tice that n̄ sensors suffice for a centrally directed relocation of sensors. However, in the
context of sensor networks deployed in an ad hoc manner, typically there is no central
control or authority, and no global knowledge of the locations of the sensors is avail-
able. Indeed, the sensors might not even know the total number of sensors deployed, or
the length of the barrier. Thus every sensor must make decisions on whether and where
to move, based only on local information in an autonomous and decentralized way.

In order to develop a solution protocol for a distributed setting, it is first of all
necessary to model such a setting. Following the approach used in the research on au-
tonomous mobile robots (e.g., [10]), sensors are modelled as mobile computational en-
tities. The entities are anonymous and identical, have no centralized coordination, have
a sensing range as well as a visibility1 range: their decisions are made solely based on
their observations of their surroundings. Each entity alternates activity with inactivity.
When becoming active, it executes a Look-Compute-Move operational cycle and then
becomes inactive. In a cycle, an entity determines the positions of the other entities in its
visibility range (Look); then it computes its own next position (Compute); and finally it
moves to this new position (Move). In the cases of sensor networks, the visibility range
v is limited [9]; we assume v = 2r, which is the minimum visibility radius necessary
for sensors to determine local gaps in coverage. The movements of the sensors are said

1 Combined with mobility, it provides stigmergic communication between sensors within range.
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to be bounded if there is a maximum distance they can move in each cycle, and rigid if
they are not interrupted (e.g., by an adversary).

Depending on the assumptions on the activation schedule and the duration of the
cycles, three main settings are identified. In the fully-synchronous setting (FSYNC),
all sensors are activated simultaneously, and each cycle is instantaneous. The semi-
synchronous setting (SSYNC) is like the fully synchronous one except that each activa-
tion might involve only a subset of the sensors; activations are fair: each sensor will be
activated infinitely often. In the asynchronous setting (ASYNC), no assumption is made
on timing of activation, other than fairness, nor on the duration of each computation and
movement, other than it is finite.

The first distributed algorithmic investigation of the barrier coverage problem has
been recently presented for the discrete line [7], solving the problem in the fully syn-
chronous setting, FSYNC. Interestingly, it is shown that the sensors can be totally obliv-
ious, that is, at the beginning of a cycle, a sensor does not (need to) have any recollection
of previous operations and computations. Furthermore, the sensors are completely un-
oriented; they have no concept of left and right. Finally the algorithm terminates for any
n ≥ n̄, hence even with the minimal number used by centralized solutions.

Notice that when L/2r is an integer and n = n̄, the barrier coverage problem is equiv-
alent to the uniform deployment problem (studied for lines and circles, see [4, 8, 9]) on
a line segment, which requires the oblivious sensors to move to equidistant positions
between the borders of the segment. This problem has been studied on a line [4] as-
suming that a sensor can always see the sensors that are closest to it, regardless of their
distance, and it always reaches its destination, regardless of its distance; in other words,
both visibility and movements are a priori unbounded. Under these assumptions, an
SSYNC distributed protocol that converges with rigid movements to uniform covering
(and thus to barrier coverage) was given in [4]. However, equidistant positions are not
required for barrier coverage when n > L/2r.

1.2 Main Contributions

In this paper we first of all investigate under what conditions n̄ oblivious sensors can
actually achieve barrier coverage in the complex semi-synchronous and asynchronous
settings, without requiring unbounded visibility or mobility range.

We prove that a crucial factor for solvability of the barrier coverage problem is
whether the network is oriented or unoriented. In an oriented network, each sensor has
a notion of “left-right”, and this notion is globally consistent; in a unoriented network,
sensors have no “left-right” direction.

In particular, we prove that the problem is unsolvable by n̄ oblivious sensors in
SSYNC (and thus ASYNC) if the network is unoriented. The result holds even if all
movements are rigid. On the other hand, we prove that, if the network is oriented, the
problem is solvable even in ASYNC and even if movements are not rigid (i.e., they can
be interrupted by an adversary). The proof is constructive: we present an ASYNC pro-
tocol that allows any n ≥ n̄ oblivious sensors to achieve barrier coverage within finite
time and terminate, even if movements are non-rigid. In other words, we show that, with
orientation, it is possible to achieve barrier coverage in a totally local and decentralized
way, asynchronously, obliviously, and with movements interruptible by an adversary;
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furthermore, this is achievable with the same number of sensors of the optimal totally
centralized solution with global knowledge of all parameters.

We also show that allowing a slightly larger visibility range (e.g., v= 2r+ρ for an ar-
bitrary small ρ), n̄ unoriented and oblivious sensors can converge with rigid movements
to barrier coverage in SSYNC, extending the result of [4] to fixed limited visibility and
bounded movements.

2 Model and Notation

We model the barrier with a line segment of length L ∈ Z covering the interval [0,L] on
the x-axis. A sensor network consists of a set of n sensors {s1,s2, . . . ,sn} located on the
segment.

A sensor is modelled as a computational entity capable of moving along the segment;
it is equipped with a sensing module and a visibility module. A sensor can sense an
intruder if and only if it lies within the sensor’s sensing range; it can see another sensor
if and only if it it lies within the sensor’s visibility range. In this paper, we assume that
all sensors have the same sensing range r and the same visibility range v.

Sensors are autonomous, anonymous and identical (i.e., without central authority,
distinct markers or identifiers); they all execute the same algorithm. Sensors are said to
be oriented if and only if all sensors agree on a global left and right; they are called
unoriented if they do not have a sense of left and right.

Let st
i denote sensor si at time t located at xt

i . We assume that for every sensor r ≤
x0

i ≤ L− r, and that for i 	= j, we have x0
i 	= x0

j . For convenience, we assume that x0
1 <

x0
2 · · ·< x0

n. We emphasize that while these names and positions of sensors facilitate our
proofs, they are not known to any of the sensors. In addition, we assume there are two
special sensors s0 and sn+1 that are immobile, and are always located at −r and L+ r;
while these special sensors do not require any sensing capabilities or visibility, the other
sensors in the network cannot distinguish these special sensors from any other sensors;
the entire set of sensors is denoted by S = {s0,s1, . . . ,sn,sn+1}.

The sensors can be active or inactive. When active, a sensor performs a Look-
Compute-Move cycle of operations: the sensor first observes the portion of the segment
within its visibility range obtaining a snapshot of the positions of the sensors in its range
at that time (Look); using the snapshot as an input, the sensor then executes the algo-
rithm to determine a destination point (Compute); finally, the sensor moves towards the
computed destination, if different from the current location (Move). After that, it be-
comes inactive and stays idle until the next activation. Sensors are oblivious: when a
sensor becomes active, it does not remember any information from previous cycles.

A move is said to be non-rigid if it may be stopped by an adversary before the sensor
reaches its destination; the only constraint on the adversary is that, if interrupted before
reaching its destination, a robot moves at least a minimum distance δ > 0 (otherwise,
no destination can ever be reached). If no such an adversary exists, the moves are said
to be rigid.

A sensor can detect the presence of an intruder in its sensing range r, and is said
to cover the portion of the segment within its sensing range; therefore the coverage
length of a sensor is 2r. Barrier coverage is achieved if every point on the segment
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is covered by some sensor. An overlap is a maximal interval on [0,L] such that every
point in the interval is within the sensing range of more than one sensor. A coverage
gap is a maximal interval of the segment where no point is within the sensing range of
any sensor. We say that ε-approximate barrier coverage is achieved if the length of any
coverage gap is ≤ ε.

The goal of an algorithm for barrier coverage is to move sensors to final positions
so that the entire barrier is covered. Observe that if 2rn > L, then the final positions are
not necessarily equidistant. We say an algorithm A for barrier coverage terminates on
input S at time t if and only if when running A on S, no sensor in S moves at any time
t ′ ≥ t. We say that algorithm A solves the barrier coverage problem if there is a time t
at which the algorithm terminates on any input S and barrier coverage is achieved. We
say an algorithm A converges to barrier coverage on input S if and only if for any ε > 0
there is a time t such that at any time t ′ ≥ t the size of any coverage gap is at most ε.
We say that algorithm A solves the ε-approximate barrier coverage problem for ε > 0
if and only if it converges on any input S.

Unless specified otherwise we assume v= 2r, which is the minimum visibility radius
necessary for sensors to determine local gaps in coverage. More precisely, sensor st

i is
able to see all other sensors located in [xt

i −2r,xt
i +2r]. For convenience, we say st

i sees
st

j on its right if and only if 0 < xt
j − xt

i ≤ 2r and st
i sees st

k on its left if and only if
0 < xt

i − xt
k ≤ 2r. Observe that a sensor is able to detect when its sensing area overlaps

with another sensor’s sensing area.
Note that in our figures, each sensor is represented by a rectangle which shows the

interval that the sensor covers on the line barrier. Also for convenience, two sensors
whose coverage lengths overlap are placed at different levels in the illustration; however
in our assumptions, all sensors have circular sensing area and are initially placed on the
barrier and can only move on the barrier.

3 Impossibility without Orientation

In this section we consider the case where sensors are unoriented. We show that there
is no algorithm for barrier coverage in the SSYNC model with n̄ sensors.

We give an adversary argument, by creating input arrangements and activation sched-
ules that force any algorithm in the SSYNC model to either not terminate, or terminate
without coverage. All movements will be assumed to be rigid; a sensor can always reach
the destination it has computed. We focus on three types of sensors (see Figure 1): (a)
sensors that have an overlap on one side, and a gap on the other side, (b) sensors that
are attached to the next sensor on one side and a gap on the other side and (c) sen-
sors that have an overlap on one side and are attached to the next sensor on the other
side. Any algorithm for barrier coverage must specify rules for movement in each of
these situations. Note that with 2r visibility range, sensors can only determine whether
there exists a gap with a neighboring sensor but cannot determine anything about the
length of such a gap. Thus, the magnitude of the movement of a sensor can only be
a function of an overlap, if any, with a neighboring sensor, and cannot be a function
of the length of an adjacent gap. We show that there exist arrangements and activation
schedules for the sensors that defeat all possible combinations of these rules.
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si
si si+1si−1 si−1

(a) (b)

si
si+1si−1

(c)

si+1

Fig. 1. The three types of sensors under consideration

First we study the behavior of a sensor si with 1 ≤ i ≤ n that has an overlap of e with
the sensor on its left, and has a gap on its right, as in Figure 1(a). We show that such
a sensor must move right; if the gap is at least as big as the overlap, the sensor must
eventually move so as to exactly remove the overlap, and if the gap is smaller than the
overlap, the sensor must move at least enough distance to remove the gap.

e g
s1

Fig. 2. Arrangement for proof of Lemma 1; n = 1

Lemma 1. Consider an algorithm A for barrier coverage in SSYNC model and a sen-
sor st

i with dist(st
i−1,s

t
i) = 2r− e and dist(st

i ,s
t
i+1) = 2r+ g, with e,g > 0. If si−1 and

si+1 are deactivated and only si is activated, there exists a time step t ′ > t such that:

(a) xt′
i = xt

i + e if g ≥ e and
(b) xt

i + g ≤ xt′
i ≤ xt

i + e if g < e.

Proof. First we observe that the sensor si must eventually move at least distance min(g,e)
to the right. If not, the algorithm A does not terminate with barrier coverage on the ar-
rangement shown in Figure 2, since s1 is the only sensor that can move in the arrange-
ment. Next we show that xt′

i ≤ xt
i +e for some t ′ > t. For the sake of contradiction, assume

that there is a value of overlap e, such that according to A , sensor si moves more than
e; that is si moves e+ a to the right, with a > 0. Then we can construct an activation
schedule such that A never terminates on the input shown in Figure 3. Choose n= �a/e�.
A single sensor is activated in each step. Starting with configuration C1, the sensors sn

to s1 are activated in consecutive steps, yielding configurations C2,C3, . . .Cn+1 in turn,
and then the sequence of activations is reversed. It is easy to verify that at the end of
the activation schedule, the initial arrangement C1 is obtained again. The schedule can
be repeated ad infinitum, forcing non-termination of the algorithm. It follows that in the
case when g ≥ e, whatever the overlap e with si−1, we can force si to move exactly e to
the right.

Next we consider the behavior of a sensor si that is attached to its neighbor on its
left, and has a gap on its right as in Figure 1(b). We activate si and keep si−1 and si+1

deactivated. If si moves left, it creates an overlap with si−1 and by Lemma 1(a), it will
eventually move to the right to remove that overlap, and return to the same position.
Alternatively, si may not move at all, or may move to the right. If it moves to the right,
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· · ·
e a

s1
sn−1

sn

· · ·s1 sn

· · ·s1

...

C1

C2

Cn+1

sn−1

sn−1
sn

Fig. 3. Arrangement for proof of Lemma 1; n = �a/e�

since it does not know the distance of the gap with si+1 and has no overlap with si−1, it
can only move a fixed constant distance, say b. The lemma below is a consequence of
the preceding discussion.

Lemma 2. Let A be an algorithm for barrier coverage and si be a sensor with
dist(st

i−1,s
t
i) = 2r and dist(st

i ,s
t
i+1) > 2r. If si−1 and si+1 are both kept deactivated

and si is activated, there exists a time t ′ > t such that xt′
i = xt

i + h with h ≥ 0.

Finally, we consider the behavior of a sensor si that has an overlap e with si−1 and
is attached to sensor si+1, as shown in Figure 1(c). As before, we activate only si and
keep both si−1 and si+1 deactivated. If si moves left, it creates a gap with si+1. By
Lemma 1(b), si must eventually move right, either returning to its initial position, or
moving further right. If it moves right by more than the value of the overlap, then it
creates a gap to its left, and once again by Lemma 1(b) , it must move back left until
the gap is removed. If for all values of the overlap, si makes a move to the right that
does not eliminate the overlap, then we show below that the algorithm cannot achieve
barrier coverage, leading to the conclusion that there must exist some value of overlap
such that such a sensor will either not move, or move to exactly eliminate the overlap.

Lemma 3. Consider an algorithm A for barrier coverage. There exists an overlap c
with 0< c< 2r such that for any sensor si with dist(st

i−1,s
t
i)= 2r−c and dist(st

i ,s
t
i+1)=

2r, if si is the only one of {si,si−1,si+1} to be activated, there exists a time step t ′ > t
such that either xt′

i = xt
i + c (si moves right to exactly eliminate the overlap) or xt′

i = xt
i

(si returns to the same position).

Proof. Assume the contrary. By the discussion preceding the lemma, we can conclude
that for any overlap e, there exists a time step t ′ such that xt′

i = xt
i + d with 0 < d <

e. Consider the arrangement of sensors shown in Figure 4. We first activate s1 until
it moves distance d to the right. By assumption, there remains an overlap of e − d
between s0 and s1, and now there is an overlap of d between s1 and s2. We now keep s1

deactivated, and activate s2. Lemma 1 implies that sensor s2 eventually moves exactly
d to the right and eliminates the overlap completely. Observe that at this point, the
arrangement repeats with only a different value of overlap. The new value of the overlap
between s0 and s1 is strictly greater than zero and and the distance between s1 and s2



242 M. Eftekhari et al.

is exactly 2r. This activation schedule can be repeated ad infinitum, and algorithm A
never terminates with barrier coverage.

s1
s2

e
e

Fig. 4. Arrangement for proof of Lemma 3; n = 2

We proceed to prove our main result:

Theorem 1. Let s1,s2, . . . ,sn be n sensors with sensing range r initially placed at ar-
bitrary positions on a line segment. If the sensors are unoriented and have visibility
radius 2r, there is no algorithm for barrier coverage in the SSYNC model.

Proof. Consider the arrangement of sensors shown in Figure 5 with c chosen as in
Lemma 3. If the value of h as specified in Lemma 2 is zero, then choose b= c, otherwise,
choose b= h, and fix n= 1+2�b/c�. We create an activation schedule with three phases
with a different set of sensors being activated in each phase, such that the sensors return
to arrangement C1 at the end of each phase. At each phase we only activate a subset of
sensors and all other sensors are kept deactivated. We first activate only the sensor s1. By
Lemma 2, there is a future time step when either s1 is in the same position (if h = 0), or
it moves distance b to the left to yield arrangement C2. In the second case, since sensors
are unoriented, it will subsequently return to arrangement C1. In the second phase, we
activate only the sensors {s3,s5, . . . ,sn}. By Lemma 3, there is a future time when either
these sensors return to arrangementC1, or they have moved right by a distance c to reach
arrangement C3. In the second case, they will eventually return to arrangement C1. In
the third phase, we activate only the set of sensors {s2,s4, . . . ,sn−1}. Using the same
logic, they will return to arrangement C1, possibly via arrangement C4. Observe that all
sensors have been activated at least once during the schedule. By repeating the above
schedule ad infinitum, we can force sensors to repeatedly return to the arrangement C1,
thus completing the proof.

Since an adversary in the ASYNC model has at least the power it has in the SSYNC
model, obviously the impossibility result also holds for the ASYNC model.

4 Possibility with Orientation

In this section, we present and analyze an algorithm, ORIENTED SENSORS for barrier
coverage by any n ≥ n̄ oblivious oriented sensors in the ASYNC model; that is, all
sensors agree on left and right, but are completely asynchronous.

We proceed to prove the correctness of algorithm ORIENTED SENSORS. A collision
occurs if two distinct sensors move to exactly the same position. Since sensors are iden-
tical and anonymous, from the time a collision of two sensors happens, they cannot be
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Fig. 5. Arrangement for proof of Theorem 1; n = 1+2�b/c�

Algorithm 1. ORIENTED SENSORS

Algorithm for sensor si ∈ S
ε ≤ r is a fixed positive (arbitrarily small) constant
if si−1 is not visible to si (there is a gap to its left) then

si moves distance r to the left.
else

a := 2r−dist(si−1,si) (amount of overlap with previous sensor’s range)
if dist(si,si+1)≥ 2r (no overlap from right) and a > 0 then

si moves distance min(r− ε,a) to its right.
else

do nothing
end if

end if
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distinguished and will behave exactly the same if they have the same activation sched-
ule. Therefore a collision is fatal for a barrier coverage algorithm, and must be avoided
by the algorithm designer. This is precisely the reason that we restrict the distance of a
move to the right to r− ε, while sensors move distance r when moving to the left. We
show below that the algorithm above is collision-free and order-preserving.

Lemma 4. Algorithm ORIENTED SENSORS is a collision-free and order-preserving
protocol.

Proof. Consider a sensor s that is at position x and performs a Look at time t1 and the
corresponding Move to the left at time t2. We claim that no sensor s′ that is at a position
x′ < x (to the left of s) at time t1 can compute or perform a Move resulting in a collision
or an order reversal with s at any time between t1 and t2. Since s computes a Move to
the left at time t1, it must be that x′ < x−2r, and furthermore, s will move to a position
≥ x− r at time t2. Now, consider the last Move performed by s′ at a time ≤ t1. Observe
that the sensor s′ must have been at position x′ as a result of this Move. Consider the
subsequent Look performed by s′ at time t3. If the Move computed as a result of this
Look is a move to the right, the next position of s′ is ≤ x′+r−ε< x−r. Any subsequent
Look performed by s′ will compute a move to the right if and only if the position of s′
is ≤ x− 2r and the computed destination must always be < x− r. Thus no collision or
order reversal can result. Any moves to the left from the positions reachable by s′ can
clearly not cause collisions or order reversals.

Next we show that no sensor s′ that is at a position x′ > x (to the right of s) at time t1
can compute or perform a Move resulting in a collision or order reversal with s at any
time between t1 and t2. Clearly, if x′ > x+ r, any move to the left can only bring it to a
position > x. Suppose x < x′ ≤ x+ r. If s′ performs a Look after time t1, then it can see
s in its visibility range and therefore would not perform a Move to the left. So s′ must
have performed a Look at a time t3 < t1. For s′ to have computed a move to the left,
the position of s at time t3 must have been < x′ − 2r. As argued above, s cannot have
subsequently arrived at position x at time t1.

A similar argument shows that for a sensor s that is at position x and performs a Look
at time t1 and the corresponding Move to the right at time t2, neither a sensor on its left
nor a sensor on its right can compute a move resulting in a collision or order reversal
with s.

Next we show that there is a time after which no sensors will move left, and after
this time, the sensors provide contiguous coverage of some part of the barrier including
the sensor s0.

Lemma 5. For every sensor si ∈ S−{sn+1} there is a time ti such that si never moves
left at any time after ti. Furthermore, there is no coverage gap between s0 and si at any
time after ti.

Proof. We prove the claim inductively. Clearly it is true for s0. Suppose there is a time
ti such that si never moves left at any time after ti, and there is no gap between s0 and si

at any time after ti. Consider any Look of si+1 after time ti. If there is a gap between si

and si+1, then si+1 will move at least δ towards si. Let ti+1 be the time of the first Look
of si+1 after time ti when there is no gap between si and si+1. If there is an overlap with
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si, then si+1 will move right, but observe that this Move can never create a gap between
si and si+1 since si does not move left by the inductive assumption, and si+1 moves right
by at most the amount of the overlap. It follows that after time ti+1, the sensor si+1 will
never move left, and furthermore, there is no gap in coverage between s0 and si+1.

After time tn, then, none of the sensors moves left, and furthermore there is no cov-
erage gap between s0 and sn. The next two lemmas show that after this time, a sensor
moves right under some circumstances, but can only move a finite number of times.

Lemma 6. Assume si and si+1 have an overlap of e at some time after tn. Then for any
j with i+ 1 ≤ j ≤ n, if the sensors si+1 to s j are in attached position, and there is no
overlap between s j and s j+1, then sensor s j will eventually move at least min(δ,e) to
the right.

Proof. Let t > tn be a time when si+1 performs a Look and si and si+1 have an overlap of
e. Clearly si+1 will move right in the corresponding Move, creating an overlap between
si+1 and si+2. Inductively it can be seen that when s j−1 moves to the right, it creates an
overlap with s j , causing s j to move at least min(δ,e) to the right.

Lemma 7. Every sensor makes a finite number of moves to the right after time tn.

Proof. We give an inductive proof. Clearly this is true for sensor s0. Suppose sensor si

has an overlap of e with sensor si−1 at time tn. Observe that si−1 cannot move until and
unless this overlap is removed. Since every time si moves to the right, it reduces this
overlap by at least min(e,δ), it is clear that si can make at most �e/δ� moves to the right.
If these moves remove the overlap, then si may move again only if si−1 subsequently
moves to the right and creates an overlap with si. Assuming inductively that si−1 makes
a finite number of moves to the right, we conclude that sensor si moves to the right a
finite number of times.

The above lemmas lead to the following theorem:

Theorem 2. Let s1,s2, . . . ,sn be n ≥ n̄ sensors with sensing range r initially placed at
arbitrary positions on a line segment. If the sensors have the same orientation and visi-
bility radius of 2r, Algorithm ORIENTED SENSORS always terminates with the barrier
fully covered in the ASYNC model.

Proof. Lemma 5 assures that after time tn, no sensor moves left, and there is no coverage
gap between sensors s0 and sn. It follows from Lemma 7 that there is a time, say t ′ > tn,
after which no sensor will move right. However, if there is a gap between sn and sn+1

at time t ′, since there are enough sensors to cover the barrier, there must be an overlap
between two sensors si and si+1 for some 0 ≤ i < n. But Lemma 6 implies that the
sensor sn must eventually move to the right, a contradiction. It follows that after time t ′,
there is no gap between sn and sn+1 and therefore no gap between any sensors in S, that
is, Algorithm ORIENTED SENSORS terminates with barrier coverage.
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5 On Visibility and Convergence

We have seen that, without orientation, barrier coverage with n̄ sensors is impossible
even in SSYNC (Theorem 1). Observe that the impossibility proof holds when the visi-
bility range is precisely 2r. So the question naturally arises of what happens in SSYNC
if the visibility range is larger.

It is known that in SSYNC, it is possible for n̄ sensors to converge with rigid move-
ments to equidistant positions if a sensor can always see the sensors that are closest to it,
regardless of their distance (thus without a priori restrictions on the visibility range) and
it can move to destination regardless of its distance (thus without a priori restrictions on
the mobility range) [4]. In our setting these conditions do not hold. In this section, we
show how that result can be extended to our setting. In fact, we prove that n̄ oblivious
sensors can converge with rigid movements to barrier coverage in SSYNC if v = 2r+ρ,
where ρ is an arbitrarily small positive constant; furthermore they can do so with rigid
movements of length at most r.

Consider Algorithm CONVERGENT COVERAGE shown below; it operates by first
removing all visibility gaps within finite time, and then behaving as the algorithm of
[4].

Algorithm 2. CONVERGENT COVERAGE

Algorithm for sensor si ∈ S
if only one sensor s j ∈ {si+1,si−1} is visible to si and d = dist(si,s j)< 2r then

si moves distance 2r−d
2 + ρ

2 away from s j.
else

if both si+1,si−1 are visible. then
if d1 = dist(si−1,si)< d2 = dist(si+1,si)
(resp. d1 = dist(si+1,si)< d2 = dist(si−1,si)) then

si moves d2−d1
2 toward si+1 (resp. toward si−1).

end if
end if

end if

Lemma 8. If s j ∈ {si+1,si−1} is in the visibility range of si at time t, for any time t ′ > t,
s j is still in the visibility range of si.

Proof. According to the algorithm, a movement is performed by si in a cycle only in
two situations:
Case 1: Only one sensor s j is visible to si and d = dist(si,s j) < 2r. The worst case is
when also s j is activated in this cycle and it sees only si. In this case, both sensors move
at most 2r−d

2 + ρ
2 away from each other. After the movement we have that dist(si,s j)

has become: dist(si,s j) = 2( 2r−d
2 + ρ

2 )+d = 2r+ρ. So, sensors si and s j are still within
visibility.
Case 2: Both si+1 and si−1 are visible to si. Let, without loss of generality, d1 =
dist(s j,si) < d2 = dist(sk,si) where si,sk ∈ {si−1,si+1}. The worst case is when s j is
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also activated and it does not see the other neighbouring sensor. In this case si moves at
most d2−d1

2 toward sk, and s j moves at most 2r−d
2 + ρ

2 away from si. After the movement,
we have that dist(si,s j) has increased as follows:

dist(si,s j) =
d2 − d1

2
+ d1 +

2r− d
2

+
ρ
2
=

d2

2
+ r+ρ < 2r+ρ

So, sensors si and s j are still within visibility.

Lemma 9. Within finite time there will be no visibility gaps.

Proof. By Lemma 8, visibility is never lost once gained. Consider the visibility gaps.
After each activation of a sensor next to a visibility gap, the size of that visibility gap
is reduced by at least ρ

2 . As a consequence, within a finite number of activations, all
visibility gaps will be eliminated and all sensors will be within visibility to their neigh-
bours.

Lemma 10. If at time t there are no visibility gaps, within finite time all coverage gaps
will be of size at most ε, for any ε > 0.

Proof. If there are no visibility gaps at time t then, by Lemma 8, for all t ′ ≥ t there
will be no visibility gaps. Hence at all times t ′ ≥ t each sensor si when active sees its
two neighbours si−1 and si+1; furthermore, since the distance between two neighbours
is at most 2r, the computed destination of a robot is at at most at distance r. Notice that
at this point the algorithm behaves exactly as the protocol of [4]. Since the conditions
for its correct behaviour, visibility of neighbours and reaching destination are met, the
lemma follows.

By Lemmas 9 and 10, and by the definition of approximate barrier coverage, the
claimed result immediately follows:

Theorem 3. Let s1,s2, . . . ,sn be n sensors with sensing range r initially placed at arbi-
trary positions on a line segment. If the sensors have no orientation and visibility radius
2r+ρ, there is an algorithm for ε-approximate barrier coverage in SSYNC with rigid
movements of length at most r.

6 Conclusions

The results of this paper provide a first insight into the nature of the complexity and
computability of distributed barrier coverage problems. Not surprisingly, it poses many
new research questions. Here are some of them.

We have shown that barrier coverage is unsolvable in SSYNC with n̄ unoriented sen-
sors, but solvable in ASYNC with oriented sensors. Oriented sensors have a globally
consistent sense of “left-right” while unoriented sensors have no sense of “left-right”.
Hence the first immediate question is whether something weaker than global consis-
tency would suffice. More precisely, if each sensor has a local orientation (i.e. a private
sense of ”left-right”) but there is no global consistency, is barrier coverage possible, at
least in SSYNC? Is it impossible, at least in ASYNC?
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Even in the presence of local orientation, solutions that work for unoriented sensors
are desirable because they can tolerate the class of faults called dynamic compasses:
a sensor is provided with a private sense of “left-right”, but this might change at each
cycle (e.g., [19]). The open problem is to determine conditions which would make cov-
erage possible under such conditions, at least in SSYNC. In particular, observing that
the impossibility is established for n̄ unoriented sensors, a relevant open question is
what happens if n > n̄ sensors are available ? Would barrier coverage become possible
in SSYNC ?

For SSYNC we have shown that ε-approximate coverage is possible if v > 2r: is it
possible to achieve the same result with v = 2r ? In the case of unoriented sensors, no
positive result exists in ASYNC. Is a higher visibility range sufficient for ε-approximate
coverage in ASYNC ?
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