
Fault-tolerant sequential s
anPaola Flo

hini �x Andrzej Pel
 yx Ni
ola Santoro zx
Abstra
tWe 
onsider the fault-tolerant version of the sequential s
an problem. A line ofidenti
al 
ells has to be visited by a s
anning head. The head 
an only distinguishan end of the line from an internal 
ell but 
an distinguish neither one end from theother, nor one internal 
ell from another. When the head starts at an internal 
ell,its �rst move is in a dire
tion 
hosen by the adversary. When the head 
omes to aninternal 
ell from a neighbor, it has two possible moves: forward, whi
h means \goto the other neighbor", and ba
k whi
h means \return to the previous neighbor".At this point the adversary 
an pla
e a fault whose e�e
t is the 
hange of the motiondire
tion (going forward instead of ba
k and vi
e-versa). The head is not aware ofthe o

urren
e of a fault.The exe
ution 
ost of a sequential s
an algorithm for a line of length n in thepresen
e of at most k faults is the worst-
ase number of steps that the head mustperform in order to s
an the entire line. The worst 
ase is taken over all adversary'sde
isions. We 
onsider two s
enarios: when the length of the line is known to thealgorithm and when it is unknown. Our goal is to 
onstru
t sequential s
an algo-rithms with minimum exe
ution 
ost. We 
ompletely solve this problem for knownline size. For any parameters k and n we 
onstru
t a sequential s
an algorithm,analyze its 
omplexity and prove a mat
hing lower bound, thus showing that ouralgorithm is optimal. The problem of fault-tolerant sequential s
an for unknownline size is solved partially. For any parameter k we 
onstru
t a sequential s
analgorithm whi
h explores a line of length n with 
ost 2kn + o(kn), for arbitraryn. For k = 1 our algorithm is shown to be optimal. However, we also show analternative algorithm that has 
ost at most O(kn) (with a 
onstant larger than 2)for any n and 
ost kn+ o(kn) (whi
h is asymptoti
ally optimal) for in�nitely manyn. Hen
e the asymptoti
 performan
es of the two algorithms, for unbounded k andn, are in
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1 Introdu
tionReading all, possibly identi
al entries in a linear array is a fundamental task arising inmany appli
ations. For example, in the write-all problem [9℄, all zeroes in a table withbinary entries have to be repla
ed by ones; in the 
ase when the table initially 
ontainsonly zeroes, this task is equivalent to visiting all of its (identi
al) entries. The problemof �nding in an array the �rst (last) position 
ontaining a non-zero entry was studied in[8℄. In the 
ase of an array of zeroes with only the �rst and last entries equal to 1, �ndingthese positions again requires reading an entire linear array of identi
al entries. The list-ranking problem (
f., e.g., [11℄), requiring �nding the distan
e of every element of a linkedlist from its head, also requires visiting all (possibly identi
al) elements of a list. Whilein the above problems the issue was to optimize the exe
ution of the task in parallel,the nature of other appli
ations requires sequential s
anning of a linear array of identi
alobje
ts. Su
h is the 
ase, for example, when a doubly linked list of identi
al obje
ts isgiven and both ends of the list have to be found by a sequential algorithm starting fromany position of it. Likewise, sequential s
anning is required when a s
anning head hasto read all, possibly identi
al, entries in 
ells of a tape. In network exploration, a mobileagent (robot) has to explore a graph by visiting all of its nodes starting from any node. Ifthe graph is a path, exploration is equivalent to sequential s
anning of a linear array. Inthe 
ase of anonymous graphs all entries of the array are identi
al. EÆ
ient explorationof paths by a mobile agent was studied, e.g., in [4℄.Let us 
onsider the task of network exploration by a robot in more detail, and 
on
entrateon the 
ase of the path. A robot starts in an unknown node of the path and may or may notknow its length. The robot's task is to visit all nodes of the path. Nodes are anonymous,and hen
e the robot 
an only distinguish an endpoint from an internal node: all internalnodes look identi
al and both endpoints look identi
al. If the starting node is internal, therobot starts from it in an arbitrary dire
tion (sin
e the robot does not know the distan
esto both ends of the path, both dire
tions look the same, and thus the 
hoi
e of the initialdire
tion is made by the adversary). Then, at ea
h internal node, the robot 
an eithermove forward (
ontinue in the same dire
tion), or ba
k. Due to possible faults in the
ontrols of the robot, the de
ision to go forward or ba
k may be sometimes subje
t toerror: if a fault o

urs, the robot supposed to go forward goes ba
k and vi
e-versa. Sin
eall internal nodes look identi
al, the robot often does not realize that a fault o

urred.This fault-prone appli
ation of the sequential s
an problem is one of the motivations ofour paper.We formulate our s
enarios and the problem itself in an abstra
t way to make it suitablefor a broader range of appli
ations. Consider a line of 
ells whi
h have to be visitedby a mobile entity 
alled a s
anning head. All 
ells are identi
al ex
ept the two endsof the line whi
h are 
alled the left and the right walls and are denoted by L and R,respe
tively. All other 
ells are 
alled internal. The head 
an only distinguish a wallfrom an internal 
ell but 
an neither distinguish one wall from the other, nor one internal
ell from another. (The names left and right and symbols L and R are used only for2




onvenien
e of des
ription.) If the head is at a wall, its only possible move is towards theother wall. When the head starts at an internal 
ell, its �rst move is in a dire
tion 
hosenby the adversary. This re
e
ts the assumption that the head is not aware of its positionon the line and has no \sense of dire
tion". When the head 
omes to an internal 
ell froma neighbor, it has two possible moves: forward, whi
h means \go to the other neighbor",and ba
k whi
h means \return to the previous neighbor". At this point (before the a
tualmove) the adversary 
an pla
e a fault whose e�e
t is the 
hange of the motion dire
tion:if the original move was forward, a fault 
auses the head to return to the neighbor fromwhi
h it 
ame, and if the original move was ba
k, a fault results in the move of the headtowards the other neighbor. The head is not aware of the o

urren
e of a fault, unless itexpe
ts to get to an internal 
ell and hits a wall, or vi
e-versa. When the head is at awall, a fault has no e�e
t.The exe
ution 
ost of a fault-tolerant sequential s
an (FTSS) algorithm for a line oflength n in the presen
e of at most k faults is the worst-
ase number of steps that thehead must perform in order to s
an the entire line. The worst 
ase is taken over allfault 
on�gurations, 
ontrolled by the adversary and, in the 
ase when the starting 
ellis internal, over all possible positions of the starting 
ell and the two possible startingdire
tions. There are two main s
enarios: when the length of the line is known to thealgorithm and when it is unknown. In ea
h of them we 
onsider the start at a wall andthe start at an internal 
ell. We are interested in minimizing the exe
ution 
ost of a FTSSalgorithm in ea
h 
ase. More pre
isely, both versions of our problem are formulated asfollows.� Fault-tolerant sequential s
an with known line size:Given positive integers k and n, �nd a fault-tolerant sequential s
an algorithm withminimum exe
ution 
ost, for a line of length n, in the presen
e of at most k faults,when the head starts at a wall (resp. at an internal 
ell).� Fault-tolerant sequential s
an with unknown line size:Given a positive integer k, �nd a fault-tolerant sequential s
an algorithm with min-imum exe
ution 
ost, for a line of arbitrary length, in the presen
e of at most kfaults, when the head starts at a wall (resp. at an internal 
ell).Both for the known and for the unknown length of the line we assume that the upperbound k on the number of faults is known to the algorithm and that the lo
ation of faultsis worst 
ase. This is a standard approa
h used in fault-toleran
e (
f., e.g., the survey[13℄ for fault-tolerant models 
on
erning network 
ommuni
ation, or the seminal paper[14℄ for multipro
essor fault diagnosis).
3



1.1 Our resultsWe 
ompletely solve the problem of fault-tolerant sequential s
an for known line size, forany positive parameters k and n. Our main 
ontribution for this version of the problem isthe proof of 
orre
tness of a natural fault-tolerant sequential s
an algorithm whi
h turnsout to be optimal. We then prove a mat
hing lower bound that establishes the optimalityof the algorithm. For even n the optimal 
ost is (k+2)n�1 when the start is at an internal
ell and (k+1)n when the start is at a wall. For odd n it is, respe
tively, (k+2)n�k� 1and (k + 1)n� k.The problem of fault-tolerant sequential s
an for unknown line size is solved partially.For any number k of faults we 
onstru
t a fault-tolerant sequential s
an algorithm whi
hperforms the s
an of a line of length n, for arbitrary n, with 
ost 2(k+1)n� 2k� 1 whenthe start is at an internal 
ell and with 
ost 2(k+1)n�2k when the start is at a wall. Weshow that this 
ost 
annot be improved for k = 1 by establishing mat
hing lower boundsin this 
ase, for in�nitely many n. It is natural to ask if these lower bounds generalize toan arbitrary number of faults. In other words, is our algorithm (asymptoti
ally) optimalfor arbitrary k and n? We show that this is not the 
ase. For large k and n, the 
ost of ouralgorithm is asymptoti
ally 2kn. More pre
isely, it is 2kn+o(kn), when both k and n areunbounded. However, we also show an alternative algorithm that has 
ost at most O(kn)(with a multipli
ative 
onstant larger than 2) for any n, and 
ost kn + o(kn) (whi
h isasymptoti
ally optimal) for in�nitely many n. Hen
e the asymptoti
 performan
es of thetwo algorithms, for unbounded k and n, are in
omparable. It remains open if there existsa fault-tolerant sequential s
an algorithm for unknown line size whi
h has 
ost kn+o(kn)for all k and n.To the best of our knowledge the present paper is the �rst to 
onsider algorithmi
 aspe
tsof fault-tolerant exploration by a mobile entity in whi
h faults 
on
ern moves of the entity,rather than the environment.1.2 Related workThe previously mentioned problems: write-all [9℄, �nding in an array the �rst (last) posi-tion 
ontaining a non-zero entry [8℄, and list-ranking [11℄, are examples of tasks involvings
anning a linear array or list of possibly identi
al obje
ts. Unlike in our 
ase, in thesepapers the emphasis was on eÆ
ient parallel exe
ution of the respe
tive tasks.Sequential s
an is 
losely related to the problem of network exploration by a mobileagent (robot). In the latter problem the agent has to visit all nodes and traverse alledges of an unknown graph. This problem has been studied both for dire
ted [1, 2℄ andundire
ted [7, 12℄ graphs. In parti
ular, in [4℄ the authors investigated the problem ofnetwork exploration using an imperfe
t map: the agent is provided with an unlabeledisomorphi
 
opy of the undire
ted graph underlying the network but does not have anysense of dire
tion. In the 
ase of the line this setting is equivalent to sequential s
an with4



known line size (in the fault-free s
enario), be
ause having an unlabeled map of the line isequivalent to knowing its length. The quality measure studied in [4℄ was the overhead of anexploration algorithm, de�ned as the worst 
ase ratio of the time (number of steps) spentby an algorithm having the imperfe
t map to the optimal time of exploration assumingfull knowledge of the graph. It turned out that, even for the line in the fault-free 
ase,�nding an exploration algorithmminimizing the overhead is far from trivial. It was provedin [4℄ that the best possible overhead for the line is p3, and an optimal algorithm was
onstru
ted.Our present problem 
an be viewed as an aspe
t of fault-tolerant network exploration.One of the well-studied issues in this domain 
on
erns agent se
urity. Prote
ting mobileagents from mali
ious hosts was investigated, e.g., in [15, 16, 17℄. In [3, 5, 6℄ the problemof lo
ating a bla
k hole in a network was 
onsidered. A bla
k hole is a highly harmfulstationary pro
ess residing in a node of a network and destroying all mobile agents visitingthe node, without leaving any tra
e. Another problem related to fault-tolerant networkexploration was investigated in [10℄. A robot, situated in a root of a tree and unawareof the lo
ation of faulty edges, has to explore the 
onne
ted fault-free 
omponent of theroot, by visiting all its nodes. For a given rooted tree, the overhead of an explorationalgorithm was de�ned as the worst-
ase ratio (taken over all fault 
on�gurations) of its
ost to the 
ost of an optimal algorithm whi
h knows where faults are situated. The goalin [10℄ was to �nd exploration algorithms with minimum overhead.In all the above problems faults 
on
erned the environment, more pre
isely 
omponents ofthe underlying graph. This should be 
ontrasted with our present approa
h where faults
on
ern the moves of the exploring agent.2 TerminologyIn the entire paper k denotes an upper bound on the number of faults. It is �xed andknown to FTSS algorithms. The length of the line (i.e., the number of its links) is denotedby n and 
ould be known or unknown, depending on the s
enario. The line to be s
annedwill be often viewed as a segment [a; b℄ with the starting point at 0 and a and b theleft and right walls (denoted L and R), respe
tively. The mobile entity (s
anning head)performing the s
an is 
alled the head for short. We use the predi
ates inside and at-wallto mean that the head is at an internal 
ell, or at a wall, respe
tively. We say that theline has been explored if all of its 
ells have been visited by the head. In the formulationof our algorithms we use a subroutine go-straight whi
h is a sequen
e of forward stepsrepeated until some 
ondition is met. There are three su
h 
onditions: hit means thatthe wall has been hit, hit(x) means that the wall has been hit and exa
tly x forwardsteps were performed, and nohit(x) means that the head has performed x forward stepswithout hitting a wall. After the 
ondition is met, the dire
tion of the move of the headis reversed. The sequen
e of steps during the go-straight subroutine is 
alled a round.5



It should be noted that the head's movement in one dire
tion in a single round happensonly when there are no faults in this round. Su
h a round is 
alled 
orre
t. With ea
hfault during a round the a
tual dire
tion of the move of the head 
hanges. A maximalsequen
e of steps in one dire
tion during a round is 
alled a stret
h. The length of astret
h depends both on the algorithm and on the fault 
on�guration. Hen
e a round 
anbe 
omposed of many stret
hes.3 Line of known size3.1 Upper boundsIn this se
tion we present FTSS algorithms for a line of arbitrary known size n and atmost k faults. For even n the 
ost is (k+2)n� 1 when the start is at an internal 
ell and(k + 1)n when the start is at a wall. For odd n it is, respe
tively, (k + 2)n � k � 1 and(k+1)n� k. We later establish lower bounds showing that these algorithms are optimal.3.1.1 The even sizeThe algorithm is 
omposed of k+2 rounds if the head starts inside the line, and of k+1rounds if it starts at a wall. During a round the head moves in the same dire
tion untileither it hits a wall, or it performs n � 1 steps (n if starting at a wall) without rea
hingany wall. At this point it reverses dire
tion. Obviously the se
ond 
ondition means thatat least one fault has o

urred.Algorithm KnownEvenif inside then 
ount := k + 2 else 
ount := k + 1;repeat 
ount timesif inside thengo-straight until (nohit(n� 1) OR hit)else /* at-wall */go-straight until (nohit(n) OR hit)endifreverse dire
tionendConsider an arbitrary exe
ution of the algorithm. In this exe
ution, let fi � 0 be thenumber of faults o

urring in round i; let Z = fi : fi = 0g be the set of 
orre
t rounds;let F = fi : fi > 0g be the set of rounds that 
ontain at least one fault; let E � F be theset of rounds that 
ontain an even positive number of faults; �nally let z = jZj, f = jF j,6



e = jEj, and o = jF n Ej. Let dir(i) denote the dire
tion (from R to L or from L to R)at the start of round i.By 
onstru
tion, the exe
ution of the algorithm has trivially the following property.Lemma 3.1 Consider round i, 1 � i � 
ount.1. If round i is 
orre
t, the head hits a wall in this round.2. If round i 
ontains an even number of faults then the dire
tions at the beginning ofrounds i and i + 1 are di�erent; i.e., dir(i+ 1) 6= dir(i).3. If round i 
ontains an odd number of faults then the dire
tions at the beginning ofrounds i and i + 1 are the same; i.e., dir(i+ 1) = dir(i).Lemma 3.2 If in an exe
ution there are two 
orre
t rounds su
h that all the roundsbetween them 
ontain an odd number of faults, then the line is explored.Proof: Let i and j, i < j, be 
orre
t rounds su
h that all the rounds between them
ontain an odd number of faults. By lemma 3.1(1), the head hits a wall, say R, in roundi and, by 
onstru
tion it starts round i+ 1 by moving towards the other wall L. Sin
e inall the rounds i+1; i+2; : : : ; j�1 an odd number of faults o

urs, then by lemma 3.1(3),dir(i+ 1) = dir(i + 2) = : : : = dir(j � 1) = dir(j); hen
e, in round j the head will movetowards L and, sin
e j is 
orre
t, will rea
h L. �We now show that the 
ondition of the above lemma always holds if the head starts insidethe line.Lemma 3.3 Let the head start inside the line. In any exe
ution there are always two
orre
t rounds su
h that all the rounds between them 
ontain an odd number of faults.Proof: Let the head start inside the line; then the number of rounds is k + 2. We needto prove that there exist i; j 2 Z su
h that for all l, with i < l < j, we have l =2 E. It issuÆ
ient to prove that the number of 
orre
t rounds ex
eeds by at least two the numberof rounds with an even number of faults; i.e., z � e + 2. First noti
e that a round inE must 
ontain at least two faults, a round in F n E must 
ontain at least one; hen
ek � o + 2e. Moreover, sin
e there are k + 2 rounds, we have z + e + o = k + 2; i.e.,z = k � o� e+ 2 � 2e� e+ 2 = e+ 2. �In the 
ase when the head starts at a wall, there is an additional property.Lemma 3.4 Let the head start at a wall. If in an exe
ution all the rounds before the �rst
orre
t one 
ontain an odd number of faults, then the line is explored.7



Proof: Let the head start from a wall, say R, let j be the �rst 
orre
t round, and let allrounds i < j 
ontain an odd number of faults. By 
onstru
tion the head starts round 1by moving towards the other wall L. Sin
e in all the rounds 1; 2; : : : ; j�1 an odd numberof faults o

urs, then by lemma 3.1(3), dir(i) = dir(i � 1) = L; hen
e, in round j thehead will move towards L and, sin
e j is 
orre
t, will rea
h L. �We now show that if the head starts at a wall, at least one of the 
onditions expressed byLemmas 3.4 and 3.2 holds.Lemma 3.5 Let the head start at a wall. In any exe
ution one of the following 
onditionsholds:1. All the rounds, if any, before the �rst 
orre
t one 
ontain an odd number of faults.2. There are two 
orre
t rounds su
h that all the rounds between them 
ontain an oddnumber of faults.Proof: Let the head start at a wall, say R; in this 
ase the number of rounds is k+1. Wewill prove that if 
ondition (1) does not hold, then 
ondition (2) does. Let i > 1 be the�rst 
orre
t round and let p � 1 pre
eding rounds 
ontain an even number of faults. Afterone step in round i, the head is exa
tly in the situation of an head starting AlgorithmKnowneven from the 
urrent 
ell with at most k� i faults. The result then follows fromLemma 3.3. �As a 
onsequen
e of Lemmas 3.2 - 3.5, we get:Theorem 3.1 Algorithm KnownEven allows the head to 
orre
tly explore any line ofeven and known size, with at most k faults, regardless of the starting point.Theorem 3.2 During the exe
ution of Algorithm KnownEven, the head performs atmost (k + 2)n� 1 steps if it starts inside the line, and at most (k + 1)n steps if it startsat a wall.Proof: Let x be the number of rounds starting at a wall and let y be the number ofrounds starting inside the line. Clearly x + y = 
ount. Every time a round starts withthe head at a wall, the number of steps of that round is at most n; when a round startswith the head inside the line, the number of steps is at most n� 1. The total number ofsteps is at most S(x) = xn + y(n� 1) = xn + (
ount� x)(n� 1).If the head is initially inside the line, then y � 1 and thus x < 
ount; moreover, a

ordingto the algorithm, 
ount = k + 2. In this 
ase S(x) is maximized when x = k + 1; thus,the number of steps when starting inside the line is at most (k + 2)n� 1.8



If the head is initially at a wall, S(x) is maximized when x = 
ount. A

ording to thealgorithm, when starting at a wall, 
ount = k + 1. Thus, the number of steps whenstarting at a wall is at most (k + 1)n. �3.1.2 The odd sizeWhen the size of the line is known and is odd, the algorithm 
an exploit this fa
t bydis
overing termination 
onditions without having to perform a �xed number of rounds.Intuitively, in this 
ase the odd parity of n allows to dete
t the absen
e/presen
e of failuresduring a round, thus allowing the algorithm to terminate sooner.Whenever a round starts with the head at a wall, the head moves in the same dire
tionuntil either it hits a wall, or it performs n steps without rea
hing any wall. This se
ond
ondition is parti
ularly important (as we will see later); the head has to remember itso

urren
e by setting a spe
ial 
ag. On the other hand, if the head �nishes this round byhitting a wall in exa
tly n steps, then the algorithm terminates; this is due to the fa
t thata walk of odd length from wall to wall 
annot hit the same wall, and thus must result inthe exploration of the entire line. If the algorithm does not terminate, the head reversesits dire
tion before pro
eeding to the next round.Whenever a round starts with the head inside the line, the head moves in the samedire
tion until either it hits a wall, or it performs n� 1 steps without rea
hing any wall.If the head �nishes this round by hitting the wall in an even number of steps, then thehead has to 
he
k whether the spe
ial 
ag mentioned above is set or not. As we will showlater, if the 
ag is set, the algorithm 
an terminate. If the algorithm does not terminate,the head reverses its dire
tion before pro
eeding to the next round.Algorithm KnownOddhalt:= 
ag:= 0;repeat until halt=1if at-wall thengo-straight until (hit OR nohit(n))if nohit(n) then 
ag:=1;if hit(n) then halt:= 1;else /* inside */go-straight until (hit OR nohit(n� 1))if ((hit(x) with x even) AND 
ag=1) then halt:= 1;endifreverse dire
tionend repeat 9
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Figure 1: Examples of di�erent types of rounds with various numbers of faults.Corre
tnessConsider an arbitrary exe
ution of the algorithm. This exe
ution is 
omposed of a se-quen
e of rounds.Depending where the head starts and ends a round, we have four possible types of rounds.In the following we enumerate all the possible situations.A: Inside/Wall. A round is of type A when the head starts the round inside the lineand ends it at a wall within at most n� 1 steps. There are two subtypes of su
h around:A1 : In this 
ase, the predi
ate hit(x) holds with x even.A2 : In this 
ase, the predi
ate hit(x) holds with x odd.B: Inside/Inside. A round is of type B when the head starts and ends the round insidethe line. It is the only round type in whi
h the predi
ate nohit(n� 1) holds. In thisround, there has been at least one fault. The round is 
omposed of exa
tly n � 1steps.C: Wall/Wall. A round is of type C when the head starts and ends the round at a wall.There are two subtypes of su
h a round:C1 : In this 
ase, the predi
ate hit(n) holds; this round is 
omposed of exa
tly nsteps and, as we will show, does not 
ontain any fault.C2 : In this 
ase, the predi
ate hit(n0) holds with n0 < n; this round 
ontains atleast one fault. In the worst 
ase there are n� 1 steps.10



D: Wall/Inside. A round is of type D when the head starts the round at a wall and endsinside the line. This is the only round type in whi
h the predi
ate nohit(n) holds,and there has been at least one fault. The round is 
omposed of exa
tly n steps.In Figure 1 are shown examples of: rounds of type A with two, one, and no faults; roundsof type B with one and two faults; rounds of type C with no faults and one fault; a roundof type D with one fault.Lemma 3.6 After a round of type C1, the line has been explored.Proof: Sin
e n is odd, a round of type C1 must be 
orre
t. In fa
t, a walk from wall towall 
omposed of an odd number of steps 
annot hit the same wall. �Lemma 3.7 After a round of type D, the head is at an odd distan
e from the wall whereit started that round.Proof: By de�nition, a round of type D starts from a wall, say L, and terminates after nsteps with the head inside the line. Let this round 
ontainm faults; thus, the movement ofthis round is 
omposed of a sequen
e of m+1 stret
hes s0; s1; : : : ; sm, withPmi=0 jsij = n.The distan
e d of the head from L 
an be 
al
ulated as follows: d = Pmi=0(�1)ijsij =Pbm=2
i=0 js2ij �Pbm�12 
i=0 js2i+1j. Let S1 = Pbm=2
i=0 js2ijand S2 = Pbm�12 
i=0 js2i+1j. Sin
e n =S1 + S2 is odd, we know that either S1 or S2 is odd; but then also d = S1 � S2 must beodd. �Lemma 3.8 After a round of type B, if the head started at an odd distan
e from a wall,it will also end at an odd distan
e from the same wall.Proof: Let x be the initial distan
e of the head from wall L. Let this round 
ontain mfaults; thus, the movement of this round is 
omposed of a sequen
e of m + 1 stret
hess0; s1; : : : ; sm, with Pmi=0 jsij = n � 1. After this movement, the head is at distan
ed = x +Pmi=0(�1)ijsij from L, if it starts the round moving towards R, and at distan
ed = x �Pmi=0(�1)ijsij, otherwise. As in the previous lemmas, let S1 = Pbm=2
i=0 js2ij andS2 = Pbm�12 
i=0 js2i+1j (thus, d = x + S1 � S2 if the head starts the round towards R, andd = x + S2 � S1 otherwise). Sin
e n � 1 is even, S1 + S2 is also even. But then bothS1 � S2 and S2 � S1 are even. Sin
e x is odd by hypothesis, the distan
e x+ S2 � S1 (orx+ S1 � S2) to L at the end of the round must also be odd. �Lemma 3.9 Consider a round of type A. Let x be the distan
e of the head from wall Lat the beginning of the round, and let y be the number of steps of the round.11



a) If x is odd and y is even, then the head hits R.b) If both x and y are odd, then the head hits L.Moreover, in the latter 
ase:b1) If the head starts by moving away from wall L, then round A 
ontains at least onefault;b2) If the head starts by moving away from wall R and wall L has been already visited,then between the previous hit of the wall and the 
urrent there have been at least as manyfaults as the number of rounds.Proof: Consider a round of type A. Let this round 
ontain m faults; thus, it is 
omposedof a sequen
e of m + 1 stret
hes s0; s1; : : : ; sm, with Pmi=0 jsij = y. Let S1 =Pbm=2
i=0 js2ijand S2 =Pbm�12 
i=0 js2i+1j.Case a). Let x be odd and y be even. By 
ontradi
tion, let the head hit wall L. Sin
eS1+S2 is even, also S1� S2 and S2� S1 are even. The distan
e of the head from L afterthis round is either x + S1 � S2 (if stret
h s0 is towards R) or x + S2 � S1 (if stret
h s0is towards L); that is, in both 
ases, it is odd and hen
e di�erent from 0; thus, it is notwall L that is hit by the head.Case b). Let both x and y be odd. By 
ontradi
tion, let the head end this round at wallR. At the beginning of the round the head is at distan
e n�x from R, thus n�x = S1�S2if the head is moving towards R, and n � x = S2 � S1 otherwise. Sin
e y = S1 + S2 isodd, we know that S1�S2 and S2�S1 are also odd. However n� x is even, whi
h yieldsa 
ontradi
tion.Sub
ase b1). If the head started the round moving away from L, there has been at leastone fault during this round sin
e it is terminating in L again.Sub
ase b2). In this 
ase, between the previous and the 
urrent hit of wall L there hasbeen one round of type D starting from L, possibly followed by several rounds of typeB, and then by the round of type A that we are 
onsidering. We want to show that atleast one of the above rounds that pre
ede A 
ontains more than one fault. Suppose,by 
ontradi
tion, that ea
h of them 
ontains a single fault (re
all that rounds of type Band D must 
ontain at least one fault). Sin
e after ea
h of these rounds the dire
tion isinverted, all these rounds, as well as round A, start with the head moving away from wallL. This is impossible be
ause by hypothesis the head starts round A by moving awayfrom R. This 
ontradi
tion implies that at least one round must have more than onefault, in order to allow a 
hange of dire
tion. This implies that between the previous hitof the wall and the 
urrent one there have been at least as many faults as the number ofrounds. �Lemma 3.10 Let the head exe
ute a (possibly empty) sequen
e of rounds of type B,pre
eded by a round of type D. If the next round is of type A1, then at the end of thatround the line has been explored. 12
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Figure 2: Possible transitions between rounds.Proof: Let the head start a round of type D at wall L. By Lemma 3.7, after that round,the distan
e d of the head from L is odd. Let now the head exe
ute a possibly emptysequen
e of rounds of type B. After this sequen
e of rounds (by Lemma 3.8 if the sequen
eis not empty and trivially if it is empty) the head is still at an odd distan
e from L. Letthe next round be a round of type A1. The proof now follows from Lemma 3.9 
ase a). �Theorem 3.3 Algorithm KnownOdd allows the head to 
orre
tly explore any line ofodd and known size after at most k+2 rounds, if the head starts inside the line, and afterat most k + 1 rounds, if it starts at a wall.Proof: First suppose that the head starts inside the line. After the initial round, de-pending on its type, the head either hits a wall (type A, possibly 
ontaining faults) or isstill inside the line after n� 1 steps (type B, 
ontaining at least one fault). If still insidethe line, the head 
an 
ontinue to remain inside after n� 1 steps for several rounds (typeB, 
ontaining at least one fault). Let p be the number of rounds before the head hits awall for the �rst time; then at least p � 1 of these rounds are faulty. Sin
e the numberof faults is at most k, after at most k rounds, the head will eventually hit a wall. If thehead initially starts at a wall, the des
ription of its behavior starts here.On
e at a wall (say L), two events 
an o

ur: either the head hits a wall again or itperforms n steps and ends up inside the line.13



Suppose that the head hits the wall again. If this happens after n steps, this is a roundof type C1 and, by Lemma 3.6, the line has been explored; noti
e that in the algorithm,the variable halt is set to 1 and the algorithm terminates. Otherwise, this is a round oftype C2, 
ontaining at least one fault.If the round is �nished with the head ending up inside the line after n steps, this is around of type D and at least one fault has o

urred; in the algorithm, when this roundo

urs, the variable 
ag is set to 1. Two possible situations 
an o

ur next: either thehead 
ontinues to stay inside the line after performing n � 1 further steps, or it hits awall. In the �rst 
ase this is a round of type B that 
ontains at least one fault. The headmay 
ontinue to experien
e several rounds of this type. In the se
ond 
ase, the head hitsa wall. This is a round of type A. If this happens after an even number of steps (i.e.,round of type A1), then by Lemma 3.10, the line has been explored; noti
e that in thealgorithm, in this 
ase the variable halt is set to 1 (re
all that the 
ag has been set to 1in the previous type D round) and the algorithm terminates. Otherwise (if this happensafter an odd number of steps), this is a round of type A2 and the head is ba
k at thestarting wall.The overall situation is summarized in Figure 2.There are three types of 
orre
t rounds that 
ould o

ur: C1, A1 and A2. If a 
orre
tround of type C1 o

urs, the algorithm 
orre
tly terminates (the algorithm 
orre
tly setsthe variable halt to 1). If a 
orre
t round r of type A1 o

urs, this round must have beenpre
eded by a round of type D, and hen
e by Lemma 3.7 the distan
e of the head fromL at the beginning of round r is odd, whi
h implies that round r terminates at wall Rafter an even number of steps (ensuring that the algorithm 
orre
tly sets the variable haltto 1). We 
all a 
orre
t round of type A1 or C1 a 
orre
t terminating round. On theother hand, a 
orre
t round of type A2 
ould send the head ba
k to wall L. In su
h anevent, however, we are guaranteed that in the s rounds between the last two hittings ofthe wall, there have been at least s faults (Lemma 3.9). We 
all a 
orre
t round of typeA2 a 
orre
t non-terminating round.To 
on
lude the proof, we need to show that a 
orre
t terminating round will o

ur withinat most k + 1 rounds, if the head started at a wall, and within at most k + 2 rounds ifthe head started from inside the line.Consider the two 
ases. If the head started at a wall, every round that terminates insidethe line 
ontains at least one fault, and every 
orre
t non terminating round implies thatat least one earlier round between the 
urrent and the previous hit 
ontains at leasttwo faults (Lemma 3.9). This implies that within k + 1 rounds at least one is a 
orre
tterminating round. Hen
e, the algorithm terminates after at most k + 1 rounds. If thehead started inside the line, there are p initial rounds until the head �rst hits a wall(possibly p = 0, if the head started at a wall), of whi
h at least p � 1 
ontain a fault (ifp > 1). At this point there remain at most k � (p� 1) other faults. For the same reasonas above, in the next k � (p� 1) + 1 rounds at least one is a 
orre
t terminating round.Hen
e, the algorithm terminates after at most p+ k � (p� 1) + 1 = k + 2 rounds. �14



ComplexityTheorem 3.4 During the exe
ution of Algorithm KnownOdd, the head performs in theworst 
ase (k+2)n�k�1 steps if it starts inside the line, and (k+1)n�k steps otherwise.Proof: Any exe
ution of the algorithm 
orresponds to a path in the graph of Figure 2.On ea
h edge the type and the worst 
ase number of steps of the 
orresponding roundis indi
ated. Sin
e we are interested in the worst 
ase, we will only 
onsider exe
utionswhere the maximum number of steps is in
urred in ea
h round.Let us 
all 
heap a round 
omposed of n � 2 steps, medium a round 
omposed of n � 1steps, and expensive a round 
omposed of n steps.Let 1; 2; : : : ; m be the rounds during an arbitrary exe
ution of the algorithm. Let E =fe1; : : : esg denote the set of expensive rounds, and C denote the set of 
heap rounds. Lety be the number of medium rounds, and z the number of 
heap rounds. We �rst showthat, if s > 1, then for all i, 1 � i � s�1, there exists 
 2 C, su
h that 
 o

urs between eiand ei+1. The only rounds 
omposed of n steps are terminal rounds of type C1, or roundsof type D. Clearly e1; : : : ; es�1 must be rounds of type D, thus terminating inside theline. After ea
h round ei (1 � i � s� 1), before the next expensive round ei+1, a roundof type A2 must ne
essarily o

ur (see Fig. 2). In other words, between two expensiverounds there must be a 
heap one, whi
h implies that s� 1 � z .Let us 
onsider �rst the 
ase when the head started inside the line. The total number ofsteps T is at most sn+y(n�1)+z(n�2) = (s+y+z)(n�1)+s�z. Sin
e s�z � 1, we haveT � (s+y+z)(n�1)+s�z � (s+y+z)(n�1)+1. If the head started inside the line wehave k+2 rounds (Theorem 3.3) and then: T � (k+2)(n�1)+1 = (k+2)n�k�1. If thehead started at the wall we have k+1 rounds and then: T � (k+1)(n�1)+1 = (k+1)n�k�3.2 Lower boundsIn this se
tion we establish lower bounds on the 
ost of fault-tolerant sequential s
an,showing that the algorithms presented in the previous se
tion are optimal.Theorem 3.5 For any FTSS algorithm for a line of known size n with at most k faults,there exists a starting point inside the line and an adversary that for
es the head to performat least (k + 2)n� 1 steps, if n is even, and (k + 2)n� k � 1 steps, if n is odd.Proof: Fix a FTSS algorithm A on a line of size n. Let position 0 
orrespond to the leftwall. Consider a sequen
e � = (s1; s2; : : : ; sk) 
oding the fault-free exe
ution of A until a15



wall is hit for the �rst time, starting from dn�12 e (w.l.o.g, let the wall hit be L, a similarargument holds when the wall hit is R). The meaning of the sequen
e � is the following:Go s1 steps in one dire
tion;go s2 steps in the other dire
tion;go s3 steps in the �rst dire
tion;go s4 steps in the other dire
tion;...Let y be the rightmost point of �. Thus dn�12 e � y < n� 1.Now 
onsider a di�erent s
enario for the same algorithm: more pre
isely, we 
onsider thesame exe
ution of algorithm A (i.e., the same sequen
e �) with a di�erent starting pointdn�12 e + n� y � 1. In this s
enario, the line starts n� y � 1 positions before the end of� and ends one position after its rightmost point (obviously a wall is not hit during theexe
ution of �). At least additional n� y � 1 steps are required for hitting the left wall,and at least y+1 steps are required for hitting the right wall. Thus, the number of stepsrequired to hit a wall for the �rst time in this s
enario is h � y +minfy + 1; n� y � 1g.Sin
e y � dn�12 e, we have that minfy + 1; n� y � 1g = n� y � 1, and, thus: h � n� 1.The head has now rea
hed the (left) wall for the �rst time. Sin
e the line is not yetfully explored, the head has to perform a walk of at least n steps eventually rea
hing theopposite wall in a fault-free exe
ution of the algorithm. Consider su
h a walk. Let theadversary pla
e a fault when the head is, for the last time, at distan
e n2 from the left wall,if n is even, and at distan
e n�12 , if n is odd. In this way the left wall is hit again afterat least n steps, if n is even, and n� 1 steps, if n is odd. Repeating the same argumentk times we 
an 
on
lude that the head is ba
k at the left wall after performing, sin
e thebeginning of the exe
ution, at least n � 1 + kn steps, if n is even, and n � 1 + k(n � 1)steps, if n is odd. However, the line is not yet fully explored. Hen
e, the head must stillperform at least n steps to rea
h the right wall, for a total of (k + 2)n � 1 steps, if n iseven, and (k + 2)n� k � 1 steps, if n is odd. �Theorem 3.6 Let the head start at a wall. For any FTSS algorithm for a line of knownsize n with at most k > 0 faults, there exists an adversary that for
es the head to performat least (k + 1)n steps, if n is even, and (k + 1)n� k steps, if n is odd.Proof: Fix a FTSS algorithm A on a line of size n. Let the head start at the left wall.In any fault-free exe
ution the head has to perform a walk of at least n steps eventuallyrea
hing the opposite wall. Consider su
h a walk. Using an argument similar to the oneof Theorem 3.5, we have that the head must still perform at least n steps to rea
h theright wall, for a total of (k + 1)n steps, if n is even, and (k + 1)n� k steps, if n is odd.�16



4 Line of unknown size4.1 An upper boundIn this se
tion we present a FTSS algorithm working for unknown line size. If there areat most k faults, the head performs no more than 2(k + 1)n � 2k � 1 steps, if it startsinside the line, and no more than n(2k + 1) � 2k steps, if it starts at a wall. Hen
e theasymptoti
 
ost of the algorithm is 2kn + o(kn), for unbounded k and n. The algorithmis 
omposed of k+2 or k+1 rounds depending on whether the head starts inside the lineor at a wall. During ea
h round the subroutine go-straight is exe
uted until a wall is hit.Algorithm Unknownif inside then 
ount := k + 2 else 
ount := k + 1;repeat 
ount timesgo-straight until hitreverse dire
tionendTheorem 4.1 Algorithm Unknown allows the head to 
orre
tly explore any line, withat most k faults, without knowing its size.Proof: By 
onstru
tion, ea
h round ends as soon as the head hits a wall. If the headstarted at a wall, the line is 
orre
tly explored the �rst time there is a 
orre
t round.Sin
e there are k + 1 rounds and at most k of them are faulty, the line will be 
orre
tlyexplored. Consider now the 
ase when the head starts inside the line. Let the head hitR in the �rst round. If in the next round the head hits the other wall, the entire line isexplored; else, at least one fault must have o

urred sin
e, otherwise, a

ording to thealgorithm, the head would have hit L. Indu
tively, if the head has not hit L in the �rst jrounds, 2 � j � k+1, then at least j � 1 faults have o

urred. Sin
e the total number offaults is k and the number of rounds is k+2, it follows that the line will be fully explored.�Theorem 4.2 During the exe
ution of Algorithm Unknown, the head performs no morethan 2(k+1)n�2k�1 steps, if it started inside the line, and no more than n(2k+1)�2ksteps, if it started at a wall.Proof: Consider �rst the 
ase when the head starts inside the line. The algorithm is
omposed of k + 2 rounds. Let fi denote the number of faults that o

ur during round i,with 1 � i � k + 2. Clearly Pk+2i=1 fi = k and fi � 0.The �rst round starts with the head inside the line and 
ontains f1 faults; it is thus17




omposed of f1+1 stret
hes, the last of whi
h hits the wall. None of the �rst f1 stret
heshits a wall. Thus, ea
h of them is 
omposed of at most n�2 steps. The last stret
h startsinside the line and ends at a wall; hen
e, it is 
omposed of at most n� 1 steps. In otherwords, the head performs at most (n� 2)f1 + n� 1 steps in this round.Any subsequent round i is also 
omposed of fi+1 stret
hes; the �rst and the last stret
heshave one extremity at a wall and the other inside the line; hen
e, they are 
omposed ofat most n � 1 steps. None of the other stret
hes hits a wall and thus ea
h of them is
omposed of at most n � 2 steps. As a 
onsequen
e, during round i, the head performsat most 2(n� 1) + (fi � 1)(n� 2) steps. The total number of steps is thus at mostS = S(f1; f2; : : : ; fk+2) = (n� 2)f1 + n� 1 +Pki=2( 2(n� 1) + (fi � 1)(n� 2) )wherePki=1 fi = k and fi � 0. We have: (n�2)f1+n�1+Pk+2i=2 (2(n�1)+(fi�1)(n�2)) =n� 1 +Pk+2i=2 (2(n� 1))�Pk+2i=2 (n� 2) + (n� 2)Pk+2i=1 (fi) = (2(k+ 1) + 1)(n� 1)� (k+1)(n� 2) + k(n� 2) = 2(k + 1)(n� 1) + 1 = 2(k + 1)n� 2k � 1Consider now the 
ase when the head starts at a wall. In this 
ase, following the samereasoning, the total number of steps is at mostS = S(f1; f2; : : : ; fk+1) =Pk+1i=1 ( 2(n� 1) + (fi � 1)(n� 2) )wherePk�1i=1 fi = k and fi � 0. We have: Pk+1i=1 (2(n� 1)+ (fi� 1)(n� 2)) =Pk+1i=1 (2(n�1)� (n� 2)) + (n� 2)Pk+1i=1 (fi) = (k + 1)n+ (n� 2)k = n(2k + 1)� 2k �4.2 The lower bound for one faultIn this se
tion we prove that the upper bound from the previous se
tion 
annot be im-proved for k = 1. We �rst 
onsider the head starting inside the line.Fix any FTSS algorithm A and 
onsider the part of its fault-free exe
ution until a wall ishit for the �rst time. This part 
an be 
oded in one of two possible ways.� As an in�nite sequen
e of integers (s1; t1; s2; t2; : : : ; ) with the following meaning:Go s1 steps in one dire
tion;Go t1 steps in the other dire
tion;Go s2 steps in the �rst dire
tion;Go t2 steps in the other dire
tion;...� As a �nite sequen
e of integers (s1; t1; s2; t2; : : : ; sk) or (s1; t1; s2; t2; : : : sk; tk) withthe following meaning: 18



Go s1 steps in one dire
tion;Go t1 steps in the other dire
tion;Go s2 steps in the �rst dire
tion;Go t2 steps in the other dire
tion;...Go sk steps in the �rst dire
tion (resp. tk steps in the other dire
tion);Go until hitting the wall in the other (resp. �rst) dire
tion.Call a FTSS algorithm that 
an be 
oded in the �rst (resp. se
ond) way, a type 1 (resp.type 2) algorithm. Parts of the exe
ution that 
orrespond to integers si or ti are 
alledswings. The last swing of an algorithm of type 2 is 
alled the in�nite swing.Consider the exe
ution of a FTSS algorithm (of type 1 or type 2) in the in�nite line inwhi
h the starting point is 0 and the �rst dire
tion is positive. Hen
e the swing s1 endsin point b1 = s1. Let a1 = 0. Let ai and bi, for i > 1, be the left and right endpoints ofswing si. Let ak+1 be the left endpoint of the in�nite swing of a type 2 algorithm, if thedire
tion of this in�nite swing is positive.Theorem 4.3 For any FTSS algorithm for a line of unknown size with at most one faultthere exist arbitrarily large integers n su
h that for some starting point inside the line oflength n there exists an adversary that for
es the head to perform at least 4n� 3 steps.Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to showan n > n0 su
h that A performs at least 4n � 3 steps for some adversary, on the lineof length n. First suppose that A is of type 1 and let (s1; t1; s2; t2; : : :) be the in�nitesequen
e 
oding its �rst part. Let ai and bi, for i � 1, be the left and right endpoints ofswing si. The set of integers fai; bi : i > 1g 
annot be 
ontained in a �nite interval, forotherwise the algorithm would be in
orre
t. Hen
e either the sequen
e (a1; a2; : : :) doesnot 
ontain the smallest number or the sequen
e (b1; b2; : : :) does not 
ontain the largestnumber. Consider three 
ases.Case 1. The sequen
e (a1; a2; : : :) does not 
ontain the smallest number and the sequen
e(b1; b2; : : :) does not 
ontain the largest number.We de�ne the following in�nite sequen
es (a01; a02; : : :) and (b01; b02; : : :) by indu
tion. Leta01 = a1 = 0. Let j be the smallest index su
h that aj < a01. De�ne b01 to be the largestinteger among b1; : : : ; bj�1. Suppose that a01; : : : ; a0k�1 and b01; : : : ; b0k�1 are already de�nedand let r and s be the smallest indi
es su
h that a0k�1 = ar and b0k�1 = bs. Suppose thats � r. Let t be the smallest index su
h that bt > bs. De�ne a0k to be the smallest integeramong as+1; as+2; : : : ; at. Let z be the smallest index among s + 1; s + 2; : : : ; t su
h thata0k = az. Let m be the smallest index su
h that am < a0k. De�ne b0k to be the largestinteger among bz; bz+1; : : : ; bm�1. Let x be the smallest index among z; z + 1; : : : ; m� 1,su
h that b0k = bx. We have x � z, hen
e the indu
tive 
onstru
tion is 
ompleted (
f. Fig.3). 19



a1 = a01 0 b01 = bsaja2 = a02 bt b02am

Figure 3: The 
onstru
tion of the sequen
es (a0i), (b0i) in the proof of Theorem 4.3, (
ase1).By 
onstru
tion, the sequen
es (a01; a02; : : :) and (b01; b02; : : :) have the following properties.� the sequen
e (a01; a02; : : :) is stri
tly de
reasing;� the sequen
e (b01; b02; : : :) is stri
tly in
reasing;� in the fault-free exe
ution of the algorithm in the line segment I = [a0v � 1; b0v + 1℄,the head does not hit a wall between rea
hing point a0v and point b0v for the �rsttime.Let v > 2 be su
h that b0v � a0v > n0. Consider the line segment I = [a0v � 1; b0v + 1℄. Letn = b0v � a0v + 2 be its length. Before rea
hing point a0v for the �rst time, the head doesnot hit a wall and performs at least 3 steps. After rea
hing point a0v it rea
hes point b0vwithout hitting a wall and subsequently hits the wall for the �rst time. By 
onstru
tion,this must be the left wall. Hen
e by the time of �rst hitting a wall the head performs atleast 3 + (n� 2) + (n� 1) = 2n steps (and the line is not yet fully explored). Hen
e thehead must still perform a walk to a distan
e n from the left wall without hitting a wallduring this walk. Now the adversary pla
es the fault in the �rst point of this walk whenthe head is at distan
e n=2 (resp. (n� 1)=2) from the left wall, if n is even (resp. odd).Hen
e, at least n� 1 steps after hitting the left wall for the �rst time, the head hits theleft wall again. Sin
e the interval I is still not fully explored, n more steps are needed,for a total of at least 2n + (n� 1) + n = 4n� 1 > 4n� 3 steps, in this 
ase.Case 2. The sequen
e (a1; a2; : : :) 
ontains the smallest number and the sequen
e (b1; b2; : : :)does not 
ontain the largest number.Sub
ase 2.1. There exist arbitrarily large integers m su
h that for all j larger than someindex i(m) we have aj > m. 20



Take su
h an integer m >max(n0; a2) and let i(m) be the smallest index su
h that for allj > i(m) we have aj > m. Let a be the smallest number among a1; : : : ai(m) and let b bethe largest number among b1; : : : bi(m)�1. Consider the line segment I = [a � 1; b + 1℄ orI = [a�2; b+1℄, whi
hever is of even length. Let n be equal to this length. Hen
e n is aneven integer larger than n0. The rest of the argument is 
arried out for I = [a� 1; b+ 1℄.The other 
ase is similar. Denote x = m� a+ 1 and y = b+ 1�m. Hen
e n = x + y.The swing si(m) 
ontains the point m. The adversary pla
es the fault during swing si(m)in this point. Sin
e the sequen
e (b1; b2; : : :) does not 
ontain the largest number and inview of the pla
ement of the fault, the �rst time the head hits a wall, it will be the leftwall. Sin
e the head started at 0 and before the en
ounter of the fault it has 
hangeddire
tion at points a and b, the number of steps until hitting the wall is at least 2n� 3.Take 
 < a so small that x + z � 2(n� 1), where z = m � 
. At the moment of hittingthe left wall in the line segment I in the way des
ribed above, the situation from thepoint of view of the head is identi
al as if there were no fault but the segment wereJ = [
; 2m � a + 1℄ and the wall hit were the right one (at point 2m � a + 1). In thisse
ond s
enario a part of the segment J has not been visited yet, and the adversary isleft with a fault. Hen
e in this s
enario the head must still hit the opposite wall andhen
e make a walk at distan
e at least n without hitting a wall in the meantime. Nowthe adversary pla
es the fault when the head �rst gets at distan
e n=2 from the rightwall during this walk (re
all that n is even). This results in hitting the right wall againafter n steps. The same is true in the �rst s
enario where the head will hit the rightwall (and in this s
enario the segment I is fully explored). However now the situationis again identi
al in both s
enarios and in the se
ond s
enario the segment J is not yetfully explored. Hen
e another walk at distan
e at least n is needed for the algorithm tobe 
orre
t in this 
ase. Sin
e the head is in the same situation in both s
enarios, it mustwalk again at distan
e n from the wall in the �rst s
enario as well (thus performing atleast n more steps). This implies that (in the �rst s
enario) it must perform a total of atleast (2n� 3) + 2n = 4n� 3 steps.Sub
ase 2.2. There exists an integer m0 su
h that for all m � m0 we have ai � m forin�nitely many indi
es i.Take m >max(m0; n0). Let 
 be the smallest number in the sequen
e (a1; a2; : : :). Let ibe su
h that:1. ai � m;2. the sum of lengths of swings sj and tj for j < i ex
eeds 2(m� 
+ 2);3. bj > m for some j < i.Let b be the largest integer among bj for j < i. Let k > i be su
h that ak � m andbj > b for some j < k. Let d be the largest integer among b1; b2; : : : bk�1. Consider theline segment I = [
� 1; d+ 1℄ and let n be its length. Sin
e d > m, we have n > n0. Thesum of lengths of swings sj and tj, for i � j < k, is at least 2(d�m). The sum of lengthsof swings sj and tj, for j < i, ex
eeds 2(m� 
+2). Hen
e the number of steps performed21



till the end of swing tk�1 is at least 2n and this is before the �rst hit of a wall. Hen
e thenumber of steps until hitting a wall for the �rst time is also at least 2n.Now an argument analogous to that in Case 1 shows that the head must perform at least(n�1)+n steps after hitting a wall for the �rst time, for a total of at least 4n�1 > 4n�3steps, in this 
ase.Case 3. The sequen
e (b1; b2; : : :) 
ontains the smallest number and the sequen
e (a1; a2; : : :)does not 
ontain the largest number.The argument is similar as in Case 2, hen
e we omit it.This 
on
ludes the proof for type 1 algorithms. Now suppose that algorithm A is of type2. We present the proof in the 
ase when the in�nite swing is in the positive dire
tion.The other 
ase is similar. Fix a positive integer n0. Let (s1; t1; s2; t2; : : : ; sk; tk) be thesequen
e 
oding the �rst part of algorithm A. Let ai and bi, for i � 1, be the left andright endpoint of swing si. Let a be the smallest among integers a1; a2; : : : ; ak; ak+1 andlet b0 be the largest among integers n0; b1; b2; : : : ; bk. If b0 � a is even, let b = b0, otherwiselet b = b0 + 1. Consider the line segment I = [a� 1; b+ 1℄. Let n be equal to this length.Hen
e n is an even integer larger than n0. The adversary pla
es the �rst fault during thein�nite swing in point b. The �rst time the head hits the wall, it will be the left wall,after at least 2n� 3 steps. It remains to show that 2n more steps are required. The proofis similar as in Sub
ase 2.1 for type 1 algorithms, hen
e we omit it. �We now turn attention to the 
ase when the head starts at a wall. Suppose, without lossof generality, that this is the left wall. Fix any FTSS algorithm A and 
onsider the partof its exe
ution until a wall is hit for the �rst time. This part 
an be again 
oded in oneof the two ways des
ribed previously. We keep the same notation and terminology andde�ne the two types of algorithms similarly as before. In parti
ular, the left wall at whi
hthe head starts is the point 0. Now the in�nite swing of a type 2 algorithm must be inthe positive dire
tion. For the 
ase of start at a wall we have the following lower boundwhi
h again mat
hes the performan
e of Algorithm Unknown for k = 1.Theorem 4.4 For any FTSS algorithm for a line of unknown size with at most one faultthere exist arbitrarily large integers n su
h that if the head starts at a wall of a line oflength n then there exists an adversary that for
es the head to perform at least 3n � 2steps.Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to showan n > n0 su
h that A performs at least 3n � 2 steps for some adversary, on the lineof length n. First suppose that A is of type 1 and let (s1; t1; s2; t2; : : :) be the in�nitesequen
e 
oding its �rst part. Let ai and bi, for i � 1, be the left and right endpointsof swing si. The sequen
e of integers fbi : i > 1g must be unbounded, for otherwise thealgorithm would be in
orre
t. Consider two 
ases.22



Case 1. There exist arbitrarily large integers m su
h that for all j larger than some indexi(m) we have aj > m.Take su
h an integer m > n0 and let i(m) be the smallest index su
h that for all j > i(m)we have aj > m. Let b be the largest number among b1; : : : bi(m)�1. Consider the linesegment I = [0; b + 1℄. Let n = b + 1 be its length. The swing si(m) 
ontains the pointm. The adversary pla
es the fault during swing si(m) in this point. Sin
e the sequen
e(b1; b2; : : :) does not 
ontain the largest number and in view of the pla
ement of the fault,the �rst time the head hits a wall, it will be the left wall. The number of steps untilhitting the wall is at least 2n � 2. n more steps are ne
essary to explore the entire line,for a total of 3n� 2 steps.Case 2. There exists an integer m0 su
h that for allm � m0 we have ai � m for in�nitelymany indi
es i.Take m >max(m0; n0). Let i be su
h that:1. ai � m;2. the sum of lengths of swings sj and tj for j < i ex
eeds 3m+ 2;3. bj > m for some j < i.Let b be the largest integer among bj, for j < i. Let k > i be su
h that ak � m andbj > b, for some j < k. Let d be the largest integer among b1; b2; : : : bk�1. Consider theline segment I = [0; d+ 1℄ and let n = d+ 1 be its length. Sin
e d > m, we have n > n0.The sum of lengths of swings sj and tj, for i � j < k, is at least 2(d � m). The sumof lengths of swings sj and tj, for j < i, ex
eeds 3m + 2. Hen
e the number of stepsperformed till the end of swing tk�1 is at least 2n +m and this is before the �rst hit ofa wall. The head is now at distan
e at least n�m from the right wall and this wall hasnot been hit yet. Hen
e the total number of steps needed to explore the entire line is atleast 3n is this 
ase.This 
on
ludes the proof for type 1 algorithms. Now suppose that algorithm A is of type2. Fix a positive integer n0. Let (s1; t1; s2; t2; : : : ; sk; tk) be the sequen
e 
oding the �rstpart of algorithmA. Let ai and bi, for i � 1, be the left and right endpoint of swing si. Letb be the largest among integers n0; b1; b2; : : : ; bk. Consider the line segment I = [0; b+ 1℄.Let n = b+ 1 be its length. The adversary pla
es the �rst fault during the in�nite swingin point b. The �rst time the head hits a wall, it will be the left wall, after at least 2n� 2steps. n more steps are ne
essary to explore the entire line, for a total of 3n� 2 steps.�4.3 An alternative algorithmTheorems 4.3 and 4.4 show that Algorithm Unknown 
annot be improved for k = 1fault and all (unknown) sizes n of the line. It is natural to ask if the lower bounds fromSe
tion 4.2 generalize to an arbitrary number of faults. In other words, is Algorithm23



Unknown (asymptoti
ally) optimal for arbitrary k and n? We now show that this isnot the 
ase. For large k and n, the 
ost of Algorithm Unknown is asymptoti
ally 2kn.More pre
isely, it is 2kn + o(kn), when both k and n are unbounded. The upper boundon this 
omplexity was shown in Theorem 4.2, and the lower bound is easily shown by anadversary that puts a fault one step before the wall in ea
h exe
ution of the repeat loop.In what follows we present an algorithm working for arbitrary k and arbitrary unknownn, whi
h for in�nitely many n has 
ost kn+ o(kn). This is approximately half of the 
ostof Algorithm Unknown and it is asymptoti
ally optimal, in view of our lower boundsfrom Theorems 3.5 and 3.6, whi
h hold even for known n.The idea of the algorithm is the following. First we 
hoose an in�nite sequen
e of num-bers (ni : i = 1; 2; : : :), for whi
h the algorithm will work eÆ
iently. Many su
h sequen
esare possible: it is enough if their terms are odd and grow suÆ
iently fast. To �x atten-tion and simplify analysis we de�ne them as follows: n1 = 3 and ni+1 = 2(3k+2)ni + 1.The algorithm �rst \guesses" that the length of the line is n1 and exe
utes pro
eduresprobe(n1). If the guess was 
orre
t it dete
ts this fa
t and stops. Otherwise it exe
utespro
edure terminate(n1). The aim of this pro
edure is to stop the algorithm after the�rst guess whi
h ex
eeds the a
tual length of the line. If the algorithm did not stopafter terminate(n1), it guesses that the length of the line is n2 and exe
utes pro
edureprobe(n2) and possibly pro
edure terminate(n2). This 
ontinues until the �rst guesslarger or equal than the a
tual length of the line. Then the algorithm stops. For anylength for whi
h a guess was 
orre
t, i.e., for any length ni, the algorithm dete
ts the
orre
tness of the guess and stops after exe
uting pro
edure probe(ni), before 
allingterminate(ni). At this point the line is explored, if it is indeed of size ni. We will provethat the number of steps for these lengths of the line is kni + o(kni). We will also provethat the algorithm is 
orre
t for all other lengths, although then it is not as eÆ
ient.Nevertheless, for all other lengths n its 
ost is still O(kn).The pre
ise des
ription of the two pro
edures is the following.
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pro
edure probe(n)was� at� wall := 0; halt := 0if inside then 
ount := k + 3else (
ount := k + 2, was� at� wall := 1)repeat 
ount timesif inside thengo-straight until (nohit(n� 1) OR hit)else /* at-wall */was� at� wall := 1go-straight until (nohit(n) OR hit)if was� at� wall = 1 and at-wall thenx := the number of steps in last roundif (last round started inside and x even) then halt := 1if (last round started at wall and x odd) then halt := 1reverse dire
tionendpro
edure terminate(n)repeat 3k + 2 timesgo-straight until (nohit(n) OR hit)reverse dire
tionif there were at least k + 1 rounds starting and ending at a wallthen halt := 1endNow our algorithm 
an be su

in
tly formulated as follows.Algorithm guess-and-probei := 0; halt := 0while halt = 0 doi := i + 1probe(ni)if halt = 0 then terminate(ni)endBefore pro
eeding to the analysis of our algorithm we explain the meaning of the variablesused in our pro
edures. was � at � wall is a 
ag that is set to 1 at the �rst time whenthe head is at a wall and it is never 
hanged subsequently. halt 
an be set to 1 in both25



pro
edures and its role is to stop the algorithm as soon as it is 
ertain that the entire linehas been explored. It is set to 1 in pro
edure probe when the head was previously at awall, then it hits the wall again and the last round either started inside and had an evennumber of steps or started at a wall and had an odd number of steps. halt 
an be also setto 1 in pro
edure terminate when there were at least k + 1 rounds starting and endingat a wall.We �rst show that the algorithm never stops prematurely, regardless of the length of theline.Lemma 4.1 For any length of the line, when Algorithm guess-and-probe stops thenthe entire line is explored.Proof: The algorithm stops after the �rst 
all of pro
edure probe(ni) or pro
edureterminate(ni) in whi
h the variable halt is set to 1. Consider two 
ases.Case 1. halt is �rst set to 1 in pro
edure probe(ni).This happens when the head was previously at a wall then it hits the wall again and thelast round either started inside and had an even number of steps or started at a wall andhad an odd number of steps. We �rst show that at this point the entire line is explored.Consider the exe
ution of the pro
edure sin
e the previous hit of a wall. Without loss ofgenerality assume that it was wall L. Now the head is again at a wall.First assume that the last round started inside and had an even number of steps. Thesequen
e of rounds between the start from wall L and the present hit was the following:a sequen
e of rounds ending inside the line followed by the last round hitting a wall. The
umulative number of steps in the sequen
e of rounds ending inside the line is odd: the�rst round has ni steps, the following ones have ni � 1 steps, and ni is odd. Hen
e thedistan
e of the head from wall L after ea
h of these rounds is odd as well. Sin
e the lastround has an even number of steps, the distan
e of the head from L after this round isalso odd, hen
e it 
annot be 0. It follows that now the head 
annot be at wall L. Hen
eit is at wall R and the exploration is 
ompleted.Next assume that the last round started at a wall and had an odd number of steps. Atthe end of this round the head must be at an odd distan
e from the wall where it started.Sin
e it is now at a wall, this 
annot be the wall at whi
h it started. Hen
e it must bethe other wall and the line is explored.Case 2. halt is �rst set to 1 in pro
edure terminate(ni).This means that there were at least k+1 rounds starting and ending at a wall. At most kof them 
ould 
ontain a fault, hen
e at least one of them is 
orre
t. During su
h a round,the head must go from one wall to the other and hen
e must explore the entire line. �We now analyze the algorithm in the 
ase when the length of the line is ni, i.e., when oneof the guesses is 
orre
t. 26



Lemma 4.2 If the length of the line is ni, for some i > 0, then Algorithm guess-and-probe stops after exe
uting pro
edure probe(ni) and the line is explored.Proof: Lemma 4.1 implies that when Algorithm guess-and-probe stops, the line is
ompletely explored. It remains to prove that this will happen after exe
uting pro
edureprobe(ni). De�ne a phase to be a sequen
e of rounds between two 
onse
utive hits of awall. Hen
e a phase is 
omposed of a sequen
e of rounds ending inside the line and a lastround that hits a wall.Claim. In every phase of r rounds in whi
h halt is not set to 1 there are at least r faults.First noti
e that if r = 1 then there is one round in the phase whi
h starts and endsat a wall. If this round has less than r faults, i.e., if it is 
orre
t then it has exa
tly nisteps and halt is set to 1, be
ause ni is odd. Hen
e the 
laim holds for r = 1. Assumethat r > 1. In order to prove the 
laim observe that every round that terminates insidethe line must 
ontain at least one fault. Hen
e if the 
laim is false then ea
h of the �rstr�1 rounds of the phase must 
ontain exa
tly 1 fault and the last round must be 
orre
t.Suppose (without loss of generality) that the phase starts at wall L. Then the dire
tionat the beginning of ea
h round must be from L to R. However (as observed in the proof ofLemma 4.1) at the beginning of the last round of the phase the head is at an odd distan
efrom L, hen
e at an even distan
e from R. Therefore the number of steps in the lastphase is even and hen
e halt is set to 1, 
ontrary to the assumption. This 
ontradi
tionproves the 
laim.Now 
onsider two 
ases.Case 1. The head starts at a wall.If halt is not set to 1 after the �rst k rounds then the adversary must have used all thefaults, in view of the proof of the 
laim. Hen
e the (k + 1)th round must be 
orre
t andhen
e the head must hit a wall. Now the (k+ 2)th round must be also 
orre
t and hen
ethe head will hit the other wall after exa
tly ni steps, 
ausing the variable halt to be setto 1 and the algorithm to stop.Case 2. The head starts inside the line.Suppose that there are t rounds before hitting a wall for the �rst time. Ea
h of the �rstt�1 of them terminates inside the line and hen
e must 
ontain at least one fault. Supposethat halt is not set to 1 after the �rst k + 1 rounds. Then the adversary must have usedall the faults, in view of the 
laim. Similarly as in Case 1, the (k + 2)th round must be
orre
t and hen
e the head must hit a wall. Now the (k+3)th round must be also 
orre
tand hen
e the head will hit the other wall after exa
tly ni steps, 
ausing the variable haltto be set to 1 and the algorithm to stop.It follows that if the line has length ni then Algorithm guess-and-probe always stopsafter exe
uting pro
edure probe(ni) and that the line is then explored. �27



Our next lemma establishes the 
omplexity of Algorithm guess-and-probe for lines ofany length ni.Lemma 4.3 If the length of the line is ni, for some i > 0, then Algorithm guess-and-probe uses kni + o(kni) steps.Proof: If the length of the line is ni, the algorithm exe
utes pro
edure probe(nj) forj � i and pro
edure terminate(nj) for j < i . Pro
edure probe(nj) has at mostk + 3 rounds of length at most nj, hen
e it uses at most (k + 3)nj steps. Pro
edureterminate(nj) has 3k+ 2 rounds of length at most nj, hen
e it uses at most (3k+ 2)njsteps. Sin
e ni = 2(3k+2)ni�1 + 1, all 
alls for j < i use a total of O(log(kni)) steps. Itfollows that the entire algorithm uses at most (k + 3)ni + O(log(kni)) = kni + o(kni)steps. �It remains to show that Algorithm guess-and-probe is always 
orre
t, although possiblyless eÆ
ient than for lengths ni. In parti
ular we have to show that the algorithm alwaysstops.Lemma 4.4 Algorithm guess-and-probe 
orre
tly explores a line of any length n anduses O(kn) steps.Proof: Fix any length n of the line. Let m be the smallest ni su
h that m � n and letj = i�1. We �rst show that the algorithm stops (at the latest) after exe
uting pro
edureterminate(m). Sin
e m � n, every round of pro
edure terminate(m) that ends insidethe line must 
ontain at least one fault. Hen
e there are at most 2k+1 rounds in pro
edureterminate(m) that do not start and end at a wall. It follows that there are at leastk+1 rounds that start and end at a wall, and 
onsequently Algorithm guess-and-probestops after exe
uting pro
edure terminate(m), unless it stopped before.We now estimate the number of steps used until the end of pro
edure terminate(m).All 
alls of pro
edures probe(nt) and terminate(nt), for t < j, take O(log(kn)) steps.All rounds in pro
edures probe(nj) and terminate(nj) are of length at most nj < nand there are O(k) of them, hen
e pro
edures probe(nj) and terminate(nj) use O(kn)steps. It remains to 
onsider pro
edures probe(m) and terminate(m). Ea
h 
orre
tround in these pro
edures uses at most n steps and ea
h fault 
an in
rease a round byat most n steps. Sin
e there are O(k) rounds in both these pro
edures, it follows thatthe total number od steps in both of them is O(kn). Hen
e the entire 
ost of Algorithmguess-and-probe is O(kn). �We have proved the following result.Theorem 4.5 Algorithm guess-and-probe 
orre
tly explores a line of any length n,with at most k faults. For every n it uses O(kn) steps and for in�nitely many n it useskn+ o(kn) steps, whi
h is asymptoti
ally optimal.28



5 Con
lusionWe 
onsidered fault-tolerant aspe
ts of the fundamental problem of sequential s
an, wherea line of identi
al obje
ts has to be explored in spite of adversarial faults a�e
ting movesof the exploring mobile entity. We established optimal 
ost of fault-tolerant sequentials
an for a line of known size and partially solved the problem for unknown size. It remainsopen if there exists a sequential s
an algorithm for a line of unknown size n and at mostk faults, whi
h has 
ost kn + o(kn), for all k and n. Our 
onje
ture is no, i.e., we thinkthat the leading fa
tor 2 in Theorem 4.2 
annot be removed.Viewed from the point of view of appli
ations to network exploration, our study opensthe area of fault-tolerant exploration by a mobile entity in whi
h faults 
on
ern movesof the entity, rather than the environment. In parti
ular, it would be interesting toinvestigate optimal fault-tolerant graph exploration algorithms for labeled graphs. Eithernodes or ports of the underlying graph 
an be labeled and the mobile entity (agent) 
anper
eive these labels. This 
apability would add a lot of power to exploration algorithms,as the agent 
ould memorize its\tra
e" and 
ompare it to the 
urrently read label, thuspotentially be
oming aware of a fault earlier than in an anonymous s
enario. Even for theline, the ability to per
eive and memorize labels would probably yield signi�
ant 
hangesin performan
e, 
ompared to our present model.A
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