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Abstract12

We investigate the computational power of distributed systems whose autonomous computational13

entities, called robots, move and operate in the 2-dimensional Euclidean plane in synchronous14

Look-Compute-Move (LCM ) cycles. Specifically, we focus on the power of persistent memory and15

that of explicit communication, and on their computational relationship.16

In the most common model, OBLOT , the robots are oblivious (no persistent memory) and silent17

(no explicit means of communication). In contrast, in the LUMI model, each robot is equipped with18

a constant-sized persistent memory (called light), visible to all the robots; hence, these luminous19

robots are capable in each cycle of both remembering and communicating. Since luminous robots20

are computationally more powerful than the standard oblivious one, immediate important questions21

are about the individual computational power of persistent memory and of explicit communication.22

In particular, which of the two capabilities, memory or communication, is more important? in other23

words, is it better to remember or to communicate ?24

In this paper we address these questions, focusing on two sub-models of LUMI: FST A, where25

the robots have a constant-size persistent memory but are silent; and FCOM, where the robots can26

communicate a constant number of bits but are oblivious. We analyze the relationship among all27

these models and provide a complete exhaustive map of their computational relationship. Among28

other things, we prove that communication is more powerful than persistent memory under the fully29

synchronous scheduler Fsynch, while they are incomparable under the semi-synchronous scheduler30

Ssynch.31
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1 INTRODUCTION39

1.1 Background and Motivation40

The computational issues of autonomous mobile entities operating in an Euclidean space41

in Look-Compute-Move (LCM ) cycles have been the object of much research in distributed42

computing. In the Look phase, an entity, viewed as a point and usually called robot, obtains43

a snapshot of the space; in the Compute phase it executes its algorithm (the same for all44
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robots) using the snapshot as input; it then moves towards the computed destination in the45

Move phase. Repeating these cycles, the robots are able to collectively perform some tasks46

and solve some problems. The research interest has been on determining the impact that47

internal capabilities (e.g., memory, communication) and external conditions (e.g. synchrony,48

activation scheduler) have on the solvability of a problem.49

In the most common model, OBLOT , in addition to the standard assumptions of50

anonymity and uniformity (robots have no IDs and run identical algorithms), the robots51

are oblivious (no persistent memory to record information of previous cycles) and silent52

(without explicit means of communication). Computability in this model has been the53

object of intensive research since its introduction in [27]. Extensive investigations have been54

carried out to clarify the computational limitations and powers of these robots for basic55

coordination tasks such as Gathering (e.g., [1, 2, 4, 6, 7, 8, 15, 21, 27]), Pattern Formation56

(e.g., [16, 18, 27, 30, 31]), Flocking (e.g., [5, 19, 26]); for a recent account of the state of the57

art on some of these problems, see [13] and the chapters therein. Clearly, the restrictions58

created by the absence of persistent memory and the incapacity of explicit communication59

severely limits what the robots can do and renders complex and difficult for them to perform60

the tasks they can do.61

A model where robots are provided with some (albeit limited) persistent memory and62

communication means is the LUMI model, formally defined and analyzed in [9, 10], following63

a suggestion in [24]. In this model, each robot is equipped with a constant-sized memory64

(called light), whose value (called color) can be set during the Compute phase. The light65

is visible to all the robots and is persistent in the sense that it is not automatically reset66

at the end of a cycle. Hence, these luminous robots are capable in each cycle of both67

remembering and communicating a constant number of bits. There is a lot of research68

work on the design of algorithms and the feasibility of problems for luminous robots (e.g.,69

[3, 10, 11, 17, 20, 22, 23, 25, 28, 29]); for a recent survey, see [12].70

As for the computational relationship between OBLOT and LUMI, the availability71

of both persistent memory and communication, however limited, clearly renders luminous72

robots more powerful than oblivious robots (e.g., [10]). This immediately raises important73

questions about the individual computational power of the two internal capabilities: memory74

and communication. In particular,75

if the robots were endowed with a constant number of bits of persistent memory but were76

still unable to communicate explicitly, what problems could they solve ?77

If the robots could communicate a constant number of bits in each cycle, but were78

oblivious, what would be their computational power then ?79

Which of the two capabilities, memory or communication, is more important? or, in80

other words, is it better to remember or to communicate ?81

Helpful in this regards are two sub-models of LUMI. In the first model, FST A, the82

light of a robot is visible only by that robot, while in the second model, FCOM, the light83

of a robot is visible only to the other robots. Thus in FST A the color merely encodes an84

internal state; hence the robots are finite-state and silent. On the contrary, in FCOM, a85

robot can communicate to the other robots through its colored light but forgets the content86

of its transmission by the next cycle; that is, robots are finite-communication and oblivious.87

This means that some answers to the above questions, as well as others, can be provided88

by exploring and determining the computational power within these four models, OBLOT ,89

FST A, FCOM, and LUMI and with respect to each other. This is the focus of this paper.90

When studying computability within a model of LCM robots, two interrelated external91

factors play a crucial role: time and activation schedule. With respect to these factors, there92
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are two fundamentally different settings: asynchronous and synchronous.93

In the asynchronous setting (Asynch), first studied in [14], there is no common notion94

of time, each robot is activated independently of the others, the duration of each phase is95

finite but unpredictable and might be different in different cycles.96

In the synchronous setting (Ssynch), also called semi-synchronous and first studied in97

[27], time is divided into discrete intervals, called rounds; in each round some (possibly all)98

robots are activated, perform their LCM cycle simultaneously, and terminate by the end of99

the round. The selection of which robots are activated at a round is made by the adversarial100

scheduler, constrained to be fair. A special synchronous setting which plays an important101

role is the fully-synchronous setting (Fsynch) where every robot is activated in every round;102

that is, the activation scheduler has no adversarial power.103

Returning to the focus of this paper, which is to understand the computational power104

within each model, the amount of available knowledge is rather limited. In particular, it105

is known that, within OBLOT , robots in Fsynch are strictly more powerful than those106

in Ssynch: there are problems solvable in Fsynch but unsolvable in Ssynch [27]. It is107

also known that, within LUMI, robots have in Asynch the same computational power as108

in Ssynch [10]. As for the relationship between different models, it has been shown that109

asynchronous luminous robots are strictly more powerful than oblivious synchronous robots110

[10]. The FCOM and FST A models have been studied only in the context of Rendezvous,111

which cannot be solved in Ssynch in the OBLOT model, while it has been shown to be112

solvable in both FCOM and FST A [17]. In this paper we investigate these questions,113

focusing on synchronous schedulers.114

1.2 Contributions115

We analyze the relationship among all these models and provide a complete exhaustive map116

of their computational relationship, summarized in Tables 1-3, where: X Y denotes model X117

under scheduler Y ; F and S stand for Fsynch and Ssynch respectively, A > B indicates118

that model A is computationally more powerful than model B, A ≡ B denotes that they are119

computationally equivalent, A⊥B denotes that they are computationally incomparable.120

We first examine the computational relationship within each scheduler. Among other121

things, we prove that the answer to the question “is it better to remember or to communicate122

?” depends on the type of scheduler. More precisely, communication is more powerful than123

persistent memory if the scheduler is fully synchronous; on the other hand, the two models124

are incomparable under the semi-synchronous scheduler.125

We then focus on the relationship between Fsynch and Ssynch. In addition to the126

expected dominance results, we prove some interesting orthogonality results. In fact, we127

show that, on one hand, both FST AS and FCOMS are incomparable with OBLOT F , on128

the other LUMIS is incomparable with FST AF , FCOMF , and even with OBLOT F . We129

also close an open problem of [10].130

2 MODELS AND PRELIMINARIES131

2.1 The Basics132

The systems considered in this paper consist of a team R = {r0, · · · , rn−1} of computational133

entities moving and operating in the Euclidean plane R2. Viewed as points and called robots,134

the entities can move freely and continuously in the plane. Each robot has its own local135

coordinate system and it always perceives itself at its origin; there might not be consistency136

OPODIS 2019
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FCOMF FST AF OBLOT F

LUMIF ≡ > >

(Th.2) (Th.2,6) (Th.2,6,10)
FCOMF − > >

(Th.6) (Th.6,10)
FST AF − − >

(Th.10)

Table 1 Relationships within Fsynch.

FCOMS FST AS OBLOT S

LUMIS > > >

(Th.17) (Th.17) (Th.15, 17)
FCOMS − ⊥ >

(Th.14) (Th.15)
FST AS − − >

(Th.15)

Table 2 Relationships within Ssynch.

LUMIS FCOMS FST AS OBLOT S

LUMIF > > > >

≡ FCOMF (Th.20) (Th.20) (Th.6,20) (Th.15,20)
FST AF ⊥ ⊥ > >

(Th.26) (Th.26) (Th.20) (Th.15,20)
OBLOT F ⊥ ⊥ ⊥ >

(Th.28) (Th.25) (Th.25) (Th.20)
Table 3 Relationship between Fsynch and Ssynch.

between these coordinate systems. A robot is equipped with sensorial devices that allows it137

to observe the positions of the other robots in its local coordinate system.138

The robots are identical: they are indistinguishable by their appearance and they execute139

the same protocol. The robots are autonomous, without a central control.140

At any point in time, a robot is either active or inactive. Upon becoming active, a robot141

r executes a Look-Compute-Move (LCM ) cycle performing the following three operations:142

1. Look: The robot activates its sensors to obtain a snapshot of the positions occupied by143

robots with respect to its own coordinate system1.144

2. Compute: The robot executes its algorithm using the snapshot as input. The result of145

the computation is a destination point.146

3. Move: The robot moves to the computed destination2. If the destination is the current147

location, the robot stays still.148

When inactive, a robot is idle. All robots are initially idle. The amount of time to complete149

a cycle is assumed to be finite, and the Look operation is assumed to be instantaneous.150

Let xi(t) denote the location of robot ri at time t in a global coordinate system (unknown151

to the robots), and let X(t) = {xi(t) : 0 ≤ i ≤ n− 1} = {x0(t), x1(t), . . . , xm−1(t)}; observe152

that |X(t)| = m ≤ n since several robots might be at the same location at time t.153

In this paper, we do not assume that the robots have a common coordinate system. If154

they agree on the same circular orientation of the plane (i.e., they do agree on “clockwise"155

direction), we say that there is chirality. Except when explicitly stated, we assume there is156

chirality.157

1 This is called the full visibility (or unlimited visibility) setting; restricted forms of visibility have also
been considered for these systems

2 This is called the rigid mobility setting; restricted forms of mobility (e.g., when the movement may be
interrupted by an adversary) have also been considered for these systems
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2.2 The Models158

Different models, based on the same basic premises defined above, have been considered in159

the literature and will be examined here.160

In the most common model, OBLOT , the robots are silent: they have no explicit means161

of communication; furthermore they are oblivious: at the start of a cycle, a robot has no162

memory of observations and computations performed in previous cycles.163

In the other common model, LUMI, each robot r is equipped with a persistent visible164

state variable Light[r], called light, whose values are taken from a finite set C of states called165

colors (including the color that represents the initial state when the light is off). The colors166

of the lights can be set in each cycle by r at the end of its Compute operation. A light is167

persistent from one computational cycle to the next: the color is not automatically reset at168

the end of a cycle; the robot is otherwise oblivious, forgetting all other information from169

previous cycles. In LUMI, the Look operation produces a colored snapshot; i.e., it returns170

the set of pairs (position, color) of the other robots3. Note that if |C| = 1, then the light is171

not used; thus, this case corresponds to the OBLOT model.172

It is sometimes convenient to describe a robot r as having k ≥ 1 lights, denoted173

r.light1, . . . , r.lightk, where the values of r.lighti are from a finite set of colors Ci, and174

to consider Light[r] as a k-tuple of variables; clearly, this corresponds to r having a single175

light that uses Πk
i=1|Ci| colors.176

The lights provide simultaneously persistent memory and direct means of communication,177

although both limited to a constant number of bits per cycle. Two sub-models of LUMI178

have been defined and investigated, each offering only one of these two capabilities.179

In the first model, FST A, a robot can only see the color of its own light; that is, the180

light is an internal one and its color merely encodes an internal state. Hence the robots are181

silent, as in OBLOT ; but are finite-state. Observe that a snapshot in FST A is the same as182

in OBLOT .183

In the second model, FCOM, the lights are external: a robot can communicate to the184

other robots through its colored light but forgets the color of its own light by the next185

cycle; that is, robots are finite-communication but oblivious. A snapshot in FCOM is like in186

LUMI except that, for the position x where the robot r performing the Look is located,187

Light[r] is omitted from the set of colors present at x.188

In all the above models, a configuration C(t) at time t is the multi-set of the n pairs of189

the (xi(t), ci(t)), where ci(t) is the color of robot ri at time t.190

2.3 The Schedulers191

With respect to the activation schedule of the robots, and the duration of their Look-Compute-192

Move cycles, the fundamental distinction is between the asynchronous and synchronous193

settings.194

In the asynchronous setting (Asynch), first studied in [14], there is no common notion195

of time, each robot is activated independently of the others, the duration of each phase is196

finite but unpredictable and might be different in different cycles.197

In the synchronous setting (Ssynch), also called semi-synchronous and first studied in198

[27], time is divided into discrete intervals, called rounds; in each round some robots are199

activated simultaneously, and perform their LCM cycle in perfect synchronization.200

3 If (strong) multiplicity detection is assumed, the snapshot is a multi-set.

OPODIS 2019
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A popular synchronous setting which plays an important role is the fully-synchronous201

setting (Fsynch) where every robot is activated in every round; that is, the activation202

scheduler has no adversarial power.203

In all two settings, the selection of which robots are activated at a round is made by an204

adversarial scheduler, whose only limit is that every robot must be activated infinitely often205

(i.e., it is fair scheduler). In the following, for all synchronous schedulers, we use round and206

time interchangeably.207

2.4 Computational Relationships208

LetM = {LUMI,FCOM,FST A,OBLOT } be the set of models under investigation, and209

S = {Fsynch, Ssynch} be the set of activation schedulers under consideration.210

We denote by R the set of all teams of robots satisfying the core assumptions (i.e., they211

are identical, autonomous, and operate in LCM cycles), and R ∈ R a team of robots having212

identical capabilities (e.g., common coordinate system, persistent storage, internal identity,213

rigid movements etc.). By Rn ⊂ R we denote the set of all teams of size n.214

Given a model M ∈M, a scheduler S ∈ S, and a team of robots R ∈ R, let Task(M, S; R)215

denote the set of problems solvable by R in M under adversarial scheduler S.216

Let M1, M2 ∈M and S1, S2 ∈ S. We define the following relationships between model217

M1 under scheduler S1 and model M2 under scheduler S2:218

- computationally not less powerful (MS1
1 ≥ MS2

2 ), if ∀R ∈ R we have Task(M1, S1; R) ⊇219

Task(M2, S2; R);220

- computationally more powerful (MS1
1 > MS2

2 ), if MS1
1 ≥ MS2

2 and ∃R ∈ R such that221

Task(M1, S1; R) \ Task(M2, S2; R) 6= ∅;222

- computationally equivalent (MS1
1 ≡MS2

2 ), if MS1
1 ≥MS2

2 and MS2
2 ≥MS1

1 ;223

- computationally orthogonal (or incomparable), (MS1
1 ⊥MS2

2 ), if ∃R1 , R2 ∈ R such that224

Task(M1, S1; R1 ) \ Task(M2, S2; R1 ) 6= ∅ and Task(M2, S2; R2 ) \ Task(M1, S1; R2 ) 6= ∅.225

For simplicity of notation, for a model M ∈ M, let MF and MS denote MF synch
226

and MSsync, respectively; and let MF (R) and MS(R) denote Task(M,Fsynch;R) and227

Task(M,Ssynch;R), respectively.228

Trivially, for any M ∈ M, MF ≥ MS ; also, for any S ∈ S, LUMIS ≥ FST AS ≥229

OBLOT S and LUMIS ≥ FCOMS ≥ OBLOT S .230

3 COMPUTATIONAL RELATIONSHIP IN Fsynch231

In this section, we consider the fully synchronous scheduler Fsynch and we prove that, in this232

setting, it is better to communicate than to remember. Specifically, we prove that FCOM233

has the same power as LUMI and is strictly more powerful than FST A; furthermore, they234

are all strictly more powerful than OBLOT .235

3.1 FCOMF ≡ LUMIF
236

To prove that FCOM has the same power as LUMI in Fsynch, we first need to prove the237

following.238

I Lemma 1. ∀R ∈ R,LUMIF (R) ⊆ FCOMF (R).239

Proof. The proof is constructive. Our algorithm uses the following observation: if there240

is chirality, then there exists a unique circular ordering of the locations X(t) occupied by241

the robots at that time [27]. Let suc and pred be the functions denoting the ordering and,242
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without loss of generality, let suc(xi(t)) = xi+1 mod m(t) and pred(xi)(t) = xi−1 mod m(t) for243

i ∈ {0, 1, . . . , m−1}. Even in absence of chirality, a circular arrangement can still be obtained,244

but there is no common agreement on suc and pred because the “clockwise" direction is245

not common to all robots and the notion of successor and predecessor is local, and possibly246

inconsistent among the robots. In this case, let neigh(xi(t)) indicate the unordered pair247

of the two neighbouring locations of xi: neigh(xi(t)) = {xi+1 mod m(t), xi−1 mod m(t)} for248

i ∈ {0, 1, . . . , m− 1}. When no ambiguity arises, we will omit the temporal indication.249

We now describe an FCOM protocol, called LUbyFCinFSY, which, for any given LUMI250

protocol A, produces a fully-synchronous execution of A. The simulation algorithm is presented251

in Algorithm 1, where a robot r at location x uses three lights: r.color, indicating its own252

color, initially set to c0, r.neigh.color, indicating the 2-element set of colors seen at suc(x)253

and at pred(x) taken from the set 2C, where C is the set of colors used by algorithm A,254

initially set to {{c0}, {c0}}, and r.step ∈ {1, 2}, indicating the step of the algorithm, initially255

set to 1. It also uses variable r.color.here, initially set to {c0}, indicating the set of colors256

visible by r at its own location. In the following, when no ambiguity arises, we will denote257

suc(x) and pred(x) by suc(r) and pred(r).258

The algorithm simulates a single round of A with two rounds (or steps):

a b s b z

{u,a,b}  {s,b,z}{a,b}     {s,a,z} {a,b}   {s,b,z}

xi

MyColor = { {{s,a,z}, {a,b}} – {s,a,z} } – {b} = a

.. s b zu a bs a z
. . . . . .. . . . . .

Figure 1 {pred(x).neigh.color − r′.color} − r.color.here

259

1. Copy Step: (r.step = 1). In the Look phase, r determines r.step = 1 by observing the260

corresponding color of one of the neighbours (e.g., pred(x).step) and sets r.step = 2. It261

also observes the colors of the robots at its successor and predecessor and sets r.neigh.color262

(notice that r.neigh.color is the same for all robots at the same location). Robot r does263

not move.264

2. Execution Step: (r.step = 2).265

Color Determination. After the Look phase, by looking at one of its neighbours (pred(x))266

robot r discovers r.step = 2, as well as its own color. In fact, let x′ = other(pred(x))267

denote the other neighbour of r’s predecessor, and let r.color.here correspond to the268

set of colors seen by r at its own location x (note that, by definition, this set does not269

include r’s color); then r’s color is determined by letting cand-set be the element of270

pred(x).neigh.color − {x′.color} and r’s color be the element of cand-set− r.color.here,271

where “-” indicates the difference operator between sets (see Figure 1).272

Execution. Robot r executes the Compute and Move phases according to Algorithm A.273

The correctness of Algorithm LUbyFCinFSY(A) follows easily from the fact that we are274

operating in Fsynch and that the only difference between LUMI and FCOM is that in275

OPODIS 2019
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Algorithm 1 LUbyFCinFSY(A) - for robot r at location x

Phase Look
Observe, in particular, pred(x).color, suc(x).color, pred(x).step, other(pred(x));
as well as r.color.here (note that, for this, r cannot see its own color).

Phase Compute
1: if (pred(x).step = 1) then //step 1- Copy //
2: r.neigh.color ← {pred(x).color, suc(x).color},

where pred(x).color={ρ.color|ρ ∈ pred(x)} and suc(x).color={ρ.color|ρ ∈ suc(x)}
3: r.step← 2
4: r.des← x

5: else //step 2- Execution //
6: x′ ← other(pred(x)) // x′ is the other neighbour of pred(x) //
7: cand-set← the element of pred(x).neigh.color − {x′.color}
8: r.color ← the element of cand-set −r.color.here // find my own color //
9: Execute the Compute of A // with my color r.color, determining destination r.des //

Phase Move
Move to r.des;

latter a robot does not see the color of its own light. This can however be determined as276

indicated in the protocol. In other words, LUbyFCinFSY(A) correctly simulate in Fsynch277

algorithm A and Theorem 1 follows. J278

Since the reverse relation FCOMF ≤ LUMIF holds by definition, we can conclude:279

I Theorem 2. FCOMF ≡ LUMIF .280

3.2 FCOMF > FST AF
281

We now turn our attention to the relationship between FCOMF and FST AF . The following282

problem is used to show that FCOMF > FST AF .283

IDefinition 3. Problem ¬IL: Three robots a, b, and c, starting from the initial configuration284

shown in Figure 2 (a), must form first the pattern of Figure 2 (b) and then move to form the285

pattern of Figure 2 (c).286

I Lemma 4. ∃R ∈ R3, ¬IL 6∈ FST AF (R),287

Proof. In the initial pattern (a) of Figure 2, even if all the states of the robots are initially288

identical, each of them can uniquely distinguish its position in the pattern. Therefore, the289

three robots can easily form pattern (b) by having a move clockwise of 90 degrees. Assume290

that in pattern (b) the state of each robot is now different and indicates the full history of291

what the robot has done so far. Now the robots need to form pattern (c), which is asymmetric292

and requires b to move clockwise of 45 degrees. However, in pattern (b), even in presence of293

chirality, robot b cannot distinguish between the positions of a and c. This is true regardless294

of the information stored in the local state of robot b; so, after forming pattern (b), the295

robots cannot reach pattern (c). J296

I Lemma 5. ∀R ∈ R3, ¬IL ∈ FCOMS(R).297
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Proof. FCOM robots can easily solve ¬IL as follows: To form (b) from (a), robot a, which298

can easily distinguish its position, moves of 90 degrees clockwise and turns its light to red.299

To move from (b) to (c) robot b distinguishes a from c because of the external light and300

moves of 45 degrees clockwise to occupy the correct position. J301

By Theorem 2 and Lemmas 4 and 5, we can conclude:302

I Theorem 6. FCOMF > FST AF .303

3.3 FST AF > OBLOT F
304

It is very easy to show that FST A is strictly more powerful than OBLI. To do that, we305

consider the Oscillating Point Problem defined in [10]306

I Definition 7. Problem OSP (Oscillating Points) [10]: Two robots, a and b, initially307

in distinct locations, alternately come closer and move further from each other. More precisely,308

let d(t) denote the distance of the two robots at time t. The OSP problem requires the two309

robots, starting from an arbitrary distance d(t0) > 0 at time t0, to move so that there exists310

a monotonically increasing infinite sequence time instant t0, t1, t2, . . . such that :311

1. d(t2i+1) < d(t2i), and ∀h′, h” ∈ [t2i, t2i+1], h′ < h”, d(h”) ≤ d(h′); and312

2. d(t2i) > d(t2i−1), and ∀h′, h” ∈ [t2i−1, t2i], h′ < h”, d(h”) ≥ d(h′).313

Impossibility in OBLOT F has been shown in [10]:314

I Lemma 8. [10] ∃R ∈ R2, OSP 6∈ OBLOT F (R).315

On the other hand, possibility in FST AF is trivial because a robot can store in its local316

state whether in the previous round it was moving further or closer and successfully alternate317

movements. That is318

I Lemma 9. ∀R ∈ R2, OSP ∈ FST AF (R).319

By Lemmas 8 and 9, and the fact that FST AF ≥ OBLOT F by definition, we have:320

I Theorem 10. FST AF > OBLOT F .321

a b

c

a

bc

a

b

c

(a) (b) (c)

Figure 2 The configurations of problem
¬IL
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B
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A
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d

d

d
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Figure 3 Illustration of TRIANGLE-
ROTATION (TAR(d))

4 COMPUTATIONAL RELATIONSHIP IN Ssynch322

In this section, we examine the computational relationship of the models under the Semi-323

Synchronous scheduler.324
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4.1 Orthogonality of FST AS and FCOMS
325

I Definition 11. Problem TAR(d) (Triangle Rotation): Let a, b, c be three robots326

forming a triangle ABC, let C be the circumscribed circle, and let d be a value known to327

the three robots. The TAR(d) problem requires the robots to move so to form a new triangle328

A′B′C ′ with circumscribed circle C, and where dis(A, A′) = dis(B, B′) = dis(C, C ′) = d (see329

Figure 3).330

I Lemma 12. ∃R ∈ R3, TAR(d) 6∈ FCOMS(R).331

Proof. (Sketch) By contradiction, let A be a correct solution protocol in FCOMS . Consider332

an initial configuration C0 where the three robots a, b, and c, form a scalene triangle ABC333

with AB 6= d, BC 6= d, CA 6= d, and with all lights off (see Figure 3(a)). Consider now334

an execution E of A where all three robots are activated in each round, starting from C0,335

until one or more robots move, say at round k. Let r be a robot that performed a non-null336

move in that round after observing configuration Ck−1. Consider now another execution337

E ′ of A where the first k − 1 rounds are exactly the same, but in round k robot r is the338

only one activated. Robot r would move to a new location possibly changing color. Now the339

schedule activates again only robot r. If the previous move resulted in a scalene triangle, the340

robot cannot distinguish this situation from the one it observed at the previous round and341

thus it would perform the same type of movement, losing any information on the original342

triangle; if the previous move resulted in an equilateral or isosceles triangle, robot r would343

know it has already moved (even without having access to its light), but it still would not344

know from which location. In both cases the information on the original triangle cannot be345

reconstructed and the problem cannot be solved, contradicting the correctness of A. J346

I Lemma 13. ∀R ∈ R3, TAR(d) ∈ FST AS(R).347

Proof. The problem is easily solvable with FST A robots in Ssynch. Let the robots have348

color A initially. The first time a robot is activated, it moves to the desired position and349

changes its light to B. Whenever a robot is activated, if its light is B, it does not move. J350

By Lemmas 4-5 and 12-13, we can conclude:351

I Theorem 14. FCOMS⊥FST AS.352

4.2 Dominance of FST AS and FCOMS over OBLOT S
353

The dominance of FST AS and FCOMS over OBLOT S follows directly from existing results354

on the rendezvous problem (RDV), which prescribes two robots to occupy exactly the same355

location, not known in advance.356

I Theorem 15. FST AS > OBLOT S and FCOMS > OBLOT S.357

Proof. It is well known that RDV cannot be solved in Ssynch (see [27], whose proof uses358

chirality and trivially holds when movements are rigid). On the other hand, it can be solved359

in FCOM and FST A in Ssynch [17]. J360

4.3 Dominance of LUMIS over FST AS and FCOMS
361

To conclude the study of Ssynch, we consider the OSP problem already employed in Section362

3.3. also to show that LUMIS > FST AS(FCOMS).363

I Lemma 16. ∃R ∈ R2, OSP 6∈ FCOMS(R) ∪ FST AS(R).364
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∀R ∈ R2, OSP ∈ LUMIS(R).365

Proof. The possibility in LUMIS is proven in [10]. Let us then prove the impossibility in366

FCOM and FST A. Let a and b be the two robots with initial lights off. First note that if367

an activated robot performs a null move at the first round, the adversarial scheduler would368

activate both (making them change lights in the same way). The scheduler continues to369

activate them both until the first round t when the color of the light would make them do a370

non-null move. At this point, the scheduler changes strategy.371

In the case of FCOM, the scheduler activates only robot a in the two consecutive rounds372

t and t + 1. At round t + 2, robot a is activated again. Robot a will repeat (incorrectly)373

the same move at round t + 2, not being able to distinguish the current situation from the374

previous, and regardless of the movement taken in round t.375

In the case of FST A, the scheduler activates only robot a for 3 consecutive rounds376

t, t + 1, t + 2 and both robots at round t + 3. In the first 3 activations robot a can use its377

internal light to correctly alternate a move going closer to b, one moving further and the third378

moving closer again. At round t + 3, robot a will necessarily move further from b continuing379

this alternating pattern (as nothing has changed in its perceived view of the universe), but380

robot b is now in the same state robot a was at round t and will therefore take the same381

action taken by a at that round (i.e., moving closer to a). This lack of synchronization makes382

the robots incorrectly maintain their distance during round t + 3. J383

We can conclude that:384

I Theorem 17. LUMIS > FST AS and LUMIS > FCOMS.385

5 COMPUTATIONAL RELATIONSHIP BETWEEN Fsynch AND386

Ssynch387

In this section we examine the computational relationship of fully synchronous and semi-388

synchronous models.389

5.1 Dominances of Fsynch over Ssynch390

The following problem prescribes the robots to perform a sort of “expansion" of the initial391

configuration with respect to their center of gravity; specifically, each robot must move away392

from the center of gravity (cx, cy) to the closest integral position corresponding to doubling393

its distance from it. More precisely:394

I Definition 18. Problem CGE (Center of Gravity Expansion): Let R be a set of395

robots. The CGE problem requires each robot ri ∈ R to move from its initial position (xi, yi)396

directly to (f(xi, cx), f(yi, cy)), where f(a, b) = b2a− bc and (cx, cy) is the center of gravity397

of the initial configuration.398

I Lemma 19. CGE ∈ FST AF and CGE /∈ LUMIS.399

Proof. (Sketch) It is easy to see that CGE ∈ FST AF since all robots can simultaneously400

reach their destination in one step and change color to indicate termination. We now show401

that CGE /∈ LUMIS . By contradiction. Consider an execution E of a solution algorithm402

where a single robot r is activated at the first time step. The robot moves correctly to its403

destination point and possibly changes its color. After this movement, regardless of the404

distance traveled, the center of gravity of the new configuration is different from the one405
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of the initial configuration, with respect to which all the other robots must move. At the406

next activation, any robot different from r must move to its target location; however, this407

cannot be done because the robot cannot reconstruct the exact position of the original center408

of gravity. This is due to the fact that there are infinite combinations of coordinates from409

where r could have feasibly moved and the reconstruction of the original CoG cannot be410

done just on the basis of a light that can carry finite information. J411

As a consequence, we have that:412

I Theorem 20. 1. LUMIF > LUMIS
413

2. FST AF > FST AS
414

3. FCOMF > LUMIS > FCOMS
415

4. OBLOT F > OBLOT S
416

Proof. 1. It follows from Lemma 19, Theorem 2, and Theorem 6.417

2. It follows from Lemma 19 and Theorem 17.418

3. It follows immediately from Theorem 2, Theorem 17, and Theorem 20.419

4. The RDV problem can be trivially solved in OBLOT F but it cannot be solved in420

OBLOT S [27]. J421

5.2 Incomparabilities between Fsynch and Ssynch422

5.2.1 Orthogonality of OBLOT F with FCOMS and FST AS
423

Consider the following problem:424

I Definition 21. Problem SRO (Shrinking Rotation): Two robots a and b are initially425

placed in arbitrary distinct points (forming the initial configuration C0), The two robots426

uniquely identify a square (initially Q0) whose diagonal is given by the segment between427

them4. Let a0 and b0 indicate the initial positions of the robots, d0 the segment between428

them, and length(d0) its length. Let ai and bi be the positions of a and b in configuration Ci429

(i ≥ 0). The problem consists of moving from configuration Ci to Ci+1 in such a way that430

Condition C3 is verified and so is one of C1 and C2:431

C1. di+1 is a 90 degree clockwise rotation of di and thus length(di+1) = length(di),432

C2. di+1 is a "shrunken" 45 degree clockwise rotation of di such that di+1 = di√
2 ,433

C3. ai+1 and bi+1 must be included in the square Qi−1, where Q−1 is the infinite square.434

a0 b0=b1

a1=a2

b2=b3

a3=a4

b4=b5

a5

Configurations:
C0, C1, C2, C3, C4, C5…
where Ci=(ai, bi).

Figure 4 Illustration of SHRINKING RO-
TATION (SRO)

a0# b0#
a0#

a1#

b0# a0# b0#

a1# a2#

d#

d/2##

a)# b)# c)#

d#

d#
d#√#2###
2#

Figure 5 Proof of Lemma 23: a) Initial
configuration; b) after the movement of ro-
bot a in Case (1); c) after two consecutive
movements of robot a in Case (2).

4 By square, we means the entire space delimited by the four sides.
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I Lemma 22. ∀R ∈ R2,SRO ∈ OBLOT F (R)435

Proof. The proof is by construction: Each robot rotates clockwise of 90 degrees with respect436

to the midpoint between itself and the other robot. Since the schedule is Fsynch, it allows437

consecutive simultaneous activation of the two robots. So, there is only one possible type of438

executions under Fsynch with two robots: a perpetual activation of both robots in each439

round. In this case, the problem is clearly solved by the algorithm stated above, because440

the robots keep rotating of 90 degrees clockwise around their mid-point, fulfilling C1 and441

C3. Note that C2 never happens under Fsynch. Then SRO can be solved with OBLOT in442

Fsynch. J443

I Lemma 23. ∃R ∈ R2,SRO 6∈ FCOMS(R) ∪ FST AS(R)444

Proof. First note that if an activated robot performs a null move at the first round, the445

schedule would activate both (making them change lights in the same way). The scheduler446

continues to activate them both until the first round i when the color of the light would447

make them do a non-null move. At this point, the scheduler changes strategy.448

Consider first the case of FCOMS and consider an execution where a robot, say a, is449

activated (alone) twice consecutively starting from configuration Ci. In the following, we450

show that, under this activation schedule, either Ci+1 or Ci+2 would violate C3 (which states451

that ai+1 and bi+1 must be included in the square Qi−1) (see Figure 4).452

In fact, let robot a located at ai be activated from a configuration Ci. Since b is not activated453

in Ci, the light of b at bi and at bi+1 are the same. Then a at ai and at ai+1 observe the454

same light on b. Since the coordinate systems of the robot can be chosen so that they have455

the same view of the universe, a at ai+1 performs the same action as it would perform at ai,456

and this action must either fulfill C1 or C2 (as well as C3 in either case).457

Case (1). Let us consider first the situation when C1 is fulfilled with a single movement of a:458

the only possibility would be for a to rotate clockwise of 90 degree with respect to b; this459

movement, however, would immediately violate C3 because the new position ai+1 would be460

outside of the square Qi (and thus also outside Qi−1) (see Figure 5 from a) to b)).461

Case (2). Let us consider now the case when C2 is fulfilled with a single movement of a: the462

only possibility would be for a to move clockwise of 90 degrees with respect to the midpoint463

between a and b reaching a feasible configuration Ci+1. When robot a is activated again at464

the next round, it will perform the same action on Ci+1, now violating C3 (see Figure 5465

from a) to c)).466

Therefore, this problem cannot be solved with FCOM in Ssynch. The case of FST AS
467

can be shown in a similar way, because the availability of internal lights cannot prevent - in468

Ssynch - the consecutive activation of the same single robot and the impossibility argument469

described above would still hold. J470

Moreover, we have:471

I Lemma 24. ∀R ∈ R2,SRO ∈ LUMIS(R)472

Proof. It is rather straightforward to see that in LUMIS the two robots can be synchronized473

with 3 colors so to enforce a fully synchronous execution. J474

We have seen that SRO can be solved in OBLOT F but cannot be solved in FCOMS
475

and FST AS . On the other hand, ¬IL and TAR(d) can be solved in FCOMS and FST AS ,476

respectively, but cannot be solved in OBLOT F . We can conclude that:477

I Theorem 25. OBLOT F⊥FCOMS and OBLOT F⊥FST AS.478
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5.2.2 Orthogonality of LUMIS with FST AF and OBLOT F
479

I Theorem 26. LUMIS⊥FST AF and FCOMS⊥FST AF .480

Proof. Problem ¬IL can be solved in FCOMS ( and thus in LUMIS) but not in FST AF
481

(Lemmas 4 and 5). Problem CGE can be solved in FST AF , but not in LUMIS (Lemma482

19). J483

I Definition 27. Problem CGE* (Perpetual Center of Gravity Expansion). This484

is the same as CGE, where however after each expansion, the robots have to repeat the same485

process from the new configuration.486

I Theorem 28. LUMIS⊥OBLOT F .487

Proof. Problem OSP can be solved in LUMIS (Lemma 16), but not in OBLOT F (Lemma488

8). Problem CoG* can be trivially solved in OBLOT F , but not in LUMIS (Lemma 19). J489

Let us remark that, since LUMIs ≡ LUMIA, the result of Theorem 28 answers the490

open question on the relationship between LUMIA and OBLOT F posed in [10].491

6 CONCLUDING REMARKS492

In this paper, we have investigated the computational power of communication versus493

persistent memory in mobile robots by studying the relationship among LUMI, FCOM,494

FST A and OBLOT models, and we have shown that their relationship depends of the495

scheduler under which the robots operate. We considered the two classical synchronous496

schedulers, Fsynch and Ssynch, establishing several results. In particular, we proved that497

communication is more powerful than persistent memory if the scheduler is fully synchronous;498

on the other hand, the two models are incomparable under the semi-synchronous scheduler.499

For an overall panorama of the established relationship among the models, see Figure 6.500

Several problems are still open. An outstanding open problem is the study of the501

relationship among these models in Asynch, where there is no notion of rounds and the502

cycles of the robots are executed independently.503

Another open problem is whether there exists a scheduler S′ (“weaker" than Fsynch but504

stronger than Ssynch) such that each model under S′ would be computationally equivalent505

to the same model under Fsynch.506

Finally, most of the results of this paper hold assuming chirality and rigidity (exceptions507

are the RDV-algorithms, the OSP-algorithms, and the simulation algorithm, Algorithm 1,508

which do not require either). It is an open question to characterize the inclusions among all509

the various models in the case of disoriented robots with non-rigid movement.510
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