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Abstract The parity problem is a well-known benchmark
task in various areas of computer science. Here we consider
its version for one-dimensional, binary cellular automata,
with periodic boundary conditions: if the initial configu-
ration contains an odd number of 1s, the lattice should
converge to all 1s; otherwise, it should converge to all Os.
Since the problem is ill-defined for even-sized lattices
(which, by definition, would never be able to converge to
1), it suffices to account for odd-sized lattices only. We are
interested in determining the minimal neighbourhood size
that allows the problem to be solvable for any arbitrary
initial configuration. On the one hand, we show that radius
2 is not sufficient, proving that there exists no radius 2 rule
that can solve the parity problem, even in the simpler case
of prime-sized lattices. On the other hand, we design a
radius 4 rule that converges correctly for any initial con-
figuration and formally prove its correctness. Whether or
not there exists a radius 3 rule that solves the parity
problem remains an open problem; however, we review
recent data against a solution in radius 3, thus providing
strong empirical evidence that there may not exist a radius
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3 solution even for prime-sized lattices only, contrary to a
recent conjecture in the literature.
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1 Introduction

Cellular automata (CAs) are dynamical systems discrete in
time and space, whose dynamics has been extensively
studied across a variety of disciplines from different per-
spectives (e.g., see Acerbi et al. 2009; Betel and Flocchini
2011; Boccara and Cheong 1993; Cattaneo et al. 2004;
Dennunzio et al. 2009; Kurka 2003; Langton 1986; Voo-
rhees 2009).

Understanding the nature of computations within cel-
lular automata remains however an elusive problem. In
fact, in spite of their long-proclaimed ability to perform
computations, very little is still known as to how we should
design the local state transitions towards achieving a given
global behaviour. As examples are designed or found by
search, it is inevitable to try to understand their underlying
programming language; but the truth is, to this date, every
attempt along these lines has fallen into the strenuous effort
of trying to tame local state patterns towards the global
state target, or trying to make sense of the latter in terms of
the former (Griffeath and Moore 2003).

On the other hand, studying how to employ local actions
to achieve desirable global behaviours is of utmost
importance and extensively investigated in many other
evolving systems (e.g., distributed systems, mobile robots,
population protocols). In such systems, in fact, under-
standing the limitations and the power of local interactions
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to solve global computations has immediate implications
for the design of efficient and scalable solutions (e.g., see
Angluin 1980; Angluin et al. 2007; Lenzen et al. 2008;
Peleg 2000). CAs are the simplest possible evolving sys-
tems, and understanding the impact that neighbourhood
size has on computability could have consequences for
more complex systems based on local interactions.

This paper is aligned with these efforts. Here, we con-
centrate on the one-dimensional parity problem, which has
essentially the objective of figuring out the parity of an
arbitrary binary string, by means of a one-dimensional,
binary cellular automaton (Sipper 1998). The parity prob-
lem is a well-known benchmark task in various areas of
computer science, typically camouflaged under the XOR
operation on a binary input, as in artificial neural networks
(Haykin 2008), but it also lends itself to the context of CAs,
as a typical case of a global problem that has to be solved
by purely local processing. The problem is formulated
under periodic boundary conditions and arbitrary finite
lattice size, so that, if the parity of the global configuration
is odd, the lattice is supposed to lead to an homogeneous
configuration with only 1s; otherwise, it should converge to
all Os (Lee et al. 2001).

The notion of parity has appeared quite often in the CA
literature, even if implicitly, as it bears relevance to the
related notion of additivity of CA rules (Chaudhuri et al.
1997; Dennunzio et al. 2009; Voorhees 2009). However,
the parity problem per se has not been extensively studied,
particularly in comparison with the well-known benchmark
CA task of density classification, where the aim is to
determine the most frequent bit in the initial configuration
of an odd-sized lattice, also by reaching an homogeneous
configuration. The density classification problem, in fact,
has been extensively investigated and is fully understood in
odd-sized lattices. In particular, it has been shown that
there exists no single rule able to solve the problem for any
arbitrary initial configuration. Combinations of rules have
been devised, however, as well as probabilistic solutions to
the problem (e.g., see Fates 2011, Fuks 1997, de Oliveira
et al. 2006, Wolz and de Oliveira 2008).

An advantage in favour of the parity problem is that,
from the perspective of automata theory, it is simpler than
its kin, insofar as the notion of parity can be handled by
finite automata, whereas the ability to compare arbitrarily
variable quantities (which is inherent to density classifi-
cation) requires at least a pushdown automaton (Hopcroft
et al. 2006). In fact, the increased simplicity of the parity
problem is reflected in the fact that it is easier to find good
rules for it, by searching, than for density classification
(Wolz and de Oliveira 2008). Therefore, there are strong
reasons for considering the parity problem generally more
tractable and amenable to analysis, which makes it a
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serious candidate for case studies that might help the
understanding of the nature of computation in CAs in
general.

The parity problem is ill-defined for even-sized lattices
(by definition, an all 1 configuration converges to an all 0
configuration making it impossible for any rule to converge
to 1). Modifying the definition of the problem to allow the
target homogeneous configuration to be achieved only
once, and not as a fixed point, the problem becomes
solvable also for even lattices. In fact, by relying on this
variation, it can be perfectly solved by a carefully engi-
neered sequence of rule applications, quite surprisingly, of
elementary CAs (Martins and de Oliveira 2009). However,
if we do not want to change the definition of the problem, it
is then necessary to restrict the study to odd-sized lattices.
We then say that a CA rule is perfect if it solves the parity
problem for arbitrary initial odd-sized configurations.

Unlike the density classification problem, we show that
the parity problem can, indeed, be solved by a single rule.
Besides being interested in its general solvability, we are
also interested in determining the minimal neighbourhood
that allows the construction of a perfect rule. With this goal
in mind, we first prove that radius 2 is not sufficient for a
perfect rule to exist. We first identify several constraints to
which such a perfect rule is subject and we show that no
rule is feasible with all of these constraints. We then show
that the problem becomes solvable when CAs have radius
4: our proof is constructive as we design a perfect rule and
we prove its correctness. We leave open the case of whe-
ther or not there exists a radius 3 rule that solves the parity
problem; however, by reviewing recent data against a
solution in radius 3, we provide strong empirical evidence
that no such rule exists, even restricting to prime-sized
lattices, contrary to the conjecture in (Wolz and de Oliveira
2008).

2 Notation and basic facts

We consider one-dimensional, binary CA on finite lattices
with periodic boundary conditions, also called circular CAs.
Let £:{0, 1321 5 {0, 1} denote the local rule of a CA with
radius 7. The global dynamics of a one-dimensional cellular
automaton composed of n cells and of radius r is then
defined by the global rule (or transition function): F:{0, 1}"
- {0,1})" st. V X €{0,1},V i €{0,...,n— 1},
F(X); = fixiy ..., Xi, ..., Xiy,), where all operations on
indices are modulo 7.

We will use the word configuration to refer to an ele-
ment of {0, 1}", and will describe it as having size
n. Shorter sequences of bits will be called blocks. We will
again refer to the number of bits in a block as its size.
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Furthermore, we will often refer to an instance of the local
rule with specified input and resulting output as a transi-
tion. If the output differs from the central value of the
input, so that the local rule applied to a cell having the
neighbourhood described would result in the cell changing
values, we will call this an active transition.

A fixed point P € {0,1}" of a circular CA with global
transition rule F is a configuration P such that F(P) = P.

We say that a cellular automaton converges to a con-
figuration P from configuration X" if P is a fixed point and
if for some finite n, F"(X®) = P where F" is the n' iteration
of F. We are particularly interested in the homogeneous
configurations as fixed points and will refer to these as the
O-configuration and the I-configuration.

For an arbitrary configuration, we say that it has odd
(resp. even) parity if it contains an odd (resp. even) number
of 1s.

We now recall the definition of de Bruijn graphs, which
are useful tools for representing CA rules and which will be
used in the subsequent sections. The de Bruijn graph of a
local rule of radius r is a directed graph on 2*" nodes, one
for each value in the set {0,1}*". There is an edge from
node xy... X5, to node y... y,, if x; = y, for all i from 1 to
2r — 1. These edges are labelled with the value of the
local function at (xq, ..., X2,-1, Y2,)s f(X0s «+s X2ro1, Y2r) =
ftxo, Y1 ..., ¥2,). Note that the shape of the de Bruijn graph
for a local rule of a given family (i.e., those with the same
neighbourhood and states) is fixed, only the edge labels
change. For example, Fig. 1 shows the de Bruijn graph for
a radius 1 rule.

We say that a local rule solves the parity problem if,
starting from an arbitrary initial configuration, on an arbi-
trarily sized lattice, the cellular automaton converges to the
O-configuration, if and only if the initial configuration
contains an even number of 1s, and converges to the
1-configuration otherwise.

Since a rule solving the parity problem must converge to
the homogeneous configurations, we have our first two
simple properties of perfect rules.

S oY °j/o\ﬁ>¢

Fig. 1 De Bruijn graph for the local parity rule (150)

Property 1 If f solves the parity problem, then

£0, .., 0) =0and f(1,---,1) = L.

It is immediately obvious that, by definition, no solution
exists for even-sized lattices.

Theorem 1 Consider circular CAs with radius r and even
size n. There exists no rule that works correctly from any
initial configuration.

Proof Trivially f(1...1) = 0 otherwise the configuration
with all 1s would incorrectly converge to 1. Since
(11111...111) is not a fixed point, it follows that no initial
configuration can ever converge to the 1-configuration. [

For this reason, from now on, we consider only odd-
sized lattices and we call a rule perfect if it solves the parity
problem for any odd-sized lattice, starting from any initial
configuration.

The following is a necessary condition for parity
preservation.

Property 2 In order for a rule to preserve the parity of a
configuration, the number of active transitions must be
even. That is, given a local rule f of radius r, and any
configuration (xo,...,X,—1), the number of times that
FXisry oo Xiy ooy Xiyr) £ X; S even.

It is also very simple to see that no solution exists for
elementary circular CAs (i.e., with radius 1).

Theorem 2 There exists no perfect rule for elementary
CAs.

Proof From Property 1, for any perfect rule, we must
have f{000) = 0 and f(111) = 1. Now consider a configu-
ration containing a single 1. In order to both maintain
parity and move towards convergence, we must have
f(100) = f(010) = £(001) = 1. Similarly, from the single-
ton 0, we must have f(110) = f(101) = f{011) = 0. So the
only possible perfect rule is the local parity check (rule
150). However, it is easy to see that such a rule does not
solve the parity problem for infinitely many initial con-
figurations: for example, the configuration (00100) leads to
cyclic behaviour. O

3 Impossibility with radius 2

In this section we show that with radius 2 it is impossible to
construct a perfect parity rule.

Our aim is to show, first, several necessary transitions
for a perfect rule, and second, the existence of a limited set
of feasible pre-images for the two final homogeneous
configurations. Each possible pair of feasible pre-images
further induces necessary transitions for a perfect rule,
significantly reducing the space of possible perfect rules.
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We conclude the proof by showing that the few remaining
rules have non-homogeneous fixed points. We begin with a
series of lemmata that force certain transitions to 0 or 1.

Lemma 1 Given a perfect rule, three or five of the fol-
lowing must transition to 1: (10000), (01000), (00100),
(00010), (00001).

Proof A configuration consisting of a single 1 must
eventually converge to all 1s, hence the number of 1s in the
configuration must increase. Furthermore, in order to
maintain parity, it must increase to an odd number. The five
blocks of size 5 above are the only ones occurring at the
local level that are not all Os, and therefore 3 or 5 of them
must map to 1. O

Similarly,

Lemma 2 Given a perfect parity rule, three or five of the
following must transition to 0: (01111), (10111), (11011),
(11101), (11110).

Consider the de Bruijn graph for radius 2 rules. We
equate the parity of a cycle in the graph with the parity of
the set of its edges and we consider the set of all possible
pre-images of the final 0- and 1- configurations. For a given
global rule, a pre-image of a configuration is any config-
uration that is mapped to it by that rule. Any pre-image of
the final O-configuration must correspond to a cycle of odd
size and even parity, while any pre-image of the final
1-configuration is a cycle of odd size and odd parity. Let By
be the subgraph containing only the edges corresponding to
transitions to 0 and B; the subgraph containing the edges
corresponding to transitions to 1.

Lemma 3 Neither By nor B; can contain a cycle of
even size and odd parity.

Proof A cycle of even size in either B or 3; will become
a sequence having even parity at the next iteration since it
will be either all Os or all 1s, so this cycle itself will have
changed parity. Assume that the de Bruijn graph of a rule
F admits such a cycle, let C be such a cycle and let P be a
cycle of odd size passing through a node of C. For the rule
to be perfect, F(P) must have the same parity as P. Now
consider a new cycle P’ formed from P by adding the cycle
C where P passes through it. Since C has even size, P’
has odd size. Since C has odd parity, P and P’ have dif-
ferent parity. However, since F(C) has even parity,
F(P") = F(P), hence the parity of P’ has changed and
F cannot be perfect. U]

Lemma 4 Let f be a perfect parity rule, then either: i)
f(10101) =1 and f(01010) = 0, or ii) f(10101) =0
and f(01010) = 1.
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Proof This is a direct consequence of Lemma 3 since
f(10101) = £(01010) would imply the existence of the even
cycle with odd parity (1010, 0101, 1010, 0101, 1010, 0101)
either in By or in 3. O

Lemma 5 Given a perfect parity rule, it is impossible to
have four or more consecutive Os in a pre-image of the
O-configuration.

Proof Let the block (0000) be present in a pre-image P of
the O-configuration. Then the following neighbourhood
blocks must also be present and must be transitioning to O:
(10000) and (00001). By Lemma 1, we must then have the
following blocks transitioning to 1, so they may not occur in
P: (01000), (00100), (00010). Hence our group of four Os
must be both preceded and followed by at least two 1s, thus
entailing that we have the must have the following transi-
tions  f(11000) = f(00011) = £(10000) = f(00001) = O.
Consider now an initial configuration of size greater than 7
containing a single 1 surrounded by Os. From S, we have
that the subsequence 0001000 can only grow to 0011100,
but, again from S, we have that, from 0011100, no growth is
possible anymore, which is a contradiction. (]

Analogously, we have:

Lemma 6 Given a perfect parity rule, it is impossible to
have four or more consecutive ls in a pre-image of the
1-configuration.

From Lemma 3, any feasible pre-image of the 0-con-
figuration (resp. 1-configuration) corresponds to either a
simple odd cycle ¢ with even (resp. odd) parity, or the
composition of cycles not containing any even cycle of odd
parity.

So, to identify feasible pre-images for final configura-
tions for lattice size n in the de Bruijn graph, we have to
find at least one cycle of size n to be labeled 0 and one to be
labeled 1, having the property that they do not include:

(i) the self-loops (which are forbidden by Lemmata 5
and 6),
(i) the 2-cycle (0101,1010) (which is forbidden by
Lemma 4); and
(iii) an even cycle with odd parity (forbidden by
Lemma 3).

By inspecting all cycles of size 5, we obtain that:

Lemma 7 In a perfect rule at least one of these three
cycles in the de Bruijn graph must transition to 1:

B? = (0011, 0111, 1110, 1100, 1001) (corresponding to
configuration: 00111)
Bg = (0000, 0001, 0010, 0100, 1000) (corresponding to
configuration: 00001)
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Bg = (0101, 1011, 0110, 1101, 1010) (corresponding to
configuration: 01011)

and one of these must transition to O:

W3 = (0001, 0011, 0110, 1100, 1000) (corresponding
to configuration: 00011)
W5 = (0111, 1111, 1110, 1101, 1011) (corresponding
to configuration: 01111)
Wg = (0010, 0101, 1010, 0100, 1001) (corresponding
to configuration: 00101)

Proof B?, Bg and Bg (resp. W?, Wg and Wg) are the only
cycles corresponding to feasible pre-images for the
1-configuration (resp. O-configuration) for lattices of size 5,
which do not violate Lemmata 4, 5, and 6. O

Consider, now, lattices of size 7. All cycles of size 7
have been enumerated and the only cycles that do not
contradict Lemmata 3, 4, 5, and 6 and correspond to fea-
sible pre-images of the 1-configuration are:

B] = (0000, 0001, 0011, 0111, 1110, 1100, 1000)
(configuration: 0000111)
B} = (0001, 0011, 0110, 1101, 1010, 0100, 1000)
(configuration: 0001101)
B} = (0001, 0010, 0101, 1011, 0110, 1100, 1000)
(configuration: 0001011)
B} = (1001, 0011, 0110, 1100, 1001, 0010, 0100)
(configuration: 1001100)

Analogously, the only cycles which do not violate
Lemmata 3, 4, 5, and 6 and correspond to feasible pre-
images of the O-configuration are:

W{ = (0001, 0011, 0111, 1111, 1110, 1100, 1000)
(configuration: 0001111)
W5 = (0010, 0101, 1011, 0111, 1110, 1100, 1001)
(configuration: 0010111)
W5 = (0011, 0111, 1110, 1101, 1010, 0100, 1001)
(configuration: 0011101)
W4 = (0110, 1100, 1001, 0011, 0110, 1101, 1011)
(configuration: 0110011)

From simple observation, we can rule out some of these
cycles and combinations of cycles.

Lemma 8 A perfect rule of radius 2 cannot have W, as
a pre-image of the 0-configuration.

Proof Cycle W3 shares at least one transition in common
with each of the possible pre-images of the 1-configuration
of size 7. For example, W?, B! and B} all share the edge
(0001, 0011) in the de Bruijn graph. Cycles W} and B}
share (0010, 0101), and W? shares (0011,0110) with BZ. O

Lemma 9 A perfect rule of radius 2 cannot have B} as
a pre-image of the I-configuration.

Proof First, if B} is a pre-image of the 1-configuration,
then W3 is a pre-image of the O-configuration of size 5
since B; and Wg share (1010, 0100). Cycle Bg also has
transitions in common with W], W3, WJ. It has no common
transitions with W3, however, W} and W3 together form

the cycle (0111, 1110, 1101, 1011), in violation of
Lemma 3. O
Similarly,

Lemma 10 we can show, A perfect rule of radius 2
cannot have B} as a pre-image of the 1-configuration.

In fact, we can now restrict to very well defined possible
cases.

Lemma 11 A perfect rule of radius 2 must have W3 as a
pre-image of the O-configuration, B3 as a pre-image of the
1-configuration and either

— B] asa pre-image of the 1-configuration and W as a
pre-image of the 0-configuration, or

— Bi asa pre-image of the 1-configuration and W{ as a
pre-image of the 0-configuration.

Proof From the lemmata above, we know that the only
possible pre-images of the 1-configuration of size 7 are B]
and Bj. Cycle B] has transitions in common with all pos-
sible pre-images of the O-configuration except Wj. Of the
5-cycle pre-images of the I-configuration, only B3 is
compatible with Wj. Of the possible pre-images of the
O-configuration of size 5, neither W5 nor W3 poses any
conflict, however, W3 makes it impossible to have any
cycles of size 3 going to the 1-configuration, so that all
configurations having a period of size 3, (i.e. configurations
of the form (001001001 - - - 001)) will fail to converge. The
proof is analogous beginning with cycle Bj. O

We can finally conclude:
Theorem 3 There is no perfect parity rule of radius 2.

Proof From the lemmata in this section it follows that for
a perfect parity rule of radius 2, we must have one of the de
Bruijn graphs shown in Figs. 2 or 3. However, from
observation of Fig. 2 we see that (00111) is a fixed point,
while (00011) is a fixed point for Fig. 3. O

A final note concerns lattices of prime size. It has been
conjectured, in the case of radius 3, that there may exist
rules with the desired behaviour on arbitrary lattices of
prime size (Wolz and de Oliveira 2008). While the case of
radius 3 is still open, we can show that the impossibility
result for radius 2 holds even if we restrict the discussion to
prime-sized lattices.

Theorem 4 There is no radius 2 rule that always solves
the parity problem even restricting to lattices of prime size.
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Fig. 2 Possible perfect rule for radius 2, with B] and W;

Proof Restricting to prime-sized lattices, we can no longer
use Lemma 11. This introduces only a few possible extra
cases using B3 or W3. Consider rules containing B5. As
before, we can eliminate W? s BZ and BZ as pre-images of the
0- and 1- configurations. In addition, Bg conflicts with WZ
and W} on the edge from 0101 to 1011 and with W; on the
edge from 0110 to 1101. Hence, we must have WZ as the
7-cycle pre-image of the O-configuration. Now, B] conflicts
with W1, so we are left with B} as the 7-cycle pre-image of
the 1-configuration. Since Bj conflicts with W3 on the edge
from 0100 to 1001, we are left with W5 as the 5-cycle pre-
image of the O-configuration. These results are illustrated in
the graph of Fig. 4. Proposition 2 dictates that the edges
labeled a; must be the same, as will be the edges labeled bs.
Now consider rules containing W3. Similar analysis shows
that must have B;, WZ and BZ, as illustrated in Fig. 5. As
before, these rules have fixed points at (00011) and (00111),
respectively, for the rules given by Figs. 4 and 5. O

4 A perfect rule with radius 4

We now describe the construction of a rule with radius 4
having the desired properties: parity preservation and
convergence to a homogeneous configuration. The inten-
tion is to first give the reader an intuitive understanding of
how the rule works and how it was developed. Formal
proofs will follow in the subsequent section.
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4.1 Rule BFO

The most compact representation of rule BFO that we
propose for solving the parity problem in any lattice of odd
size is given in Fig. 6 and corresponds to rule number:
12766019579927887748828308783632125137208948629
5714341994- 043940026716959918692677270729174543
77539194754200976283425175983876- 539715064584
172642413634846720 in Wolfram’s lexicographic order-
ing scheme. The figure shows all active transitions (i.e.,
transitions that change the current state). However, it is
often easier to explain why and how the rule works using a
less compact form, where pairs of rules can be made
explicit. This form of the rule is given in Fig. 7; we will be
referring to this representation in the remainder of this
section.

We now describe the intended behaviour of the rule
before proving its correctness. Consider an initial config-
uration X° as being formed by blocks b; of consecutive
Is separated by blocks w; of consecutive 0Os: X° =
(BY, w9, b9, w9, - -+ BY, w? - - ). The idea of our construction
is to have a block b; of 1s propagate to the right, two cells
per iteration, until a stopping condition or convergence has
been reached. Such propagation might result in merging the
block with the next ;| (if the corresponding w; is of even
size). When the merger does not occur (because Iw,l is odd
or due to some other condition), there will be a propagation
of Os to the left, led by a block of the form (01). Such
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Fig. 4 Additional possible perfect rules for radius 2 on prime lattices with W3

counter-propagation might result in the total annihilation of ~ the number of blocks, eventually converging to an
the block of 1s. Otherwise, it will result in the creation of a homogenous configuration.

single 1 surrounded by Os, which will start propagating to We now describe some properties of the rule that can
the right again. We will show that such behaviour reduces  easily be derived by construction and that give an intuition
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Fig. 5 Additional possible perfect rules for radius 2 on prime lattices with B3

for the reasons for the behaviour described above. Note
that, by construction, the rule’s transitions always occur in
pairs; in other words, whenever a transition occurs in a cell,
another transition occurs in its neighbourhood. It is useful
to describe the behaviour of each pair and we will also use
these pairs to prove that parity is being preserved.

— Rightward growth of 1-blocks a singleton 1 grows to the
right, by two 1s at each step, if it is preceded and
followed by at least two Os, as prescribed by transitions
T3 and T4. A block of three or more 1s grows to the right
if it is followed (on the right) by at least two Os. This
behaviour is created by the pair of transitions 7T, and 7.

— Annihilation of pairs of Is as a consequence of
transitions 75 and T, an isolated pair of 1s is always
eliminated.

— Leftward growth of 0-blocks a (01) block moves to the
left, leading a growing block of Os (at a growth rate of
two Os per step) if there are at least three 1s to its left
and one of the following: (i) at least three 1s to the right
of the 0 (the growth is obtained by the pair of
transitions, (7y,77,); or (ii) at least one O to its right
(due to Ty and T1). Note that the pair (7o,T,) starts the
growth of a 0-block, while the pair (7y,T}¢) continues
the growth as far as possible.

— Local shift a (101) block is transformed into (110) if
there are a 0 on its left and at least two Os on its right
(combination of transitions 75 and Ty).

@ Springer

Neighbourhood | Output

configurations bit
*11100%x% 1
11100 %%
*00100 %%
00100 %%
*x010100x%
11101 %%%x%
*0101%0%x%
%% 011 0%*%
*xx110110
*%x0110%x*
*xxx 1101 %

SO OO OO ==

Fig. 6 Minimised rule BFO (the asterisk * refers to any value)

— Local adjustment finally, if a (0110) block is preceded
by at least three 1s that is, (...1110110...) occurs, in
order to avoid parity errors due to the annihilation of
the pair of 1s, we force the creation of a solid block of
Os to the right of the existing block of 1s with transition
pair (T, T1), so that (...1110110...) becomes
(...1000000. . .).

Examples of the evolution of the rule are given in Fig. 8.
4.2 Correctness

In order to show that the rule we have constructed (or in
fact any rule) performs a perfect parity check, we must
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Fig. 7 Active rule transitions Name | Neighbourhood | Output

(left) and behaviour of configurations bit

combinations of rules (right) Ty *11100%%+ 1
Ts: 11100%%**x% 1 Pair Behaviour
Ts: *00100% %% 1 Ty, T> Rightward growth of 1-blocks
Ty: 00100 1 13,7y Rightward growth of 1-blocks
Tr: *%x010100x* 1 T5,Ts Annihilation of 11
Ts: *xx0110%% 0 T7,T3 Local shift
Ts: #%k 011 0% 0 To,Th0 Leftward growth of 0-blocks
Ts: *010100x%x* 0 Ty, T11 Start of O-growth
Ty: *x%11101 % 0 Ty, T2 Local adjustment
Tio: 111010 0
Ti1: 1110111 %% 0
Tio: *x1110110 0

Fig. 8 Evolution of rule BFO
for even parity (left) and odd
parity (right). A black cell
corresponds to 1, a white cell
corresponds to 0. The initial
configuration is at the top and
time goes downward

o

prove that it preserves parity at every iteration, and that it
always converges in finite time to an homogeneous con-
figuration. We begin with the proof of parity conservation.

4.2.1 Parity preservation

A rule preserves the parity of a configuration if active
transitions always come in pairs. That is, given a local rule
f of radius r, and any configuration (xo,...,X,—1), the
number of times that f(x;_,, .. W Xipr) 7 X; 1S even.
To show that our rule does indeed have this property, we
will use a modification of the de Bruijn graph.

Given a configuration X = (xy,...x,), one can deter-
mine the next iteration, F(X) by reading the edge labels as
one traverses the graph from (xj_4...%;...x;43) tO
(xi—3...X;.. .Xi14). Since we are considering circular con-
figurations, the traversal of the de Bruijn graph will result
in a closed loop. For our purposes, we are not interested in
what the actual output is, only if an active transition has
occurred. In keeping with that, we are, in fact, only inter-
ested in the parts of the graph where such transitions occur.
Since a de Bruijn graph for a function of radius 4 can be

ey Xiy oo

quite unwieldy, we define a reduced transitional de Bruijn
graph modifying the standard de Bruijn graph as follows.
First, we label the edges with T; (indicating one of our 12
active state transitions), or N, meaning no transition. Sec-
ond, we draw only those parts of the graph connected to
transitions, reducing the rest of the graph to a single node,
denoted by an asterisk. Also, where there is no conflict,
several nodes leading to or from the same transition are
depicted as one, using the notation of the previous section;
for example, there is an edge from node (*11100%*) to
(11100***), because of the various state transitions
entailed by T, given all possible values for the * symbols.
Furthermore, we ensure that all nodes in the reduced
transitional de Bruijn graph are distinct for all values of the
* symbol. Finally, for any nodes occurring explicitly in the
graph, all adjacent edges are represented, whether they
correspond to a transition or not. It is easy to see that parity
preservation can be detected from the reduced transitional
de Bruijn graph for a given rule; more precisely:

Lemma 12 A rule is parity preserving if and only if any
cycle in its reduced transitional de Bruijn graph contains
an even number of edges labeled with some transition T;.
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T1 —f
N
00100***
1
T

2

1
N
00100
‘\ N \ /
N

T8
*010100* N
7 T6
N
010100
@ 5 4/

Fig. 9 Reduced transitional de Bruijn graph for rule BFO

Fig. 10 Accordion loop

Proof Since the output of a circular CA is given by the
edge labels of a cycle in its de Bruijn graph, we need only
count the transitions to verify parity preservation. Fur-
thermore, the reduced graph compresses only parts of the
graphs where no transitions occur. Hence, if the are no
cycles containing an odd number of transitions in the
reduced graph, there can be no configurations leading to an
odd number of transitions and vice versa. ]

By inspecting the transitional de Bruijn graph for rule
BFO (Fig. 9), and by noticing that there are no cycles
containing an odd number of transitions, we then have:
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Theorem 5 Rule BFO is parity preserving.
4.2.2 Convergence

We now turn our attention to the more challenging problem
of proving that this rule will converge under any condition.
We can think of any CA configuration as an alternating
sequence of blocks of Os and blocks of 1s of varying sizes.
We will show that BFO eventually converges by showing
that its only fixed points are the homogeneous configura-
tions and, furthermore, that any change in the configuration
will lead, in a finite number of iterations, to a reduction in
the overall number of blocks. Our first lemma shows that
every non-homogeneous configuration is changing.

Lemma 13 The only fixed points of rule BFO are the
homogeneous configurations.

Proof A non-homogeneous fixed-point configuration
cannot contain pairs of 1s, since rule pair (75,7¢) would
apply. It cannot contain a block of three or more 1s since
(T,T») would apply if it is followed by two or more Os, and
a transition pair containing Ty would apply if it is followed
by only one 0. Therefore, a non-homogeneous fixed-point
configuration could only contain isolated 1s but the odd
size of the configuration would imply that we must have at
least two consecutive Os, hence the sub-configuration 0100
must occur. If this is preceded by a 0, (73,7,) apply. If it is
preceded by a 01, (77,Ty) apply. O
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We now show that every transition pair will eventually
lead to a reduction in the total number of blocks. We begin
with the transition pairs for which this is immediate.

Lemma 14 Transition pairs (Ts,T¢), (T7,T3) and qua-
druplet (To, Ty», Ts, T¢) lead to block reduction in a single
step.

Lemma 15 Transition pair (To,T)¢) leads to block
reduction in a finite number of steps.

Proof Rule pair To:f(***11 101*) = 0 and T¢:f(1110 1
0***) = 0 causes the leftward growth of 0-blocks. While a
single application of this pair maintains the number of
blocks, it leads (possibly through a repeated application of
the pair) to an eventual block reduction through either an
annihilation or the creation of a single 1:

~>00001000 - - - by rules 75 andTg
0111010 - - -~~0101000 - - - by rules Ty and T

~+0110000 - - - by rules 757 and Tg

~»0000000 - - - by rules 75 and Tg

Notice that (79,T() leads to reducing the number of blocks
by either two or four, depending on the parity of the block
of 1s on which it is acting. Also note that, even though it is
possible for the leading block of 1s to have shrunk from the
left side, while the (Ty, Tyo) pair is reducing it from the
right, one of these two situations will still be reached,
since, on the left, the 1s can only be eliminated one at a
time. Cl

Lemma 16 Transition pairs (T,15), and (T3,T4) lead to
either reduction or maintenance of the number of blocks.

Proof Both pairs T f(*111 0 0%*%) =1, T,;f(1110 0
#Rk) = 1, and T3f(*001 0 O0***) =1, T,A0010 0
*#*%%) = 1 are responsible for the rightward growth of
1-blocks. In fact, they grow a block of 1s until it either
merges with the next block or an isolated 0 preceded by

three or more 1s is created. At this point, one of the fol-
lowing transition sets will apply: (To,T) if the isolated O is
followed by 10, (Ty, Ti,, Ts, Te) if it is followed by 110,
and (7y,T) if it is followed by three or more 1s. We have
already seen that the first two cases lead to block reduction,
only the latter case can maintain block numbers. O

Lemma 17 Transition pair (Ty,T1,) leads to reduction or
maintenance of the number of blocks in a finite number of
steps.

Proof The pair Tof(***11 101%) =0, T ;f(¥**1 1
1011) = 0 is responsible for the start of 0-growth. This is
the only rule pair that initially increases the number of
blocks. It is the beginning of the growth of Os from an
isolated O surround by three or more 1s on either side. Once
this growth has begun, it is continued by the (7y,T,¢) pair
until the number of blocks has been returned to its original
size or is reduced by two. O

Note that in the proof above, if the original number of
blocks is maintained, it is because the transitions have
produced an isolated 1 with two or more Os on either side
which then begins to grow to the right either merging with
the block on the right (and thus reducing the total number
of blocks) or creating an isolated 0 which then begins to
grow left. What we wish to avoid is a CA which evolves to
a periodic configuration of 1s growing until only an iso-
lated O remains and then shrinking back to an isolated 1
which then regrows. We call this block of growing and
shrinking the accordion effect. In the next lemma, we show
that the accordion effect cannot occur on lattices of odd
size.

Lemma 18 The accordion effect can only occur on lat-
tices of even size.

Proof Figure 10 shows the transition pairs involved in a
cycle of growing and shrinking. If we think of this loop as
starting from the (7y, T) node, a block of 1s is shrinking

Fig. 11 The accordion effect
on an even-sized lattice (left)
and the successful resolution of
an odd-sized lattice (right)
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Index Rule Number

Index Rule Number

1 328447672826993550020983459564344832408
2 297492748577089511288345839143552794896
3 297494046666159425466677605435168768272
4 297473276211074685927935207853055525136
5 296474976058488678040367253460474913040
6 296808256613095882288791569092116209936
7 296475057188069064207707451447140671760
8 296808337742676268456131767078781968656
9 296641291817180593298511130317935599888
10 296474976060964558118992057205935825168
11 296474976057869708020723437423152062736
12 296475057187450094188063635409817821456
13 296641291816561623278867314280612749584
14 296474976058411306787911969969856045328
15 296808256613018511036336285601497342224
16 296475057188107749833935123978779877648
17 296808337742714954082359439610421174544
18 296641291817219278924738802849574805776
19 296474976058449992414139598521025945872
20 296808256613057196662563914152667242768
21 296475057187488779814291307941457027344
22 296474976057831022394495782483703095568
23 296474976057869783578587163337425154320
24 296475057187450169745927361324090913040
25 296641291816561698836731040194885841168
26 296474976058488753598230979374815113488
27 296808256613095957846655295006456410384
28 296475057188069139765571177361480872208
29 296641291817180668856374856232275800336
30 296641129557981210895466809717539729680
31 296474976060964633676855783120276025616
32 296475057190545019844195981106941784336
33 296641291816600384462958712726525047056
34 296474976057831097952359508397976187152
35 296641129558019896521694464656992891152
36 296475057188107825391798849893120078096
37 296641291817219354482602528763915006224
38 296474976058450067972003324435366146320
39 296808256613057272220427640067007443216
40 296474976060925948050628128180827058448
41 297494047933810020972540523993508070160
42 296474976058488687485100219199766127376
43 296808256613095891733524534831407424272
44 296475625099309824456409961520876741392
45 296475057188069073652440417186431886096
46 296808337742676277900864732818073182992
47 296641291817180602743244096057226814224
48 296475381706313247069345872865913725712
49 296474976057869717465456403162443277072
50 296475057187450103632796601149109035792

51 296641291816561632723600280019903963920
52 296475381706932217088987437103489999632
53 296475057188107759278668089718071091984
54 296808337742714963527092405349712388880
55 296641291817219288369471768588866020112
56 296474976058450001858872564260317160208
57 296808256613057206107296879891958457104
58 296475625099271138830182306581427774224
59 296475057187488789259024273680748241680
60 296474976057831031839228748222994309904
61 296661975438027476540473486768714404176
62 296661894308331033494450293177369874768
63 296661894308369719120677948116823036240
64 296661975437988790914245814237079392592
65 3285895366304957031360859884 72858282244
66 328964340348163983266751953117489596676
67 328631059793556779018363666282867263748
68 328589617760076089303426186459524040964
69 328964421477744369434092151104155355396
70 328631140923137165185703864269533022468
71 328964345418780655171180791515735591684
72 328631064864173450922792504681113258756
73 328964426548361041338520989502401350404
74 328964340348178480931854363546770934532
5 328631059793571276683466076712148601604
76 328964344151130069110050838696687504132
7 328964425280710455277391036683353262852
78 328964420210108281038064608714388605700
79 328631139655501076789676321879766272772
80 328631063596508508867554627934657653508
81 327614459766465259907200645449039558212
82 327614459768941139985789420397481506372
83 327281179214333935737401133562859173444
84 327281098082234148161930000576236303940
85 327614459768974989908738616614073480772
86 327281179214367785660350329779451147844
87 327614378639317232488943091156319548996
88 327281098084710028240554804321697216068
89 327281098082272833788157673107875509828
90 327614378636880038036581988739516806724
91 327281179211853219955497871094541268548
92 327614459766460424203922186726182565444
93 327614378639355918115170763687958754884
94 327281098084748713866782476853336421956
95 327614459768936304282510961674624513604
96 327281179214329100034122674840002180676
97 297244119599433449400320668614539593636
98 297244160164257492406939981622812854180
99 297244200729091206820116207266435155876

Fig. 12 Good radius-3 candidates to solve the parity problem from prime-sized lattices

until the (75, Tg) node is reached and then beginning with
the (T3, T,) pair, a block of 1s begins to grow (Fig. 11). Let
us assume that the entire lattice is perpetually in some stage
of this cycle. We make several observations:

— The 1-blocks start off having odd size.
— The 0-blocks start off having even size.

@ Springer

— In order for a block of 1s to regrow, it must have even
size at the end of the shrinking process.

— In order for a 0-block to grow, it must have odd size at
the end of the growth of 1s.

Since the entire configuration is in this process, it is made
up of sub-configurations of two forms: b; w;, a block of 1s
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followed by a block of Os when the Is are growing; or
b0lw; a block of 1s separated by a 01 from a block of Os
when the block of 1s is shrinking. Consider a block of Os,
w; followed by a block of 1s, b,. If wy has odd size, then it
must not change sizes again before the growth of Os
restarts. Otherwise when the block of 1s on its left, b,
grows, it will merge with b,. This means that (7y,7;,) must
be applied on the left before (75,7¢) can be applied on the
right. Hence b, will shrink by 1 before the 1s have finished
shrinking on the right. Since we will need to have an even
number of 1s at that time, we must now have an odd
number of 1s. In other words, a block of Os of odd size is
always followed by a block of 1s of odd size. Now assume
that b, has even size. In this case it must change sizes
before the regrowth of 1s is complete, so (75,7¢) must be
applied on the right before (7o,7T7;) is applied on the left
again. Hence w, must already have even size. Taken
together, we see that for the accordion effect to endure in
perpetuity, the CA must have even size. O

Finally, taking these various lemmata together, we have
the heart of our convergence proof.

Lemma 19 From any non-homogeneous configuration,
the total number of blocks decreases in finite time.

Proof From the previous lemmata, we see that only rule
pair (To, Ty;) increases the number of blocks and that
within a finite number of steps, this increase is resolved.
Our contention is that the accordion effect is the only way
to maintain block numbers. Consider a (To, Ty;) pair
occurring anywhere in our CA. If the leading block of 1s is
odd at the end of the execution of the (T, T;¢) pairs, then
the number of blocks had decreased by two. If it is even,
the 1s will begin to grow right. If the 0-block created by the
execution of (T, Ty;) is unchanged from the right, then it
has even size and the regrowth of 1s will result in a merger
of Is and a reduction in the number of blocks. Now the
only way for the O-block to have changed on the right is if
the 1-block on its right had shrunk due to the application of
(Ty, T) or (To, Ty;). If the reduction in the 1-block was not
initiated by the (7o, T;;) pair, then real reduction in the
number of blocks has occurred. If it was initiated by
(Ty, Ty1), then block reduction can only be prevented if
another (7y, T},) pair is being executed to its right. Arguing
in this way, we see that reduction in total block number can
only be avoided if the CA is experiencing the accordion
effect which can only occur in even-sized lattices. O

From Theorem 5 and Lemmata 13 and 19, we obtain:

Theorem 6 Given a CA of odd size, rule BFO converges
to all 1s if the initial configuration has odd parity and to all
Os if it has even parity.

5 Empirical evidence against a solution for radius 3

According to (Wolz and de Oliveira 2008), no perfect rule
was found for all odd initial configuration (IC) sizes less
than 25, but about 250 perfect rules were found for all
prime-sized ICs in the range of 11 to 31. This was checked
by completely enumerating all possible ICs in the range.
These rules were then tested against 2 sequential and
independent sets, each one with 400 billion random odd-
sized ICs in the range from 37 to 149; as a result, 103 rules
survived the first test, and 98 survived the second. Adding
another, found later, resulted in a set of 99 very good rules
for the parity problem, all with radius 3 (all of them in
individual classes of dynamical equivalence, each class
having exactly 4 members). Their decimal numbers are
listed in Fig. 12 (in Wolfram’s lexicographic order), with
the most recently added rule showing as the first one in the
list. Only four of them had been shown in (Wolz and de
Oliveira 2008), all the others are only now being unveiled.

Further to the intensive testing the rules above under-
went, as described, it should be remarked that they were
originally found in (Wolz and de Oliveira 2008) after very
intensive searches in the entire radius 3 space, carried out
through the most sophisticated evolutionary algorithm
described so far in the literature, for CAs rule spaces. This
is strong empirical evidence that a perfect rule might not
exist for odd-sized lattices, but that it might for prime sizes,
the 99 rules above being strong candidates.

However, by studying their failure behaviour, we were
able to construct specific prime-sized ICs for 79 of them,
thus gathering evidence that a prime perfect rule might not
exist either. A summary of the corresponding data is pre-
sented next. For what follows, the rules are referred to by
their order index in the table.

First of all, our own analysis with respect to details of
their failure showed that rule 1 fails for any IC with size a
multiple of 3. And, according to (Wolz and de Oliveira
2008), rules 2 through 99 would fail for some IC of size 25.
In keeping with these findings, we verified that this is
indeed the case; but, in fact, most rules fail even for size
15. The details are as follows:

— Only the following rules {42, 45, 47, 48, 49, 50, 51, 52,
53, 55, 56, 59, 60} do not fail on all ICs of size 15.

— Out of these 13 rules, only rule 52 fails for some IC of
size 21, thus leaving the other 12 unscathed.

— These remaining 12 rules {42, 45, 47, 48, 49, 50, 51,
53, 55, 56, 59, 60} eventually fail for some IC size 25.

The ICs that make the latter 12 rules fail lead them to
cyclic regimes, with periods 50 (most often) or 25. Based
upon these failing ICs, the prime number sized IC (size 83)
given by
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01110817031501110413071901 1301110615051701 1]02

was constructed. Here, the exponents indicated the number
of consecutive 1s or 0s. This IC made 55 out of the 99 rules
fail, thus leaving the following 44 unscathed: {1, 2, 3, 4,
41, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74,75,
76,717,778, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99}.

However, from this set, 24 failed on further specially
constructed prime-sized ICs, conceived by direct analysis
of the specific periodic patterns that appear in the rules, as
they failed for size 25. The conclusion was as follows:

1. Rules {61, 62, 63, 64} failed on an IC of size 83,
constructed from observing the two configurations,
periods 50 and 25. The IC was:

0'1'0'°1%0'1'021*07120"1'0°180' 130 10" 1 10*1°0°.

2. {65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80} failed on an (yet another) IC of size 83,
constructed from observing two other configurations,
also with periods 50 and 25. The failing IC was

0°1'0°1'0'1°0°1°071'0' 120" 1307 1%0° 110" 140%170°.

3. {1,97,98, 99} failed on an IC of size 157, constructed
from observing two configurations, periods 225 and
10. This time the failing IC was

0211031 11901 12013 17019 1 1001 11023 12502.

In summary, the data above shows that, out of the
original 99 rules, 20 of them remain that have not yet failed
on any prime-sized IC: {84, 85, 86, 87, 88}, which happen
to fail for size 25, and {2, 3, 4, 41, 81, 82, 83, 89, 90, 91,
92, 93, 94, 95, 96}, which do not fail for size 25.
Therefore, although the problem has not yet been settled,
all in all the data makes a strong empirical case against a
solution of the parity problem for radius 3, even
considering only prime-sized lattices.

6 Concluding remarks

In this paper, we have established upper and lower bounds
on the radius of rules that solve the parity problem by
showing that there exists a rule of radius 4 which converges
to all 1s if the initial configuration is odd, and to all Os if it
is even and, further, by proving that this problem is
unsolvable by rules of radius 2, even with the less strict
condition of prime-sized lattices.

The corresponding questions for radius 3 remain open,
in spite of the strong empirical evidence we provided
against the existence of a solution, even in the simpler case
of prime-sized lattices only. We believe that the tools
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developed in the paper should be helpful to resolve this
issue as well.

It is clear by now, how painstaking the task of designing
a CA rule can be, let alone the formal proof of its cor-
rectness. To some extent, the process reminds us of similar
programming efforts on simple, pre-modern computational
models, such as Turing machines. And in this sense, we are
still indeed at this point in history, when programming
CAs.

Since our main motivation for addressing the parity
problem is not conscribed to it, one may ask how gener-
alisable our experience herein could be to related problems,
including the parity problem for radius 3, as well as other
related computational problems for CAs. It is tempting to
think of the possibility of implementing a high-level pro-
gramming approach that would automatically generate the
state transitions of a CA rule, given the kinds of notions we
have used, such as the growth of blocks of a given size in a
given direction, the annihilation of blocks of given kind,
etc. Even if this form of programming, so to speak, by
patterns, does not solve the problem of designing a rule
(the target algorithm), at least it would help its high-level
conception, and its implementation in terms of the required
state transitions.

As a methodological note, it is worth mentioning that it
was demanding in practice to resort to computational aids
to complement the formal efforts. After all, the details
involved in rule design are so many that it is quite easy to
overlook some of them. This turned out to be essential in
the present case for fine tuning our design in its origin.
Such an interplay between formal and computational
methods also came into play (apart from all the obvious
efforts in the context of radius 3) for devising the most
compact representation of the BFO rule, as shown in the
paper, for enumerating all cycles of size 7 in the de Bruijn
graph of radius 2, and for the evaluation of the radius 2
rules that had retained potential for being perfect solvers of
the parity problem, by not violating the constraints derived
in the proof, at their various stages of development.
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