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Abstract—As most existing sensors are powered by batteries,
the coverage provided by a sensor network degrades over time
and eventually disappears if energy is not restored. A popular
approach to energy restoration is to use a robot acting as a mobile
battery charger/changer. The robot decides where to move next
according to a predefined on-line energy restoration strategy.
Since the goal of an energy restoration strategy is to maintain
as much as possible of the network operational at any time,
its effectiveness depends on the number of nodes it is able to
maintain operational at any given time, as well as on for how
long a node battery remains depleted.

The ideal optimal on-line strategy (called OPTIMAL) occurs
when the robot knows at any time the current status of all
sensors, and it computes the best request to satisfy next, based
on this information. Although optimal in terms of effectiveness,
this centralized strategy constantly requires up-to-date global
information; hence its high computational and communication
costs make it not feasible.

We consider a drastically different on-line strategy (called
LIC), which is simple and fully decentralized, uses only local
communication, requires no computations, and is highly scalable.
In our strategy, the robot visits the sensors in a predefined
circular order, moving in a “clockwise” direction and only when
aware of a pending request. A sensor whose battery is about to
become depleted originates a recharging request and waits for the
robot; the request is forwarded in a “counter-clockwise” direction
until it reaches either the robot or another sensor waiting for
the robot.

We show the perhaps unexpected result that, once the system
becomes stable, in most networks the effectiveness of LIC is
equivalent to that of OPTIMAL. In other words, in most cases,
in spite of its simplicity and its extremely small (communication
and computation) costs, the proposed decentralized strategy is
as effective as the optimal centralized one. We augment our
theoretical results with experimental analysis, showing among
other things that the system stabilizes very quickly.

I. INTRODUCTION

A. Framework, Problem and Strategies

Wireless sensor networks are widely employed in a large
variety of contexts and applications, mainly to monitor the
conditions of the area in which they are deployed. Most
existing sensors are powered by batteries whose lifetime is
limited; once the battery becomes depleted, the node is no
longer sensing and, in absence of redundant coverage, this
sensing hole creates a coverage hole in the monitored area.
Indeed, the coverage provided by the network degrades over

time and eventually disappears if no action is taken. Extensive
research has being carried out on how to address this problem,
mainly concentrating on energy management strategies, whose
goal is to prolong the lifetime of the network and delay the
progressive coverage decay by balancing the energy levels
among the sensors (e.g., see [1], [13]).

A very different line of research has been on energy restora-
tion, with the ambitious goal to maintain the network operating
perpetually. In this line are proposals to enhance the sensors
with (radically different) additional capabilities. For instance,
the sensors could be provided with the means to harvest energy
from the environment and to convert it to electrical energy,
enabling them to recharge their batteries (e.g., see [21], [25]).
A different direction is to add mobility to the sensors, enabling
them to move to recharge facilities deployed throughout the
sensing area (e.g., [16], [22]). The drawback of these types
of approaches is the increased complexity, and thus cost, of
the sensor nodes; this at a time when technology trends are
scaling sensors to be smaller and cheaper.

An alternative to adding more complexity to the nodes
has been the proposal of using one or more external mobile
devices, typically called robots, which would go around to
restore energy to nodes with (near) depleted energy. The
restoration can take place by either recharging the depleted
batteries or by replacing them entirely with fully charged
one. Fueled by the recent evolution in wireless power transfer
techniques [8], the research on sensor recharging by mobile
robots has been quite intensive (e.g., see [2], [3], [10], [15],
[20], [27], [28]). The alternative of replacement has been
considered in the literature (e.g., see [17], [26]), albeit with
less intensity. For a comparison between these two alternatives
see [17]. Notice that the idea of using a mobile robot in
sensor networks is not new, as it has been proposed for data
gathering and aggregation, for network repairs, as well as for
other network maintenance tasks (e.g., see [9], [11], [18]).

In this paper we are interested in energy restoration by a
single mobile robot. Regardless of whether restoration is by
recharging or replacement, after servicing a node, the robot
must choose where to move next. The algorithm followed by
the robot to make this decision, here called energy restoration
strategy, may prescribe the acquisition of information from the
sensors (e.g., energy level, location, etc) and require possibly



complex computations by the robot. Since the decision can
be made based solely on current and older information, at an
abstract level these strategies can be viewed as on-demand:
a node whose battery is (about to become) depleted issues
a request for the robot; the robot moves to service the
requests so to optimize some cost parameters, based on the
information currently available. Almost all the existing on-
demand strategies are centralized (e.g., see [5], [6], [7], [12],
[20], [26], [30]): the information about all the requests is
communicated to the robot that then computes where to go
next; alternatively, the information is communicated to the
base station, which takes the decisions and provides the mobile
robot with instructions. In addition to the high communication
costs required, the optimization requirements to be met by
the decision are typically accompanied by high computational
complexity, which grows non-linearly with the number of
sensor nodes; these factors imply a difficulty to scale for these
strategies. The existing decentralized strategies are [2], [17],
[19]; in [17] the concern is to maximize the time until the first
interruption of the sensing activity of a single sensor; in [2],
which is not on-demand (i.e., the order in which the nodes are
recharged is fixed), the total amount of energy that can be put
in the system is bounded (i.e. the energy restoration process is
limited); in [19] the described technique applies only to linear
sensor networks.

B. Effectiveness, Costs and Contribution

The fact that some sensors might be inactive at some times
is not a problem if an energy restoration strategy is in place.
Indeed, the goal of an energy restoration strategy should be
to maintain as much as possible of the network operational at
any time. Its effectiveness towards this goal finally rests with
the number of sensors it is able to maintain operational at
any given time, in spite of battery depletions. We shall call
this measure operational size or, with an abuse of notation,
coverage. The other effectiveness measure of interest is the
time from the moment a sensor becomes no longer operational
to the time when the robot arrives to serve it; i.e., for how long
a sensing hole lasts. We shall call this measure disconnection
time.

Associated with each energy restoration strategy are also
the computation and communication costs encurred when the
robot operates in the network according to that strategy.

The effectiveness and the costs of the strategy employed by
the robot to service the sensors depends on many factors, a
crucial one being the amount of information about the network
status available at any given time to the robot.

From the effectiveness point of view, the “ideal” optimal on-
line strategy, which we shall call simply OPTIMAL, is clearly
when the robot knows at any time the current status of all
sensors, and it computes on-line which request it must satisfy
next so to minimize the number of sensing holes and/or their
duration. Even more that any other centralized on-line strategy,
in addition to a high computational complexity, OPTIMAL
requires constantly up-to-date global information; hence the

communication costs required to implement it severely limit
its feasibility.

In this paper, we propose a drastically different on-line
strategy, which we shall call Local Information and Commu-
nication (LIC). In this strategy, the robot visits the sensors in
a predefined circular order, moving in a “clockwise” direction
when aware of a pending request. A node whose battery is
about to become depleted originates a recharging request and
waits for the robot; the request is forwarded in a “counter-
clockwise” direction until it reaches either the robot or another
node waiting for the robot. In other words, each node com-
municates only locally: with the neighbouring sensors in the
circular order (to send or receive a request), or with the robot
if currently there (to communicate the presence of a pending
request); the robot moves only from one node to the next in
the cyclic order, is aware only of whether or not there is a
pending request, and has no need of memory or calculation.

In contrast to the existing centralized strategies, this simple
on-line strategy is fully distributed and decentralized, uses
only local communication, requires no computations, and it
is highly scalable. However, it provides the robot only with
the awareness of the existence of at least one current request.

Surprisingly, our results show that, in most networks, in
spite of its simplicity and small costs, this decentralized
strategy can be as effective as the ideal optimal centralized
one.

C. Main Results

We study the effectiveness and costs of LIC, both analyti-
cally and experimentally in an abstract setting.

Like in every energy restoration strategy, effectiveness de-
pends on two crucial system parameters: the battery life, i.e.,
the amount of time ∆ a fully charged battery lasts under
normal operations; and the recharging time, i.e., the amount of
time ρ required for the charging/replacement once the robot is
at the sensor’s site. Let N (∆, ρ) denote the (infinite) class of
sensor networks with those specific component characteristics.

We establish several results related to the stability of the
system under LIC, whereas the network is deemed to be in
a stable state if the order in which the nodes are charged in
a round is the same in every round. In particular, we prove
analytically that, for almost all networks in N (∆, ρ), once the
system becomes stable, although the set of operational nodes
changes in time, its size remains unchanged; furthermore this
value is the same regardless of the initial network size. We also
determine the disconnection time for such stable networks,
providing a precise characterization of the performance and
effectiveness of LIC. Due to space limitations, some of the
proofs are omitted.

We then compare the effectiveness of LIC with that of the
optimal (but expensive to implement) strategy OPTIMAL. We
show the perhaps unexpected result that, in most networks,
the effectiveness of LIC is equivalent to that of OPTIMAL. In
other words, in most cases, in spite of its simplicity and its
extremely small (communication and computation) costs, the
decentralized strategy is as effective as the ideal optimal one.



We support our theoretical results with experimental anal-
ysis, showing that the system stabilizes very quickly and
confirming all the theoretical bounds established for coverage
size and disconnection time.

II. MODEL

Let X = {x0 . . . , xn−1} be the set of sensor nodes, or
simply nodes, forming the network. Each node has sensory
equipment that allows it to monitor its surroundings; it also
has provision for wireless communication. Let π be a cyclic
order of the nodes; successive nodes in the order (e.g., xπ(i)

and xπ(i+1), where all operations on the indices are modulo
n) are called neighbours, and can communicate (possibly by
multiple hops).

Normal operations require sensing and occasional commu-
nication; both operations consume energy, which is provided
by an on-board battery of limited capacity. When the battery is
nearly depleted, the node becomes non-operational, thus cre-
ating a sensing hole in the network, and the remaining energy
is used for a small amount of emergency communication (e.g.,
forward a request). In the following, with an abuse of notation,
we will say that the battery is depleted when the node becomes
non-operational.

Let ∆ denote the amount of time it takes for a fully charged
battery to become depleted under normal operations. Each
node monitors the energy level of its battery and determines
whether it is below a fixed threshold. We denote by τ the
amount of time, under normal operations, elapsed from the
moment the battery falls below the threshold to the time it
becomes depleted. In the following, for ease of discussion,
we will sometimes refer to ∆ as the battery life or capacity,
and to τ as the threshold.

A mobile robot R is available in the system to
recharge/replace the sensors’s batteries; once R reaches a node,
if the energy level of the sensor is below the threshold, the
robot will restore the energy. We denote by ρ the amount
of time it takes for a battery to become replaced/recharged;
i.e., if the robot reaches a node x whose battery is below the
threshold at time t, x’s battery will be fully charged at time
t + ρ. The robot can move from node to node; we denote
by di,j the time it takes the robot to travel from node xi to
xj . We assume uniform distances among neighbours, that is
dπ(i),π(i+1) = d ≥ 1 for 0 ≤ i ≤ n− 1.

We now introduce the measures we use to study the effec-
tiveness of energy restoration strategies. Let S be an energy
restoration strategy. The operational size or coverage at time
t under S (denoted by Coverage(S, t)) is the number of
operational nodes (i.e., nodes with a non empty battery) at
that time. Note that the operational size implicitly measures
the number n − Coverage(S, t) of the sensing holes in the
network at time t.

The disconnection time for a node x is the amount of time
from the moment x becomes inactive to the time when the
robot arrives to serve x. Disconnection time is, of course, zero
if the node is charged before its battery is depleted (i.e., before
it becomes inactive). More precisely, the disconnection time

for node x at time t under S (denoted by Disconnect(S, t, x))
is the amount of time x had been inactive when last serviced
by the robot before or at time t. This measures indicates for
how long a sensing hole lasts.

Since the focus of this study is on the effectiveness of
the recharging strategies and on their computing and com-
munication costs, we will not address how the robot acquires
the means to service the sensor nodes (e.g., by stopping at
a recharging station, by extracting it from the environment,
etc.) and we assume (as in [24], [28]) that the robot is always
capable of doing so.

III. DECENTRALIZED STRATEGY LIC

A. Description

We now describe a simple decentralized on-demand strat-
egy, which uses only local information and requires only
local communication, hence the name Local Information and
Communication (LIC).

Starting from its initial position at an arbitrary node, the
robot visits the sensors according to π (see Figure 1), moving
in a “clockwise” direction (i.e., from xπ(i) to xπ(i+1)) when
aware of a pending request. A sensor whose battery is about to
become depleted originates a recharging request and waits for
the robot; the request is forwarded in a “counter-clockwise”
direction (i.e., from xπ(i) to xπ(i−1)) until it reaches either
the robot or another sensor waiting for the robot, creating in
this way a trail to be followed by the robot when it becomes
available. Note that a request contains no specific information
(e.g., id, location, etc) about the node issuing or forwarding
it. All nodes have the ability to receive and forward a single
request even if their sensor is no longer operational.

Fig. 1: a) A deployed sensor network. b) A cyclic order π of the sensors.

Summarizing, (1) each sensor communicates only locally:
with the neighbouring sensors in the cyclic order (to send
or receive a request), or with the robot if currently there (to
communicate the presence of a pending request); (2) the robot
moves only from one node to the next in the cyclic order, is
aware only of whether or not there is a pending request, and
has no need of additional memory or calculation.

The protocol LIC prescribing the behaviour of the sensor
nodes and the robot is shown in Figure 2. With respect to
the protocol, a sensor node x can be in one of two protocol
states, REGULAR or WAITING, and keeps track of whether or
not it has received a pending request from its predecessor in
the order (Boolean variable Q(x)). Initially all nodes are in



REGULAR
when battery level reaches threshold

if robot is not here then
send request to counter-clockwise neighbour;

become WAITING;
receiving request

Q(x) := 1;
send request to counter-clockwise neighbour;
become WAITING

WAITING
receiving request:

Q(x) := 1;
receiving Robot: (robot is here)

if battery level at or below threshold
Be Charged;

if Q(x) = 1 then
Q(x) := 0;
send Robot to clockwise neighbour;

become REGULAR;

Fig. 2: Protocol LIC executed by node x.

state REGULAR, Q(x) = 0 for all x ∈ X , and the robot is at
an arbitrary node.

B. Properties: Tours and Weakness

A tour from node x is defined as the visit of all the nodes
by the robot starting from x (and possibly charging it) and
ending when arriving again at x. Let ∆̂ = ∆ − τ denote the
amount of time before a fully charged battery falls below the
threshold.

Lemma 1. Let xπ(i) require recharging both at the beginning
and at the end of a tour from it; then also xπ(i−1) requires
recharging when reached by the robot in this tour.

Proof. Let xπ(i) be found to be needing recharging at time t0,
fully recharged at time t1 = t0 + ρ, and found empty again at
the end of this tour, at time t2.

By contradiction, let the previous node xπ(i−1) be found
not needing recharging when visited by the robot in this tour.
Let k ≥ 0 be the number of the nodes (other than xπ(i)) that
have been recharged in this tour. In other words, the robot has
spent in this tour kρ time units to charge them before reaching
x0 at time t2; that is, t2 ≥ t1 + kρ+nd. Since xπ(i) is found
needing recharging at time t2, we must have

kρ+ nd ≥ ∆− τ = ∆̂.

On the other hand, the time elapsed between the time t′ =
t0−d the robot left xπ(i−1) and the time t′′ it reached it again
is at least (k + 1)ρ + nd, since xπ(i) was recharged in this
interval. Since xπ(i−1) is assumed to be found non needing
recharging, we must have

(k + 1)ρ+ nd < ∆̂

a contradiction.

Analogously,

Lemma 2. Let xπ(i) require recharging both at the beginning
and at the end of a tour from it; then also xπ(i+1) will need
to be recharged when when reached by the robot in the next
tour from xπ(i).

We say that x is weak if there exists a tour from x where
x needs recharging both at the beginning and at the end of
the tour. Let tweak be the first time when this happens. The
two Lemmas, 1 and 2, together prove the following important
property:

Theorem 1. If there is a weak node then from time tweak
every node visited by the robot is found to need recharging.
This holds regardless of the threshold τ .

This, in turns, has important consequences on the size of
the coverage of the network:

Theorem 2. Let n > m = d ∆
(ρ+d)e. If there is a weak node,

then there exists a time t, such that, ∀t′ > t:

m ≤ Coverage(LIC, t′) ≤ m+ 1

and all sensors have the same disconnection time:

∀x ∈ X , Disconnect(LIC, t′, x) = (n− 1)(ρ+ d) + d−∆.

Proof. Let xπ(i) be weak; thus, there is a tour where xπ(i) will
be recharged both at the start and the end of that tour; let t be
the time when the recharging at the end of that tour will be
completed. By Theorem 1, from this time on the robot finds
only nodes needing recharging; since it takes ρ time units for
the robot to recharge a sensor and d time units to move to the
next sensor, by time t′ = t + ∆ the robot has recharged the
consecutive nodes xπ(i+1), xπ(i+2), ..., xπ(i+m−1) where m =
d ∆

(ρ+d)e and all operations on the indices are modulo n; if ∆ is
not a multiple of ρ+ d, then it is currently recharging xπ(i+m),
otherwise also xπ(i+m) has been fully recharged. But, at this
time t′ = t + ∆, xπ(i)’s battery is totally depleted, and so
obviouly is the battery of all the sensors after xπ(i+m) up to
and including xπ(i). This means that, at time t0 = t+m(ρ+d),
exactly n − m nodes have their battery completely empty;
hence Coverage(LIC, t0) = m.

Observe that, when xπ(i+m+1) is reached and fully
recharged, at time t1 = t0 + (ρ + d), xπ(i+1)’s battery is
depleted; that is Coverage(LIC, t1) = m. More generally,
when xπ(i+m+j) is reached and fully recharged, at time
tj = t0 + j(ρ + d), xπ(i+j)’s battery is depleted; that is,
Coverage(LIC, tj) = m. On the other hand, at any time
tj < t′ < tj+1 xπ(i+j)’s battery might not yet be depleted;
that is, Coverage(LIC, t′) ≤ m+ 1.

Since after time t the robot keeps charging every node it
encounters, it will spend n(ρ+d)+d time units to complete a
tour. During that time, each node is not disconnected for ρ+∆
time units. Therefore, every node will have disconnection time
(n− 1)(ρ+ d) + d−∆.



C. Properties: Rounds and Stability

Let us call round from node x any sequence of consecutive
tours from x where at the beginning of the first tour and at
the end of the last x’s battery needs to be recharged, and in
all others it does not. Clearly a round from x might include
several tours from x.

We will denote by r(x, j) the j-th round from x, j ≥ 1; by
ts(x, j) and te(x, j) the starting and ending time of r(x, j),
respectively. When j is clear from the context, we will indicate
a round from x simply by r(x) and the corresponding starting
and ending time by ts(x) and te(x) respectively.

Let σ(x, j) denote the ordered sequence of the nodes
charged during r(x, j); notice that σ(x, j) starts with the node
charged after x and ends with x; further notice that a node may
appear more than once in σ(x, j) while some may be absent.

We say that the system is stable if ∃j ≥ 1 such that ∀x ∈
X ,∀j′ > j, σ(x, j) = σ(x, j′). That is, in a stable system,
the order in which the nodes are charged is the same in every
round; hence, in a stable system, we can omit the indication
of the round and denote σ(x, j) simply as σ(x).

When a system is (or has become) stable, it enjoyes partic-
ular properties. Among them:

Lemma 3. Let the system be stable. Then
(i) σ(x) is a permutation of the elements of X .
(ii) ∀x, y ∈ X , σ(x) is a cyclic shift of σ(y)
(iii) Every round from any node x ∈ X , is composed of the
same number s of tours.

Theorem 3. If the system is stable and n > 2∆
ρ + 1, each

round is composed by a single tour.

Proof. Let the system be stable; then, by Lemma 3 (iii), every
round from any node x is composed of the same number s of
tours. We want to show that s = 1 if n > 2∆

ρ + 1.
By contradiction, let s > 1. Consider a round from node

x and let f(x, s) be the number of nodes charged in the last
tour of this round. We will consider three cases depending on
the value of f(x, s).
Case 1 : f(x, s) < n

2 . In this case, the number of nodes
charged in the first s− 1 tours is k = n− f(x, s) ≥ bn2 c+ 1.

Consider the amount of time T elapsed from the moment
x has been charged at the beginning of the round, to the
beginning of the last tour of this round.

By definition, and since k ≥ bn2 c+ 1 and s > 1, we have

T = (k−1)ρ+(s−1)d n ≥ bn
2
cρ+(s−1)d n ≥ bn

2
cρ+d n.

Since, by definition of round, x is found by the robot not to
need recharging at this time, we have ∆ − τ = ∆̂ ≥ T , that
is:

∆ ≥ ∆̂ ≥ T ≥ bn
2
c ρ+ d n > bn

2
c (ρ+ 1) .

But n > 2∆
ρ + 1 by hypothesis; that is, (n−1)

2 ρ > ∆; a
contradiction.
Case 2 : f(x, s) > n

2 . In this case, there must exist a node
y such that f(y, s) < n

2 . By considering the round from y
(instead than from x), by Case 1 the contradiction occurs.

Case 3 : f(x, s) = n
2 . If s > 2 then there must exist a node

y such that f(y, s) < n
2 ; by considering the round from y

(instead than from x), by Case 1 the contradiction occurs.
Finally, let s = 2. In this case, n is even, the round r(x) is

composed of two tours, and f(x, 1) = f(x, 2) = n
2 . Note

that the nodes charged in the second tour of r(x) are the
complement of the ones charged in the first tour.

Consider now the node y, next in the cycle, visited by
the charger right after x. We have two cases (see Figure 3)
depending on whether or not y needs to be recharged at this
time. Case (3a) : y needs to be charged. In this case, consider
the round r(y) starting after charging y (see Figure 3 (3a),
bottom). Round r(y) must also be composed of two tours
each containing exactly n

2 nodes in need of charge (i.e., we
must have f(y, 1) = f(y, 2) = n

2 ), otherwise a contradiction
would arise because of the previous reasoning applied to y.
However, the nodes in need of charge in the first tour of r(y)
are the same as the ones in the first tour of r(x) except for y
itself; thus f(y, 1) = n

2 −1, a contradiction. Case (3b) : y does
not need to be charged. In this case, consider the round r(y)
starting from y the last time it was charged before time ts(x).
By definition, the nodes in need of charge in the first tour of
r(y) are the complement of the ones charged in the first tour of
r(x, 1) excluding y, thus f(y, 1) = n

2 −1, a contradiction.

FUN 2012 

Case%(3a)% Case%(3b)%

x% y% x% y%

Fig. 3: Cases (3a) and (3b) of Theorem 3 in a stable system with n = 8.
Each row corresponds to a tour starting from x; black (white) circles represent
sensors charged (not charged) in that tour. A round r(x) consists of two
consecutive tours starting after a black x. Highlighted in the top (resp. bottom)
is the first tour of r(x) (resp. r(y)) in the two cases.

By bringing the observations on weakness and stability
together, we have:

Theorem 4. Let the system be stable and let n > 2∆
ρ + 1.

Then there exists a time t, such that, for all t′ > t we have

m ≤ Coverage(LIC, t′) ≤ m+ 1,

where m = d ∆
(ρ+d)e; moreover, for all x ∈ X

Disconnect(LIC, t′, x) = (n− 1)(ρ+ d) + d−∆.

IV. STABILITY AND OPTIMALITY

A. On the Stability of LIC

All the analytical results we have established on the ef-
fectiveness of LIC hold once the network has become stable
under LIC.

It is not difficult to prove that all networks, regardless
of their size, become stable under LIC when starting from



specific initial battery levels. This is for example the case when
all nodes start with a fully charged battery, or when initially
all batteries are empty:

Theorem 5. Let δ(x) denote the amount of time elapsing
before the battery of node x reaches the threshold for the
first time. If δ(x) = δ(y) for all x, y ∈ X , then the network
become stable under LIC after one round.

This is also true if the initial battery levels are different but
increasing with respect to the cyclic order starting from the
initial position of the robot:

Theorem 6. Let initially the robot be at node xπ(i). If
δ(xπ(j)) ≤ δ(xπ(j+1)) for all i ≤ j ≤ i + n − 1, then the
network becomes stable under LIC after one round.

We conjecture that, in all networks with n > 2∆
ρ + 1,

stability under LIC is inevitably achieved; furthermore this
occurs with a small number of rounds.

Conjecture. Let n > 2∆
ρ + 1; then the system becomes stable

within a constant number of rounds.

As we will see, this conjecture is supported by the strong
experimental evidence presented in Section V.

B. LIC versus OPTIMAL

We are going to compare the effectiveness of LIC with that
of the optimal on-line strategy OPTIMAL.

In OPTIMAL, each request message is sent by the sensor
to the charger; the robot processes all the current request
messages, and it computes which request to satisfy next so
to minimize the number of sensing holes and their duration.
We are actually going to consider the ideal cost settings for
OPTIMAL: every request from every node reaches the robot
directly, regardless of its current location; the robot can reach
any node from any node in the same amount d of time,
regardless of its distance; and the robot’s processing time is
negligible regardess of the complexity of the computation.

Notice that the behaviour of the robot under OPTIMAL in
this setting is easy to describe: the robot just processes and
services the request messages in the order they arrive; if two
or more requests arrive at the same time, ties are arbitrarily
broken (e.g., by Ids).

The effectiveness of OPTIMAL is also simple to derive for
most networks:

Theorem 7. If n > (∆ + ρ)/(ρ+ d) then, under the
OPTIMAL strategy, there exists a time t such that, for all
t′ > t and all x ∈ X we have:

d ∆

(ρ+ d)
e ≤ Coverage(OPTIMAL, t′) ≤ d ∆

(ρ+ d)
e+ 1;

Disconnect(OPTIMAL, t′, x) = (n− 1)(ρ+ d) + d−∆.

This theorem has an immediate very strong consequence for
the effectiveness of LIC:

Theorem 8. Let the system become stable under LIC. If n >
2∆
ρ + 1 then there exists a time t such that for all t′ > t and

all x ∈ X

Coverage(LIC, t′) = Coverage(OPTIMAL, t′),

Disconnect(LIC, t′, x) = Disconnect(OPTIMAL, t′, x)

Proof. Since 2∆
ρ + 1 > ∆+ρ

ρ+d , the claim follows directly from
Theorems 4 and 7.

In other words, for all networks with n > 2∆
ρ + 1, the

recharging strategy LIC, with its low communication and
computations costs, performs as well as the optimal stategy.

V. EXPERIMENTAL ANALYSIS

The results of the previous Section describe the behaviour
of the system once it stabilizes in time. We run extensive
simulation to determine the stability of the system under LIS
and to observe its behaviour in terms of Coverage Size and
Disconnection Time (already studied theoretically).

A. Simulation Environment

The experiments were implemented in the simulator
discrete-event MAS toolkit MASON [14].

The variable parameters involved in the experiments are:
the number of nodes n, the battery life ∆, the charging time
ρ, and the travel time d from a node to the next.

The following table shows the values considered for each
parameter, where the temporal values are all in the same scale:

Parameters Values
Number of nodes n 100, 200, 300, 400, 500
Battery Lifetime ∆ 2000, 3000, 4000
Threshold τ 30% of ∆
Charging Time ρ 1, 10, 20, 30, 40, 50
Travel Time d 1, 5, 10, 20, 30

Each sensor x has initially an amount of energy level chosen
uniformly at random in the range [τ , ∆]; the charger’s initial
placement is at a node chosen uniformly at random.

For each combination of the values of the parameters,
we have executed 20 executions and computed the average
coverage size and disconnection time. To detect stability we
have also maintained the information about the charging order
of the nodes under LIC.

B. Simulation Results

Starting with arbitrary initial charge levels, the experimental
results show that, for all values of the parameters, the charging
order becomes periodic and the system stable; moreover
stabilization occurs within two rounds. In other words, under
LIC the networks become stable within two rounds. See Figure
4 where stability is shown for some choices of the parameters;
the results for all the other parameters’ combinations are
consistent with these. Note that, for smaller capacities, as well
as for larger networks, stabilization occurs even sooner, within
one round.



Fig. 4: Stability of the system varying n for ∆ = 1000, 2000, 3000, ρ =
20, d = 1.

Once the system stabilizes, the theoretical bounds on cov-
erage size and disconnection time established analytically
(Theorem 4) hold; indeed, the simulation results confirm all
these bounds.

Fig. 5: Effect of Charging Time ρ on Coverage (∆=2000, d=1)

Fig. 6: Effect of Charging Time ρ on Coverage (∆=1000, d=1)

For example, Figure 5 and Figure 6 show how the coverage
size changes at the varying of the charging time ρ and
the network size n, showing that the average coverage size
coincides with the theoretical value derived in Theorem 4,
even for n smaller that 2∆

ρ + 1. The figures correspond to two
different choices of ∆ for the same ρ; the same phenomenon
is observed for the other values of the parameters.

Fig. 7: Effect of Charging Time ρ on Disconnection time (∆=2000, d=1)

Fig. 8: Effect of Charging Time ρ on Disconnection time (∆=1000, d=1)

Figure 7 and Figure 8 show how disconnection changes
varying the charging time ρ and the network size n. Also
these experiments confirm the theoretical bound established
in Theorem 4 even for n smaller than 2∆

ρ + 1. As for the
case of coverage size, the figures correspond to two different
choices of ∆ (∆ = 1000, 2000) maintaining ρ = 20; the same
phenomenon is observed for the other values of the parameters.

C. Comparison with OPTIMAL

We now turn to the comparison between LIC and
OPTIMAL. We already established that, when n > 2∆

ρ + 1,
the two strategies are equivalent both in terms of coverage size
and disconnection time (Theorem 8). Extensive experimental
results, varying ∆, ρ, d, and n, confirm the theoretical findings.

For example, Figures 9 and 10 show coverage and discon-
nection time of the two strategies for different network sizes
when ∆ = 2000, ρ = 20 and d = 1. Notice that Theorem 8
does not hold when n < 2∆

ρ +1; in fact, as shown in Figure 9,
OPTIMAL has a much better coverage than LIC for the case
n = 100.

VI. CONCLUDING REMARKS

In this paper, we introduced the notion of effectiveness
of energy restoration strategies. We proposed a very simple
decentralized battery recharging strategy, which, in spite of its
simplicity and of the use of very limited resources, achieves
optimal effectiveness in most cases. The technique is based



Fig. 9: LIC vs OPTIMAL: Coverage. (∆ = 2000, ρ = 20, d = 1).

Fig. 10: LIC vs OPTIMAL: Disconnection time. (∆ = 2000, ρ = 20,
d = 1).

on the on-demand visit of the sensors by a mobile robot in
a predefined circular order only when aware of a pending
request. The optimality of the strategy is proven for sufficiently
large networks (n > 2∆

ρ + 1). It would be interesting to
consider also the case of smaller n, where our strategy is not
optimal; the detailed analysis of the charging dynamics for
that case will be the object of future study.

Our studies, both analytical and experimental, have been
carried out in an abstract setting, with several simplifying as-
sumptions. Among them, we assumed that the time necessary
for the robot to move from a node to its successor in the
cyclic order is uniform. We did run experiments with variable
distances between sensors; all these experiments do not show
any significant difference with the results obtained in the paper
with uniform distances; the theoretical validation is however
left for future work.

Another assumption that would be interesting to lift is the
one of constant charging rate ρ, the same for all sensors. The
case of variable charging rates, possibly depending on the
current battery level, as well as other physical factors (e.g.,
battery capacity decay) are important open research directions.
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