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Abstract Current mobile agent algorithms for mapping faults in computer
networks assume that the network is static. However, for large classes of highly
dynamic networks (e.g., wireless mobile ad hoc networks, sensor networks, ve-
hicular networks), the topology changes as a function of time. These networks,
called delay-tolerant, challenged, opportunistic, etc., have never been investi-
gated with regard to locating faults. We consider a subclass of these networks
modelled on an urban subway system. We examine the problem of creating
a map of such a subway. More precisely, we study the problem of a team of
asynchronous computational entities (the mapping agents) determining the
location of black holes in a highly dynamic graph, whose edges are defined
by the asynchronous movements of mobile entities (the subway carriers). We
determine necessary conditions for the problem to be solvable. We then present
and analyze a solution protocol; we show that our algorithm solves the fault
mapping problem in subway networks with the minimum number of agents
possible, k = γ+ 1, where γ is the number of carrier stops at black holes. The
number of carrier moves between stations required by the algorithm in the
worst case is O(k ·n2C · lR +nC · l2R), where nC is the number of subway trains,
and lR is the length of the subway route with the most stops. We establish
lower bounds showing that this bound is tight. Thus, our protocol is both
agent-optimal and move-optimal.
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1 Introduction

1.1 Background and problem

Distributed algorithms are often designed under the assumptions that the
network on which they run is both reliable and connected. However, these
assumptions are often far from reality. In the real world, a reliable network—
one that has no faults over the lifetime of the network—is the exception rather
than rule. Faults are often undetectable, caused by the failure of computers
and network equipment. And while the assumption of connectivity is more or
less realistic for wired networks, it is entirely unrealistic for emerging dynamic
networks with topologies that change as a function of time. These networks
are often disconnected at any point in time but can be connected over some
time interval.

There is a large body of research into distributed algorithms for finding
faults. By mapping the faults in a network, algorithms that come afterwards
can work in the network as if there are no faults. The fault-finding algorithms
use mobile agents—autonomous, mobile, computational entities—to do the
mapping. The faults, from an agent point of view, include nodes that eliminate
agents arriving at them without leaving a discernible trace, often referred
to as black holes, and links between neighbouring nodes that have the same
effect, often referred to as black links. The problem of mapping a network with
black holes is often referred in the literature to as the black hole search (Bhs)
problem, while the problem of finding both black holes and black links is often
referred to as the dangerous graph exploration problem (see [6–15, 17–20] for
examples of both types of problem). As we discuss below, most of this work is
focussed on static networks, some with specific topologies such as the ring.

There is also a large body of research into distributed algorithms for
networks with dynamic topologies. There are several classes of these networks
that have emerged in the last decade or two. These include, but are not limited
to, wireless mobile ad hoc networks where the network’s topology may change
dramatically over time due to the movement of the network’s nodes; sensor
networks where links only exist when two neighbouring sensors are awake and
have power; and vehicular networks, similar to mobile ad hoc networks, where
the topology changes constantly as vehicles move. These networks are often
referred to in the literature as delay-tolerant, challenged, opportunistic, evolv-
ing, etc. However, the work on these networks mostly focusses on broadcasting
and routing (e.g., see [3, 4, 21–24]). There has been little work on mobile agent
algorithms for networks with dynamic topologies. One study [16] has looked
at how agents can explore one class of these networks: periodically-varying
graphs. In the periodically-varying graph (PV graph) exploration problem,
agents ride carriers between sites in the network. A link only exists between
sites when a carrier is passing between them. The agents explore the network
by moving from carrier to carrier when they meet at a site.

We are interested in how to combine these two concepts and search for black
holes in dynamic networks. We are also interested in deterministic solutions
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to the problem. As a result, we look at the black hole search problem in a
class of networks similar to PV graphs, based on a subway system. Like PV
graphs, the subway model includes carriers that travel on repeating routes
amongst the sites in the network. However, unlike PV graphs, agents in the
subway model can disembark from a carrier onto a site and, in fact, must do
so in order to find the faults in the networks. The faults are black holes that
eliminate agents but leave the carriers unaffected.

The subway model gives us a number of benefits as a model of dynamic net-
works. Subway systems, by their very nature as public transportation systems,
are strongly connected directed graphs, allowing passengers at any station to
reach any other station in the subway system. However, their connectivity is
dynamic in that a link only really exists between two neighbouring stations
when a train is moving between them. Mapping the subway model onto real-
world computing systems, the subway model can be used to describe oppor-
tunistic or parasitic movement by computational entities, like mobile agents,
in a computer network. For example, take a team of mobile agents passively
scanning a network for nodes infected with malicious code. The malicious code
resides in a node’s user space and is agent aware, eliminating all agents it sees.
The agents can travel through the network opportunistically using control
traffic, which passes safely through kernel space of intermediate nodes. It is
only when an agent steps off a control packet into user space that it becomes
vulnerable.

In fact, the subway model is more generally applicable than this simple
passive scanning example. It allows us to look at the effect of mobile agents
moving through a network using other entities’ movements. Normally, mobile
agent algorithms for black hole search assume that the agent is mobile and
can freely move between neighbouring nodes. In the subway model, the agents
are at the mercy of the movements of the carriers. As we will show, there are
costs for both moving and waiting to move, neither of which can be avoided.

1.2 Our contribution

We introduce the subway model, a way of looking at the effects of mobile agents
moving opportunistically or parasitically in a network. The class of networks
described by the model is much larger than the set of real subway systems
and includes some real-world computer systems. We look at the asynchronous
version of the black hole search problem where the agents’ calculations and
the carriers’ movements take a finite but unpredictable amount of time to
complete. We introduce a new measure of complexity, carrier moves, that
is specific to the subway model. The carrier moves metric combines agents
moves, the traditional measure of complexity for asynchronous mobile agent
measurements, with agent waits, the cost to the agent of waiting for the carrier
to arrive. We show that neither of these agent costs can be avoided in a system
where the agents must rely on other entities for movement.
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We first investigate the computability of the the Bhs problem and establish
necessary conditions for the problem to be solvable.

We then prove that the limitations on computability are indeed tight. In
fact, we prove that all necessary conditions are also sufficient. We do so by
designing a protocol for the Bhs problem in the subway model. We prove its
correctness and analyze its complexity. Our solution has a complexity O(k ·
n2C · lR + nC · l2R) carrier moves, where nC is the number of carriers and lR is
the length of the longest carrier route.

Finally, we establish a lower bound on the worst case complexity of carrier
moves. We prove that Ω(k · n2C · lR + nC · l2R) carrier moves are needed, and
that, as a consequence, our solution is worst-case optimal.

1.3 Related work

There is a large amount of work on distributed algorithms for finding faults.
There are a number of papers that look at black hole search in networks with
specific topology. Dobrev et al. look at algorithms for finding a single black hole
in several specific topologies: hypercubes, cube-connected cycles, star graphs,
wrapped butterflies, chordal rings, and restricted-diameter multidimensional
meshes and tori [11]. Czyzowicz et al. look at finding a single black hole in a
bounded-synchronous tree network, where agent moves take an unpredictable
but bounded amount of time [10]. Dobrev et al. look at finding a single black
hole in an anonymous ring network [13]. These algorithms take advantage of
the characteristics of the network’s specific topology, most, if not all, of which
would be disrupted by the addition or deletion of a single link.

Some work looks at bounds on solutions to the Bhs problem in arbitrary
networks. Czyzowicz et al. determine a lower bound for agents finding a
single black hole in an arbitrary bound-synchronous network [9]. Klasing et al.
improve on the lower bound from [9] and look at the problem for two agents
searching for a black hole in an arbitrary synchronous network [18]. In [18],
the same authors find a lower bound for the synchronous network problem and
further improvements on the lower bound from [9]. Kosowski et al. express the
lower bound for the static network problem in terms of the network’s maximum
degree and look at the same problem in directed graphs [20]. Unfortunately,
while all these papers deal with arbitrary networks, they assume that networks
remain static and that agent movements are synchronous.

There are also papers that look at Bhs solutions under different assump-
tions on the amount of knowledge available to the agents, although the as-
sumptions always implicitly include the networks remaining static. In a journal
version of one of the earliest conference papers on black hole search by agents,
Dobrev et al. look at the effects of topological knowledge—complete ignorance,
complete knowledge, and sense of direction—on the search for a single black
hole [12]. Flocchini et al. show that pure tokens (single bit) are computationally
just as powerful as whiteboards (shared memory on nodes) in solving the single
black hole search problem [14]. Glaus shows that it is still possible to solve
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the single black hole search problem even if the agents have no knowledge
of the link from which they arrive on a node [17]. Some papers look at the
search for multiple black holes or black holes and black links; for example,
Cooper et al. study the multiple black hole search problem in synchronous
systems [7]. Chalopin et al. look at the related problem of agent rendezvous in
the presence of both black holes and black links in an anonymous network [6].
Under certain assumptions, their rendezvous solution also solves the dangerous
graph exploration problem. Flocchini et al. consider specifically the problem
of dangerous graph exploration in non-anonymous networks [14]. Recently, the
optimality of black hole search has been studied in [2].

Unlike the work on finding faults, there is less work on dynamic networks
that is relevant to ours. Most looks at routing and broadcast in dynamic net-
works that use message passing. Bui Xuan et al. developed many of the metrics
used to measure message passing dynamic networks, including developing the
idea of journeys—the paths of dynamic networks—and cost measures such as
hop count, arrival time, and time span [3]. O’Dell and Watenhoffer look at the
algorithmic limits for broadcasting information in dynamic networks where
the links change but the underlying network remains connected, not unlike
the subway model [22]. Three papers propose routing protocols specifically
for delay-tolerant networks, where the connections can very unpredictable
[4, 21, 24]. Zhang et al. actually look at real-world performance of routing
protocols for dynamic networks on UMass DieselNet, a network made up of
WiFi nodes on buses at the University of Massachusetts Amherst.

There is relatively little research into agents or agent-like entities working
in dynamic networks. Avin et al. look at the cost of random walks in evolving
graphs where the topology of the network changes each time step as links are
inserted or deleted [1]. As we mentioned in the introduction, Flocchini et al.
look at agents exploring a dynamic network deterministically [16]. However,
the solution proposed deals only with exploration and, because the agents
never leave the carriers, it is difficult to introduce the idea of a fault into
the PV graph model. Furthermore Casteigts et al. [5] study the problem of
broadcasting with termination detection in highly dynamic networks under
unstructured mobility, that is when the edges of the dynamic graph may
appear infinitely often but without any (known) pattern.

2 Definitions and Terminology

We consider a set C of nC carriers that move among a set S of nS sites. A
carrier c ∈ C follows a route R(c) between all the sites in its domain S(c) =
{s0, s1, . . . , snS(c)−1} ⊆ S. A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 is a
cyclic sequence of stops: after stopping at site ri ∈ S(c), the carrier will move
to ri+1 ∈ S(c), where all operations on the indices are modulo l(c) = |R(c)|
called the length of the route. Carriers move asynchronously, taking a finite
but unpredictable amount of time to move between stops. We call a route
simple if nS(c) = l(c), where nS(c) = |S(c)|. A transfer site is any site that
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is in the domain of two or more carriers. A terminal stop is one where all
passengers on a carrier are forced disembark1 and is denoted by a bar over the
stop (e.g., R(c) = 〈. . . , r̄i, . . .〉).

A carrier’s routeR(c) = 〈r0, r1, . . . , rl(c)−1〉 defines an edge-labeled directed
multigraph G(c) = (S(c),E(c), λ(c)), called a carrier graph, where S(c) are
the nodes, E(c) are the edges, and λ(c) the set of labels, and where there is
an edge labeled (c, i + 1) from ri to ri+1, and the operations on indices and
inside labels are modulo l(c). The entire network is then represented by the
edge- labelled directed multigraph G = (R,E, λ), called a subway graph, where
R = ∪c∈CR(c), E = ∪c∈CE(c), and λ = {λ(c) : c ∈ C}. Associated to the
subway graph is the transfer graph of G, which we define as the edge-labeled
undirected multigraph H(G) = (C,ET ) where the nodes are the carriers and,
∀c, c′ ∈ C, s ∈ S, there is an edge between c and c′ labeled s iff s ∈ S(c)∩S(c′),
i.e., s is a transfer site between c and c′. In the following, where no ambiguity
arises, we will omit the edge labels in all graphs.

Working in the network is a team A of k computational agents that start
at unpredictable times from the same site, called the homebase. The agents
move opportunistically around the network using the carriers. An agent can
move from a carrier to a site (disembark at a stop) or from a site to a carrier
(board a carrier), but not from one carrier to another directly. An agent on a
transfer site can board any carrier stopping at it. When travelling on a carrier,
an agent can count the number of stops that the carrier has passed, and can
decide whether or not to disembark at the next stop.

Agents communicate with each other using shared memory, available at
each site in the form of a whiteboard, which is accessed in fair mutual exclusion.
The agents are asynchronous in that they take a finite but unpredictable
amount of time to perform computations at a site. All agents execute the
same protocol.

Among the sites there are nB < nS black holes: sites that eliminate agents
disembarking on them without leaving a discernable trace; black holes do not
affect carriers. The black hole search (Bhs) problem is that of the agents
determining the locations of the black holes in the subway graph. A protocol
solves the Bhs problem if within finite time at least one agent survives and all
surviving agents enter a terminal state and know which stops are black holes.
Let γ(c) = |{i : ri ∈ R(c) is a black hole}| be the number of black holes among
the stops of c; and let γ(G) =

∑
c∈C γ(c), called the faulty load of subway

graph G, be the total number of stops that are black holes. The faulty load
γ(G) of subway graph G is the number of stops that are black holes.

As in traditional mobile agent algorithms, the basic cost measure used to
evaluate the efficiency of a Bhs solution protocol is the size of the team, that
is, the number k of agents needed by the protocol. To solve Bhs, it is obviously
necessary to have more agents than the faulty load of the network, i.e. k > γ.
A solution protocol is agent optimal if it solves the Bhs problem for k = γ+1.

1 We include terminal stops to allow us to model real life subway systems where subway
routes often have end stations where trains are switched out.
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Fig. 1 Subway graph of example (edge order omitted). Diamond arrow head indicates next
stop is terminal.

The other cost measure is the number of carrier moves, which is a combina-
tion of the traditional mobile agent algorithm metric of agent moves with the
cost of waiting imposed on the agent by its use of opportunistic movement in
the network. When an agent is a riding on a carrier, agent moves, or waiting
for a carrier, agent waits, each move made by that carrier is counted as a
carrier move for the agent. A solution protocol is move optimal in the worst
case if the total number of carrier moves incurred by all agents in solving the
Bhs problem is the best possible.

Throughout the rest of the paper, we use the subway graph presented
in Table 1 as an example to help explain how our proposed solution works.
Fig. 1 shows a view of the subway graph G. The routes of carriers c3 and c5
are simple while the other carriers’ routes are not. Sites 9 and 10 are terminal
stops on carrier c4 but normal stops on carrier c2. The same for site 15, which is
terminal on carrier c5 but normal on carrier c3. Fig. 2 shows the transfer graph
associated with the example. Note that the transfer graph remains connected
when the black holes are removed, including transfer site 13. Fig. 3 shows the
routes R(c) for each carrier c. Even though there are only three black hole
nodes, the routes show the γ = 8 black hole stops in the network.

3 Basic Limitations and Assumptions

There are some basic limitations for the Bhs problem to be solvable in subway
graphs; these in turn dictate some necessary assumptions.
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Carrier Route Length Domain Size

c R(c) = l(c) = |R(c)| S(c) = nS(c) = |S(c)|
〈r0, . . . , rl(c)−1〉 {s0, . . . , snS(c)−1}

c1 〈1, 3, 3, 2, 4̄, 4, 12 {1, 2, 3, 4, 5, 6} 6

2, 6, 1, 2, 5, 6〉
c2 〈1, 9, 10, 9〉 4 {1, 9, 10} 3

c3 〈5, 7, 8, 15, 13〉 5 {5, 7, 8, 13, 15} 5

c4 〈9̄, 11, 13, 14, 12, 10 {9, 10, 11, 12, 13, 14} 6

1̄0, 12, 14, 13, 11〉
c5 〈14, 13, 1̄5, 16〉 4 {13, 14, 15, 16} 4

Homebase: s = 1; Black holes: 6, 12, 13, nB = 3; Transfer sites: 1, 5, 9, 10, 13, 14, 15

Terminal sites: 4 (r4 on c1), 9 (r0 on c4), 10 (r5 on c4), and 15 (r2 on c5)

Table 1 Example subway graph.

c1 c2

c3 c4

c5

1

5 9 10

13

15 14

Fig. 2 Transfer graph H(G) of example. Edge labels are corresponding transfer site ids.
Transfer site 13 is a black hole.

Since solving the Bhs problem requires visiting all carrier stops, some
immediate limitations follow from those existing for the easier safe exploration
Exp problem: all sites are safe; within finite time all the exploring agents enter
a terminal state, and all sites have been visited by at least one agent. First of
all, the Exp problem is deterministically unsolvable if the carriers do not have
distinct ids visible to the agents.

Lemma 1 If the carriers do not have distinct ids visible to the agents, the
Exp problem is deterministically unsolvable. This result holds regardless of
the number k ≥ 1 of agents and even if the agents know nC , nS, and the
length of the routes.

Proof By contradiction, let P be a deterministic protocol that always allow a
team of k > 0 agents to explore all the sites of all subway graphs in which
there are no black holes but the carriers do not have distinct identities visible
to the agents. Consider now the subway graph G, corresponding to the routes
R(c1) and R(c2) of only two carriers c1 and c2, in which the only transfer
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Fig. 3 Carrier routes for carriers in example. Diamond arrow head indicates that the next
stop is a terminal stop.

site is the homebase s and S(c1) = S(c2) > 1. Since the two carriers have no
visible identifiers, an agent at s can not distinguish whether an arriving carrier
is c1 or c2. An adversary can clearly choose the speed of the two carriers in
such a way that, whenever an agent a at s decides to board the next carrier,
the carrier arriving there is c1. In other words, none of the agents will ever
board c2 and visit the sites reachable only through that route, contradicting
the correctness of P.

Hence in the following we will assume that the carriers have distinct identities
visible to the agents.

Next notice that some metric information, either the number of carriers nC
or the number of sites nS , must be be available to the agents for exploration,
and thus black hole search, to be possible.

Lemma 2 If the agents have no knowledge of nC nor of nS, the Exp problem
is deterministically unsolvable. This result holds regardless of the number k ≥ 1
of agents and even if the carriers have distinct visible ids.

Proof By contradiction, let P be a deterministic protocol that always allows
a team of k > 0 agents to explore all the sites of all subway graphs in which
there are no black holes without knowledge of nC nor of nS . Consider now an
execution of P in the subway graph G corresponding to the route of a single
carrier. Since the protocol is correct, within finite time T all sites will have
been visited and all agents enter a terminal state. Consider now the subway
graph G′ corresponding to the routes R(c1) and R(c2) of two carriers c1 and
c2, where R(c1) = R(c), S(c2) > 1, and the only transfer site is the homebase
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s, Consider now in G′ precisely the same execution of P as in G, in which the
adversary delays the arrival of c2 at s until time T ′ > T . Notice that by time
T none of the other agents will discover the existence of c2. Since neither nC
nor of nS are known, at time T the agents will notice no difference with the
previous setting and will thus enter a terminal state without visiting the sites
on the route of c2, contradicting the correctness of the protocol.

In the following we will assume that the number of carriers nC is known
to the agents.

Transfer sites play a crucial role in the connectivity of the system, with
and without black holes. Knowing that a site is a transfer site is necessary but
not sufficient; in fact an agent disembarking there must also know the number
of distinct carriers stopping there.

Lemma 3 If the agents have no knowledge of the number of carriers stopping
at a site, the Exp problem is deterministically unsolvable. This result holds
regardless of the number nS − 1 > k > 0 of agents, even if the carriers have
distinct visible ids, and the agents know nC , nS and the length of the routes.

Proof By contradiction, let P be a deterministic protocol that always allows
a team of nS − 1 > k > 0 agents to explore all the sites of all subway graphs,
in which there are no black holes, when the agents can detect whether a site
is a transfer site but without knowledge of the number of carriers stopping
there. Consider now the subway graph G corresponding to the route of three
carriers c1, c2 and c3. The routes of c1, c2 coincide except for the direction; i.e.,
R(c1) = 〈r0, r1, . . . , rl−1〉 and R(c2) = 〈r0, rl−1, . . . , r1〉 where l = |R(c1)| =
|R(c1)| = nS −1 > 1. The routes of c1, c2 meet with the route of c3 at a single
transfer site x, where l(c3) = 2. Notice that all the sites r0, r1, . . . , rl−1 are
transfer sites between two carriers, except for x which is a transfer site between
all three carriers. The agents can detect whether a site is a transfer site, but
not the number of carriers stopping there. The adversary allows the agents to
board both c1 and c2 and visit all the l sites on their route. Now, to complete
the exploration, at least one agent must board c3; to do so, an agent must
wait at x until c3 arrives; because of asynchrony, this might take a finite but
unpredictable amount of time. Since the agents working on c1 and c2 do not
know which of their common transfer sites contains c3 (namely site x), since
the agents do not know which stop is x and since k < nS−1 = l(c), the agents
cannot wait at all the sites on the route of c1 (or c2) simultaneously. Hence
the adversary can make the agents wait forever, contradicting the termination
of every execution of P .

Hence, in the following we will assume that the agents can determine the
number of carriers stopping at a site.

The next set of limitations are directly related to the nature of black hole
search and are a direct extension to the subway graph model of the limitations
existing for standard network models.

Lemma 4 For the Bhs problem to be deterministically solvable
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(i) the homebase and the terminal stops must be safe sites;
(ii) the transfer graph must stay connected once the black holes are removed;
(iii) k > γ;
(iv) γ must be known to the agents.

This result holds even if the carriers have distinct visible ids and the agents
know nC and nS, and the length of the routes.

Proof Conditions (i) and (ii) trivially follows from the fact that, since solving
the Bhs problem requires visiting all carrier stops, it is clearly necessary that
the safe stops are reachable from the homebase. Condition (iii) expresses the
obvious fact that to solve Bhs, it is necessary to have more agents than the
number of stops at black holes. The necessity of condition (iv) follows from the
requirement of knowledge of the stops leading to black holes when an agent
enters a terminal state. Because of asynchrony, slow computation by an agent
exploring a safe stop is indistinguishable from an agent having been eliminated
by a black hole stop; hence if γ is not known to the agents, a surviving agent
can not decide whether to wait or enter a terminal state.

We will refer to this set of conditions as standard for the Bhs problem, and
assume that they hold. Note that a corollary to condition (ii) is that if there
is more than one carrier, i.e. nC > 1, then each carrier must have at least one
safe transfer site in its domain.

Another important condition for solvability with an optimal team of agents
refers again to knowledge; this time it is about knowledge by the agents of the
length of each route.

Lemma 5 Let the standard conditions for the Bhs problem hold. If the agents
have no knowledge of the length of each route in the subway graph, the Bhs
problem is deterministically unsolvable by a set of k = γ+1 agents. This result
holds even if the carriers have distinct visible ids and the agents know nC and
nS.

Proof By contradiction, let P be a deterministic protocol that always allows a
team of k = γ+ 1 agents to solve the Bhs problem in all subway graphs under
the standard conditions without knowledge by the agents the length of each
route in the subway graph. Consider the subway graph G consisting of a single
route defined on-line by an adversary as follows. The carrier route is initially a
sequence of distinct sites starting from s: R =< s, s1s2 . . . >; the adversary will
execute P until each agent descends at a stop (they must); let x1, ..., xγ , xγ+1

be these stops, with x1 the closest to s. The adversary sets x1, ..., xγ−1 to be
black hole stops, Clearly only the agents a stopping at xγ = x and b stopping
at xγ+1 = y survive (for the moment) while all others are destroyed. When
ready to move, agent a will make a decision on where to go based on algorithm
P; since the length of the route is not known, for any algorithm, this decision
can be only of the form: wait for the wa-th carrier passage, board the carrier,
descend at the ma-th stop. Similarly for b. The adversary adds to the route
the stops (s x)wa z1 z2 . . . z(ma−1)z(s y)wb z1 z2 . . . z(mb−1)z where the zi are
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additional sites, and αf denotes f consecutive occurrences of the subsequence
α. In other words, the adversary finalizes the route as follows:

R =< s . . . x . . . y (s x)wa z1 z2 . . . z(ma−1) z (s y)wb z1 z2 . . . z(mb−1) z >

The adversary then makes a and b ready to move before the carrier reaches x
for the second time; in this way both agents stop at z which is chosen by the
adversary as a black hole stop. Hence all agents are destroyed, contradicting
the correctness of P.

Even if the length of each route is known to the agents, this condition
alone is not sufficient for black hole search with an optimal number of agents.
In fact, once disembarked, an agent must be able to board the same carrier at
the same point in its route, otherwise the problem is unsolvable.

Lemma 6 Let the standard conditions for the Bhs problem hold. Unless each
agent, once disembarked, is able to board the same carrier at the same point in
its route, the Bhs problem is deterministically unsolvable by a set of k = γ+1
agents. This result holds even if the carriers have distinct visible ids and the
agents know nC , nS and the length of each route.

Proof By contradiction, let P be a deterministic protocol that always allows a
team of k = γ+ 1 agents to solve the Bhs problem in all subway graphs under
the standard conditions even if the agents have no means, once disembarked
from a carrier, to board the same carrier at the same point in its route.
Consider a subway graph G consisting of a single route v0v1 . . . v(l(c)−1) where
there is only one black hole stop; the team thus consists of two agents, a and
b both starting from the homebase v0 = s. The location of the black hole stop
and the nature of the other sites in the route is decided on-line by an adversary
as follows. The adversary executes P until each agent descends at a stop (they
must); let a descend at vi and b at vj , where without loss of generality i < j. If
ready to move, agent a will make a decision on where to go based on algorithm
P; since it is unable to board the carrier at the same point in its route, this
decision will be of the form: wait for wa-th passage, board the carrier, descend
at the ma-th stop. Similarly for b.

If ma 6= j then the adversary defines that, in the route, v(j−ma) = x = vi,
where the operations on the indices are modulo l(c); that is v(j−ma) is the
same site where a is currently stopped. This means that by activating a again
when the carrier reaches v(j−ma), a will stop at vj , the site where b is currently
stopped. By choosing vj as the black hole site, the adversary makes both agents
disappear, contradicting the correctness of P. The same argument can be used
if ma = j but mb 6= i (just exchange a and b, and i and j).

If both ma = j and mb = i, let p ∈ {1, ..., nS − 1} \ {i, j} be such that
p − i 6= j and p − j 6= i where the operations are modulo l(c); such an index
p always exists for l(c) > 9. Notice that by definition of p, v(p−j) 6= s 6= v(p−i)
and, since mb = i < j = ma, then v(p−j) 6= v(p−i). The adversary then defines
that, in the route, v(p−j) = x = vi and v(p−i) = y = vj ; in other words, v(p−j)
and v(p−i) are the same sites where a and b are currently stopped, respectively;
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This means that, by activating a again when the carrier reaches v(p−j) and
activating b when the carrier reaches v(p−i), both a and b will stop at vp; notice
that by definition vp is neither s, nor x nor y. By choosing vp as the black hole
site, the adversary makes both agents disappear, contradicting the correctness
of P.

Summarizing, in light of the above impossibility results, we make the
following necessary assumptions. The set of standard assumptions for black
hole search hold (necessary by Lemma 4). Each carrier is labelled with a
distinct id and with the length of its route, and when at a site an agent can
read the labels and the route length of any carrier stopping there (necessary
by Lemmas 1 and 5). Each transfer site is labelled with the number of carriers
stopping there (necessary by Lemma 3). Once disembarked, an agent is able to
board the same carrier at the same point in its route (necessary by Lemma 6).
Furthermore, we assume that, while the number of sites nS might be unknown,
the agents know the number of carriers nC (one of the two values is necessary
by Lemma 2).

4 Exploration algorithm

In this section we present the proposed algorithm SubwayExplore; as we will
show later, our algorithm works correctly with any number of agents k ≥ γ+1
and is cost optimal. We first describe how the algorithm works in general,
followed by a more detailed description.

4.1 Overview

Algorithm SubwayExplore works as follows. The agents start at unpredictable
times from the same site s, called the homebase. and collectively search all
the carriers 2, by visiting all their stops, looking for black holes. Each agent
performs a series of search tasks; each task, called work, involves visiting a
previously unexplored stop on a carrier’s route and returning, if possible, to
report what was found there.

Every carrier is searched starting from a work site; the work sites are
organized into a logical work tree that is rooted in the homebase. The first
agent to access the homebase’s whiteboard initializes the homebase as a work
site (Section 4.2). It and the agents awaking after it then begin to work by
visiting the stops of the carriers stopping at the homebase (Section 4.3).
If an exploring agent finds a previously unexplored transfer site, the agent
“competes” to add the transfer site to the work tree. If the agent succeeds, the
transfer site becomes a work site for some or all of the other carriers stopping
at it and the work site from which it was discovered becomes the work site’s
parent in the work tree (Section 4.4).

2 We use the terminology of searching a carrier to mean the searching of the route travelled
by that carrier
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When the carrier that the agent is exploring has no more unexplored stops,
the agent tries to find in the work tree another carrier with work to be done.
The agent looks for work in the subtree rooted in its current work site and if
there is no work available it moves to the work site’s parent and tries again
(Section 4.5). An agent terminates if it is at the homebase, there is no work,
and there are nC carriers in the work tree. Whenever an agent takes a carrier,
it is possible for it to encounter terminal stops where the agent is temporarily
kicked off the carrier. If this happens and the agent needs to continue on that
route, the agent simply gets back on the same carrier.

4.2 Initialization

When an agent awakes for the first time on the homebase, it tries to initialize
the homebase as a work site. Only the first agent accessing the whiteboard
succeeds and executes the Initialize Work Site procedure. All other agents
proceed directly to trying to find work.

The Initialize Work Site procedure is used to set up each work site in
the work tree. The procedure takes as input the parent of the work site and
the carriers to be worked on or serviced from the work site. For the homebase,
the parent is null and the carriers to be accessed are all those stopping at
s. The procedure initializes the work site’s whiteboard with the information
needed to find work, do work, and compete to add work. More precisely, when
a work site ws is initialized, its parent is set to the work site from which it
was discovered (null in the homebase’s case) and its children are initially null.
The carriers it will service are added to Csubtree, the set of carriers in the work
tree at and below this work site. The same carriers are also added to Cwork,
the set of carriers in the subtree with unexplored stops, and Clocal, the set
of carriers serviced by this work site. For each carrier c added to Clocal, the
agent setting up the whiteboard creates three sets Uc, Dc, and Ec. The set Ec
of explored stops is initialized with the work site at r0 = ws (r0 is always the
work site servicing the carrier). The set Uc of unexplored stops is initialized
with the rest of the stops on the carrier’s route {r1, r2, . . . , rl(c)−1}, which is
possible because each carrier is labelled with its length as well as its id. The
set Dc of stops being explored (and therefore potentially dangerous sites) is
initially empty. The pseudocode for initialization is in Algorithm 1.

4.3 Do work

We now discuss how the agents do their exploration of unexplored stops. To
limit the number of agents eliminated by black holes, we use a technique similar
to the cautious walk technique used by black hole search algorithms in static
networks. Consider an agent a on the work site ws of a carrier c that still
has unexplored stops, i.e. Uc 6= ∅. The agent does the following. It chooses an
unexplored stop r ∈ Uc for exploration, removes r from Uc, and adds it to the
set Dc of stops being explored. It then takes c to r and disembarks.
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Algorithm 1 Initialization
Agent a awakes on starting site s.
. Initialize work information on whiteboard

1: if whiteboard is blank then
2: Initialize Work Site(null, carriers stopping at s)
3: end if
4: Find Work

Agent a is initializing the whiteboard of work site ws with information needed to find
work, do work, and compete to add work.

5: procedure Initialize Work Site(parent p, carriers C)
6: for c ∈ C do

. Work site information (Do work)
7: Uc ← {r1, r2, ...rl(c)−1} . Set of c’s unexplored stops
8: Dc ← ∅ . Set of c’s stops being explored
9: Ec ← {r0} . Set of c’s explored stops where r0 is the work site

. Work competition information (Compete to add work)
10: Csubtree ← Csubtree ∪ {c} . Set of carriers in subtree rooted in current node

. Work tree information (Find work)
11: Clocal ← Clocal ∪ {c} . Add c to set of carriers worked on from this work site
12: Cwork ← Cwork ∪{c} . Add c to set of carriers in subtree with unexplored stops
13: end for

. Work tree information (Find work)
14: parent← p
15: children← ∅
16: end procedure

If the agent survives, it returns to ws using the same carrier c and disem-
barks. The agent can make the trip back to ws because it knows the index of
r and the length of c’s route, l(c), and can therefore calculate the number of
stops between r and ws. At ws, it removes r from Dc and adds it to the set
Ec of explored stops. At this point, the agent also adds the site id and any
other information of interest.

If r is a transfer site and a is the first to visit it (its whiteboard is blank),
then, before returning to ws, the agent proceeds as follows. It records on r’s
whiteboard all the carriers that pass by r including their id and lengths of their
route. It initializes two sets in its own memory: the set of new carriers initially
containing all the carriers stopping at r; and the set of existing carriers,
initially empty. These sets are used in the next procedure that we discuss:
competing to add work. The Do Work procedure is in Algorithm 2.

Fig. 4 shows an example of the work site information at some instant used
by agents to do work from the root in our example subway graph. At this point
in the execution, carrier c1 has 5 unexplored stops, 4 stops being explored that
could potentially be black holes, and 4 stops that have been explored and are
known not to be black holes. Carrier c2 has no unexplored stops, 3 stops
being explored, and one stop that has been explored, which happens to be the
homebase in this case.
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Algorithm 2 Do work
Agent a is working on carrier c from work site ws.

17: procedure Do Work(carrier c)
18: while Uc 6= ∅ do
19: choose a stop r from Uc

20: Uc ← Uc \ {r} . Remove r from the set of unexplored stops
21: Dc ← Dc ∪ {r} . Add r to the set of stops being explored
22: take c to r and disembark

. If not eliminated by black hole
23: if r is a transfer site ∧ whiteboard is blank then
24: a.newC ← ∅ . Initialize agent’s set of new carriers
25: a.existingC ← ∅ . Initialize agent’s set of existing carriers
26: for each carrier c stopping at r do
27: record c on whiteboard
28: a.newC ← a.newC ∪ {c} . Add carrier to agent’s set of new carriers
29: end for
30: end if
31: take c to ws and disembark
32: Dc ← Dc \ {r} . Remove r from the set of stops being explored
33: Ec ← Ec ∪ {r} . Add r to the set of explored stops
34: if r was a transfer site then
35: Compete to Add Work
36: end if
37: end while
38: end procedure

s

c1 c2

c1 info on work site s
Uc1

= {r8, r9, r10, r11, r12}
Dc1 = {r2, r3, r6, r7}
Ec1 = {r0, r1, r4, r5}

c2 info on work site s
Uc2

= {}
Dc2 = {r1, r2, r3}
Ec2 = {r0}

Fig. 4 Work site information for doing work in our example subway graph at some instant.

4.4 Compete to add work

When an agent a discovers that a stop r is an unvisited transfer site, that
stop is a potential new work site for the other carriers stopping at it. There
is a problem, however: other agents may have independently discovered some
or all of those carriers stopping at r. To ensure that to each carrier there is
only one associated work site in the work tree, in our algorithm agent a must
compete with all those other agents to add r as the new work site in the tree
for these carriers. We use Csubtree on the work sites in the work tree to decide
the competition (if any).

Let us describe the actions that agent a performs; let a have just finished
exploring r on carrier cws from work site ws and found that r is a new transfer
site. The agent has a set of new carriers that initially contains all the carriers
stopping at r, a set of existing carriers that is initially empty, and is currently
on its work site ws. The agent walks up the work tree from ws to s checking
the set of new carriers against Csubtree on each work site. If a new carrier is
not in Csubtree, the agent adds it. If a new carrier is in Csubtree, the agent
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s

c1.r10 c2.r3

c3.r5 c4.r8

Csubtree = {c1, c2, c3, c4}
Clocal = {c1, c2}

Csubtree = {c3}
Clocal = {c3}

Csubtree = {c4}
Clocal = {c4}

a1.newC = {c5}
a1.existingC = {}

a2.newC = {c5}
a2.existingC = {}

Fig. 5 Work competition information for competing to add work at some instant after Fig.
4.

moves it to the set of existing carriers. The agent continues until it reaches s
or its set of new carriers is empty. The agent then walks down the work tree
to ws. It adds each carrier in its set of new carriers to Cwork on each work
site on the way down to ws. For each carrier in its set of existing carriers, it
removes the carrier from Csubtree if it was the agent that added it. When it
reaches ws, it removes the existing carriers and if there are no new carriers,
it continues its work on cws. If there are new carriers, the agent adds r as a
child of ws and goes to r. At r, the agent initializes it as a work site using the
Initialize Work Site procedure with ws as its parent and the set of new
carriers as its carriers. The agent then returns to ws and continues its work
on cws. The pseudocode for the Compete to Add Work procedure is in
Algorithm 3.

Fig. 5 shows the work competition information at some instant used by
two agents to compete to add a new work site servicing carrier c5 to the work
tree for our example subway graph. Agents a1 and a2 have discovered carrier
c5 independently from carriers c3 and c4 respectively. The agents will walk up
the tree towards s adding c5 to Csubtree on the way. Only one of the agents
will be able to add c5 to s’s Csubtree and that agent’s site will become the new
work site for carrier c5

The Compete to Add Work procedure ensures the acyclic structure of
the work-tree and that all new work is reported to the root:

Lemma 7 If a new carrier is discovered, within finite time it is added to the
work tree and the new work is reported to the root.

Proof By construction, all the steps taken by an agent after finding a new
carrier are safe. They involve either moving on the carrier, which is immune
to black holes, to a work site in the work tree, which must be safe. Hence each
move will be completed in finite time. Let c be a newly discovered carrier. If
it is discovered by only a single agent a, working from work site ws, then the
agent a clearly reaches s, adding c to Csubtree on ws up to s. Consider now the
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Algorithm 3 Compete to Add Work
Agent a has found a new transfer site r while exploring carrier cws from work site ws
and is competing to add it to the work tree with ws as r’s parent.

39: procedure Compete to Add Work
. Walk up tree

40: repeat
41: take the appropriate carrier to parent and disembark
42: for c ∈ a.newC do
43: if c ∈ Csubtree then
44: a.newC ← a.newC \ {c} . Remove from agent’s set of new carriers
45: a.existingC ← a.existingC ∪ {c} . Add to agent’s set of existing carriers
46: else
47: Csubtree ← Csubtree ∪ {c}
48: end if
49: end for
50: until (on s) ∨ (a.newC = ∅)

. Walk down tree
51: while not on ws do
52: for c ∈ a.newC do
53: Cwork ← Cwork ∪ {c} . Add new carriers with work in subtree
54: end for
55: for c ∈ a.existingC do
56: if a added c to Csubtree then
57: Csubtree ← Csubtree \ {c} . Remove carrier from subtree set
58: end if
59: end for
60: take appropriate carrier to child in direction of ws and disembark
61: end while

. Remove any existing carriers on ws
62: for c ∈ a.existingC do
63: if a added c to Csubtree then
64: Csubtree ← Csubtree \ {c} . Remove carrier from subtree set
65: end if
66: end for

. Add any new carriers to the tree with r as their work site
67: if a.newC 6= ∅ then
68: children← children ∪ {r}
69: for c ∈ a.newC do
70: Cwork ← Cwork ∪ {c}
71: end for
72: take carrier cws to r and disembark
73: Initialize Work Site(ws, a.newC)
74: take carrier cws to ws and disembark
75: end if
76: Do Work(cws) . Keep working on original carrier
77: end procedure

case when two or more agents a1, a2, . . . ai from work sites ws1, ws2, . . . wsi
independently discover carrier c; let w be the closest common ancestor in the
work tree of the work sites ws1, ws2, . . . wsi. Each such agent competes to add
the new information to the work tree. However, mutual exclusion access to the
whiteboards ensures that only one, say aj , will be able to proceed from w to
s, and wsj will become the only work site for carrier c.
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4.5 Find work

Now that we have seen work being done and new work added to the tree, it
is easy to discuss how an agent a finds work. When a work site is initialized,
its parent is set to the work site from which it was discovered (null in the
homebase’s case) and its children are initially null. As mentioned before,
each work site has a set Cwork that contains the carriers in its subtree with
unexplored stops.

If Cwork on the current work site is not empty, an agent a looking for work
chooses a carrier c and walks down the tree until it reaches the work site ws
servicing c or it finds that c is no longer in Cwork. Assume that agent a reaches
ws without finding c missing from Cwork. Then a works on c until it is either
eliminated by a black hole or Uc is empty. If the agent survives and is the first
agent to discover that Uc is empty, it walks up the tree from ws to s removing
c from Cwork along the way. So, it is possible for an agent descending to do
work on c to find out before it reaches ws that the work on c is finished. In
that case, the agent starts over trying to find work.

If agent a looking for work finds that Cwork at the current work site is
empty, it moves to the work site’s parent and tries again. If it reaches the
root without finding work but the termination condition is not met (there are
fewer than nC carriers in the work tree), the agent waits (loops) until new
work arrives or the termination condition is finally met. The pseudocode for
the Find Work procedure is in Algorithm 4.

Figure 6 shows the work tree information at some instant used to find
work in our example subway graph. Note the the agent from carrier c4 won
the competition to add carrier c5 to the tree. Assume that an agent has just
finished exploring carrier c3 from stop r10 on carrier c1’s route and the agent
finds no more unexplored stops. There are no other carriers in this part of the
work tree, so the agent moves to the parent in the tree, s. It finds that three
carriers, c1, c4, and c5, still have work. It randomly chooses a carrier from
Cwork and safely traverses the work tree to that carrier’s work site, where it
starts to do work.

The Find Work procedure ensures the following property:

Lemma 8 Within finite time, an agent looking for work either finds it or
waits on the root.

Proof By Lemma 7, all work gets reported to the root within finite time. By
construction, if an agent does not find work on the current work site, it moves
to the work site’s parent. Both checking for work and moving to the parent
take finite time. Therefore, within finite time, an agent looking for work either
finds it or reaches the root and waits there until work arrives or the termination
conditions are satisfies.
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Algorithm 4 Find work
Agent a is looking for work in the work tree. The agent knows nC , the number of carriers,
which is needed for termination. Let ws be the current work site.

78: procedure Find Work
. Main loop

79: while (not on s) ∨ (Cwork 6= ∅) ∨ (|Csubtree| < nC) do . Termination conditions
. Choose carrier to work on and go there

80: if Cwork 6= ∅ then
81: choose carrier c from Cwork

82: while (c /∈ Clocal)∧ (c ∈ Cwork) do . While not c’s work site and c has work
83: take appropriate carrier to child in direction of c and disembark
84: end while
85: if c ∈ Clocal then . On the work site servicing c
86: Do Work(c)

. Carrier c has no more work so remove it from the tree
87: if c ∈ Cwork then . The first agent to find no work left on c
88: while not on s do
89: Cwork ← Cwork \ {c} . Remove c from all Cwork on way to s
90: take appropriate carrier to parent and disembark
91: end while
92: Cwork ← Cwork \ {c} . Remove c from Cwork on s
93: end if
94: end if

. No work in subtree
95: else
96: take appropriate carrier to parent and disembark
97: end if
98: end while
99: end procedure

Clocal = {c1, c2}
Cwork = {c1, c4, c5}

s

Clocal = {c3}
Cwork = {}

c1.r10
Clocal = {c4}
Cwork = {c4, c5}

c2.r3

Clocal = {c5}
Cwork = {c5}

c4.r8

Fig. 6 Work tree information for finding work at some instant after Fig. 5.

4.6 Correctness

Now that we have seen how algorithm SubwayExplore works, we can show that
it works correctly.

To do so, we need to establish some additional properties of the Algorithm:
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Lemma 9 Let ri ∈ R(c) be a black hole. At most one agent is eliminated by
stopping at ri when riding c.

Proof By contradiction, assume that two agents have chosen to explore a black
hole stop ri on the same carrier c. By Lemma 7, each carrier is worked on
from a single work site, so both agents must have chosen ri from Uc on the
work site. However, since Uc is kept on the whiteboard which is accessed in
mutual exclusion, it is impossible for both agents to choose the same stop for
exploration. Hence, the lemma follows.

Lemma 10 There is at least one agent alive at all times before termination.

Proof By Lemma 9, we know that only one agent can die per black hole stop.
Since we have γ(G) + 1 agents working, where γ(G) is the number of black
hole stops in G, there is always at least one more agent than can be eliminated
by the black holes in the network.

Lemma 11 An agent that undertakes work completes it within finite time.

Proof An agent works by visiting an unexplored stop on a carrier’s route. The
carrier arrives within finite time and takes finite time to deliver the agent to
the stop. If the agent is eliminated then its work is completed and other agents
are protected from being eliminated by the same stop on the same carrier. If
the agent survives then within finite time it takes the carrier back to the work
site to report on the work. Hence, the lemma follows.

Lemma 12 If there is work available, an agent eventually does it.

Proof By contradiction, assume that there is work available but no agent does
it. By construction, an agent is either trying to do work, competing to add
work, or find work and by Lemmas 7, 8, and 11, the agent completes each
activity in finite time. Furthermore, by Lemma 8, if there is work available
an agent finds it. Therefore, the only reason that work would be available but
no agent does it is if all the agents have been eliminated by a black hole.
But, we know from Lemma 10 that there is always at least one agent alive, a
contradiction. Hence, the lemma follows.

Lemma 13 All carriers are eventually added to the tree.

Proof By contradiction, assume that there is a carrier c that is never added
to the work tree. By Lemma 12, available work is eventually done. If an agent
doing work finds a new carrier then by Lemma 11 it is added to the tree in
finite time. Therefore, the only way that a carrier would never be added to the
work tree is if the subway graph is not connected, violating our requirement
that it be connected, a contradiction. Hence, the lemma follows.

We can now state the correctness of our algorithm:

Theorem 1 Protocol SubwayExplore correctly and in finite time solves the
mapping problem with k ≥ γ(G) + 1 agents in any subway graph G.
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5 Bounds and Optimality

We now analyze the costs of our algorithm, establish lower bounds on the com-
plexity of the problem and prove that they are tight, showing the optimality
of our protocol.

Theorem 2 The algorithm solves black hole search in a connected dangerous
asynchronous subway graph in O(k · n2C · lR + nC · l2R) carrier moves in the
worst case.

Proof First let us examine the do work procedure. Each time an agent chooses
a node for exploration, it waits up to l(c)− 1 carrier moves for the carrier to
return to the work site. The agent then takes at most l(c) carrier moves to
reach the stop and return to the work site. Once the stop has been explored,
the agent waits at most l(c) carrier moves for the carrier to return. Therefore,
the cost for exploring one stop is at most 3l(c)− 1 carrier moves. The cost for
exploring all the stops on a route is therefore O(l2R) carrier moves and the cost
for searching all carriers is O(nC · l2R).

Next let us examine the cost of competing to add work. Consider a new
carrier c being found, causing the resulting work to have to be added. Note
that several agents, possibly all, might discover c independently and must
compete to add the new work to the tree. Each of these agents tries to move
towards the root, moving from its current work site to its parent, each move
costing up to l(c)− 1 carrier moves. However, for each work site, at most one
agent wanting to add the work of c is allowed to proceed to its parent work
site. Hence the total number of moves up the tree incurred to add the work
of c is at most one for each edge in the tree, i.e. nC − 1, for a total of at most
O(nC · lR) carrier moves.

Finally, let us consider the cost of finding work. When finding work, an
agent a first looks for an indication of where work can be found, moving up
the work tree if needed; once an indication is found, agent a moves down the
tree following the indication. Notice that it is possible that, when looking for
an indication, agent a finds none, ending up at the root of the work tree;
if there are still some routes to be explored (a condition that a can verify),
eventually some other agent will add a new carrier to be explored (i.e., new
work to be performed) to the list at the root and a will follow the indication.
All this movement will illicit at most 2nC − 1 moves up and down the tree,
each costing at most lS carrier moves. An agent looks for an indication only
when it has no work; i.e., when the stops of the local carrier it was working
for have all been explored; this means that this process can occur at most nC
times. In other words, the total number of carrier moves caused by finding
work will be at most O(k · n2C · lS).

Summarizing, the total number of carrier moves required by the algorithm
in the worst case is at most O(k · n2C · lR + nC cdotl2R).

We now establish some lower bounds on the worst case complexity of any
protocol using the minimal number of agents.
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Fig. 7 Transfer graph in the lowerbound proof

Theorem 3 For any α, β, γ, where α, β > 2 and 1 < γ < 2αβ, there exists
a simple subway graph G with α carriers with maximum route length β and
faulty load γ in which every agent-optimal subway mapping protocol P requires
Ω(α2 · β · γ) carrier moves in the worst case. This result holds even if the
topology of G is known to the agents.

Proof Consider a subway graph G whose transfer graph is a line graph; all α
routes are simple and have the same length β; there exists a unique transfer
stop between neighbouring carriers in the line graph; no transfer site is a black
hole, and the number of black holes is γ. The agents have all this information,
but do not know the order of the carriers in the line.

Let P be a subway mapping protocol that always correctly solves the
problem within finite time with the minimal number of agents k = γ + 1.
Consider an adversary A playing against the protocol P. The power of the
adversary is the following: 1) it can choose which stops are transfers and
which are black holes; 2) it can “block” a site being explored by an agent (i.e.,
delay the agent exploring the stop) for an arbitrary (but finite) amount of
time; 3) it can choose the order of the carriers in the line graph. The order of
the carrier will be revealed to the agents incrementally, with each revelation
consistent with all previous ones; at the end the entire order must be known
to the surviving agents.

Let the agents start at the homebase on carrier c1. Let q = d k−2β−2e. Assume

that the system is in the following configuration, which we shall call Flip(i),
for some i ≥ 1: (1) carrier c1 is connected to c2, and carrier cj (j < i) is
connected to cj+2; (2) all stops of carriers c1, c2, . . . , ci have been explored,
except the transfer stop ri+1, leading from carrier ci−1 to carrier ci+1, and the
stop ri+2 on carrier ci+1, which are currently being explored and are blocked
by the adversary; and (3) all agents, except the ones blocked at stops ri+1 and
ri+2, are on carrier ci. See Fig. 7.

If the system is in configuration Flip(i), with i < α − q, the adversary
operates as follows.

1. The adversary unblocks ri+1, the transfer site leading to carrier ci+1. At
this point, all k− 1 unblocked agents (including the k− 2 currently on ci)
must move to ri+1 to explore ci+1 without waiting for the agent blocked
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at ri+2 to come back. To see that all must go within finite time, assume
by contradiction that only 1 ≤ k′ ≤ k− 2 agents go to explore ci+1 within
finite time, while the others never go to ri+1. In this case, the adversary
first reveals the order of the carriers in the line graph by assigning carrier
cj to be connected to cj+1 for α > j > i. Then the adversary chooses to
be black holes: ri+2, the first k′ non-transfer stops visited by the k′ agents,
and other k− k′− 2 non-transfer stops arbitrarily chosen in those carriers.
Notice this can be done because, since qd k−2β−2e, the number of non-transfer

stops among these carriers is q(l − 2) + 1 ≥ k − 1. Thus all k′ agents will
enter a black hole. Since none of the other agents will ever go to ci+1, the
mapping will never be completed. Hence, within finite time all k − 1 non
blocked agents must go to ri+1, with a total cost of O(k ·i·β) carrier moves.

2. The adversary blocks each stop of ci+1 being explored, until k − 1 stops
are being explored. At that point, it unblocks all those stops except one,
ri+3. Furthermore, it makes ri+2 the transfer stop leading to carrier ci+2.

Notice that after these operations, the system is precisely in configuration
Flip(i +1). Further observe now that, from the initial configuration, when
all agents are at the homebase and the protocol starts, the adversary can
create configuration Flip(0) by simply blocking the first two stops of c1 being
explored, and making one of them the transfer to c2.

In other words, within finite time, the adversary can create configuration
Flip(0); it can then transform configuration Flip(i) into Flip(i+1), until con-
figuration Flip (α− q − 1) is reached.

At this point the adversary reveals the entire graph as follows: it unblocks
rα−q+1, the transfer site leading to carrier cα−q+1; it assigns carrier cj to be
connected to cj+1 for α > j > α− q; finally it chooses k− 1 non-transfer stops
of these carriers to be black holes; notice that they can be chosen because,
since q = d k−2β−2e, the number of non-transfer stops among these carriers is

q(l − 2) + 1 ≥ k − 1.
The transformation from Flip(i) into Flip(i+1) costs the solution protocol

P at least Ω(k · i · β) carrier moves, and this is done for 1 ≤ i ≤ α − q; since
α(l − 2) ≥ (k − 2) it follows that α − q = α − d k−2β−2e ≥ α − k−2

β−2 ≥
α
2 ; hence,∑

1≤i≤α−q i = O(α2). In other words, the adversary can force any solution

protocol to use Ω(α2 · β · γ) carrier moves.

Theorem 4 For any α, β, γ, where α, β > 2 and 1 < γ < β − 1, there exists
a simple subway graph G with α carriers with maximum route length β and
faulty load γ in which every subway mapping protocol P requires Ω(α · β2)
carrier moves in the worst case. This result holds even if the topology of G is
known to the agents,

Proof Consider a subway graph G whose transfer graph is a line graph, where
ci is connected to ci+1, 1 ≤ i < α; all α routes are simple and have the same
length β; there exists a unique transfer stop between neighbouring carriers in
the transfer graph; no transfer site is a black hole and the number of black holes
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is γ. The agents have all this information, including the order of the carriers in
the line. Let P be a subway mapping protocol that always correctly solves the
problem within finite time. Correctness of P implies that all stops are explored.
If the stop is not a black hole, after exploring it, the agent must take a carrier;
the adversary can delay this operation ensuring that β − 1 carrier moves are
elapsed from the time the agent starts waiting to the time the carrier arrives.
Thus the adversary can ensure that the execution of protocol P costs at least
m (β − 1) carrier moves, where m is the number of safe stops in the subway
graph. Since the total number of stops is α(β−2) + 2 and γ ≤ β−2, it follows
that m (β− 1) = (α(β− 2) + 2− γ)(β− 1) ≥ (α(β− 2) + 2− (β− 2))(β− 1) =
((α− 1)(β − 2) + 2)(β − 1), and the theorem holds.

The optimality of the protocol with respect to carrier moves now follows.

Theorem 5 Protocol SubwayExplore is agent-optimal and move-optimal.

Proof Agent optimality derives from the fact that the protocol correctly solves
the problem in a subway graph G for any k > γ(G), hence also when k =
γ(G) + 1. As for the number of carrier moves with the minimal number of
agents, observe that, in case γ(G) < lR − 1, by theorems 3 and 4, the lower
bound for any agent-optimal solution protocol is Ω(k ·n2C · lR+nC · l2R); hence,
by Theorem 2, the protocol is move optimal in that case. Further observe that,
when γ(G) > lR− 1 the protocol uses O(k n2

C · lR) moves, which, by Theorem
3, are needed in the worst case.
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