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Abstract

The temporal component of social networks is often neglected in their analysis, and
statistical measures are usually performed on “static” network representations. As a
result, measures of importance (like betweenness centrality) typically do not reveal the
temporal role of the entities involved. Our goal is to contribute to fill this limitation by
proposing a form of temporal betweenness measure (foremost betweenness) to analyse
a knowledge mobilization network. We first describe a new algorithm to compute
foremost betweenness, we then show that this measure, which takes time explicitly
into account, allows us to detect centrality roles that were completely hidden in the
classical statistical analysis. In particular, we uncover nodes whose static centrality
was considered negligible, but whose temporal role is instead important to accelerate
mobilization flow in the network. We also observe the reverse behaviour by detecting
nodes with high static centrality, whose role as temporal bridges is instead very low.
By revealing important temporal roles, this study is a first step towards a better
understanding of the impact of time in social networks, and opens the road to further
investigation.

Keywords. Time-varying graphs, temporal betweenness, dynamic networks, temporal
analysis, social networks.

1 Introduction

Highly dynamic networks are networks where connectivity changes in time and connection
patterns display possibly complex dynamics. Such networks are more and more pervasive
in everyday life and the study of their properties is the object of extensive investigation
in a wide range of very different contexts. Some of these contexts are typically studied
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in computer science, such as wireless, adhoc networks, transportation, vehicular networks,
satellites, military and robotic networks (e.g., see [6, 7, 16, 23, 25, 26]); while others belong
to totally different disciplines. This is the case for example, of the nervous system, livestock
trade, epidemiological networks, and multiple forms of social networks (e.g., see [21, 24, 27,
28, 29, 31]). Clearly, while being different in many ways, these domains display common
features; time-varying graphs (TVGs) represent a model that formalizes highly dynamic
networks encompassing the above contexts into a unique framework, and emphasizes their
temporal nature [8].

Knowledge Mobilization (KM) refers to the use of knowledge towards the achievement
of goals [13]. Scientists, for example, use published papers to produce new knowledge in
further publications to reach professional goals. In contrast, patient groups can use scientific
knowledge to help foster change in patient practices, and corporations can use scientific
knowledge to reach financial goals. Recently, researchers have started to analyse knowledge
mobilization networks (KMN) using a social network analysis (SNA) approach (e.g., see
[3, 5, 9, 10, 20]). In particular, [14] proposed a novel approach where a heterogeneous network
composed of a main class of actors subdivided into three sub-types (individual human and
non-human actors, organizational actors, and non-human mobilization actors) associated
according to one relation, knowledge mobilization (a Mobilization-Network approach). Data
covered a seven-year period with static networks for each year. The mobilization network
was analysed using classical SNA measures (e.g., node centrality measures, path length,
density) to produce understanding for KM using insights from network structure and actor
roles [14].

The KM SNA studies mentioned above, however, lack a fundamental component: in fact,
their analysis is based on a static representation of KM networks, incapable of sufficiently
accounting for the time of appearance and disappearance of relations between actors beyond
static longitudinal analysis. Indeed, incorporating the temporal component into analysis
is a challenging task, but it is undoubtedly a critical one, because time is an essential
feature of these networks. Temporal analysis of dynamic graphs is in fact an important
and extensively studied area of research (e.g., see [12, 19, 17, 18, 30, 32, 33]), but there is
still much to be discovered. In particular, most temporal studies simply consider network
dynamics in successive static snapshots thus capturing only a partial temporal component
by observing how static parameters evolve in time while the network changes. Moreover,
very little work has been dedicated to empirically evaluating the usefulness of metrics in
time (e.g., see [1, 22]).

In this paper, we represent KMN by TVGs and we propose to analyse them in a truly
temporal setting. We design an algorithm to compute a form of temporal betweenness in
time-varying graphs (foremost betweenness) that measures centrality of nodes in terms of
how often they lie within temporal paths with earliest arrival. We then provide, for the first
time on a real data set, an empirical indication of the effectiveness of foremost betweenness.
In particular, we focus on data extracted from [14], here referred to as Knowledge-Net.
We first consider static snapshots of Knowledge-Net corresponding to the seven years of its
existence, and by studying the classical centrality measures in those time intervals, we provide
rudimentary indications of the networks’ temporal behaviour. To gain a finer temporal
understanding, we then concentrate on temporal betweenness following a totally different
approach. Instead of simply observing the static network over consecutive time intervals,
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we focus on the TVG that represent Knowledge-Net and we compute foremost betweenness,
explicitly and globally taking time into account. We compare the temporal results that we
obtain with classical static betweenness measures to gain insights into the impact that time
has on the network structure and actor roles. We notice that, while many actors maintain
the same role in static and dynamic analysis, some display striking differences. In particular,
we observe the emergence of important actors that remained invisible in static analysis, and
we advance explanations for these. Results show that the form of temporal betweenness we
apply is effective at highlighting the role of nodes whose importance has a temporal nature
(e.g., nodes that contribute to mobilization acceleration). This research opens the road to
the study of other temporal measures designed for TVGs.

2 Time-Varying Graphs

2.1 Definition

Time-varying Graphs are graphs whose structure varies over time. Following [8], a time-
varying graph (TVG) is defined as a quintuple G = (V,E, T , ρ, ζ), where V is a finite set of
nodes; E ⊆ V × V is a finite set edges. The graph is considered within a finite time span
T ⊆ T, called lifetime of the system. ρ : E × T → {0, 1} is the edge presence function,
which indicates whether a given edge is available at a given time; ζ : E × T → T, is the
latency function, which indicates the time it takes to cross a given edge if starting at a
given date. The model may, of course, be extended by defining the vertex presence function
(ψ : V × T → {0, 1}), and vertex latency function (φ : V × T → {0, 1}). The footprint of
G is a static graph composed by the union of all nodes and edges ever appearing during the
lifetime T.

2.2 Journeys

A journey J in a TVG G is a temporal walk defined as a sequence of ordered pairs
{(e1, t1), (e2, t2),...,(ek, tk)}, such that {e1, e2, ..., ek}, called the journey route and represented
by R, is a walk in G, if and only if ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all i < k. Every
journey has a departure(J ) and an arrival(J ) that refer to journey’s starting time t1 and
its last time tk + ζ(ek, tk). Journeys are divided into three classes based on their variations
based on the temporal and topological distance [4]. Journeys that have earliest arrival times
are called foremost journeys, journeys with the smallest topological distance are referred
to as shortest journeys, while the journey that takes the smallest amount of time is called
fastest. Moreover, we call foremost increasing journey the ones whose route {e1, e2, . . . , ek}
is such that birth-date(ei) ≤ birth-date(ei+1).

2.3 Temporal Betweenness

Betweenness is a classic measure of centrality extensively investigated in the context of social
network analysis; the betweenness of a node v ∈ V in a static graph G = (V,E) is defined
as follows:
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B(v) =
∑

u6=w 6=v∈V

|P (u,w, v)|
|P (u,w)|

(1)

where |P (u,w)| is the number of shortest paths from u to w in G, and |P (u,w, v)| is the
number of those passing through v. Even if static betweenness is “atemporal”, we denote
here by B(v)T the static betweenness of a node v in a system whose lifetime is T . Typi-
cally, vertices with high betweenness centrality direct a greater flow, and thus, have a high
load placed on them, which is considered as an indicator for their importance as potential
gatekeepers in the network.

While betweenness in static graphs is based on the notion of shortest path, its temporal
version can be extended into three different measures to consider shortest, foremost, and
fastest journeys for a given lifetime T [30].

In this paper we consider foremost betweenness. Nodes with a high foremost betweenness
value do not simply act as gatekeepers of flow, like their static counter-part. In fact, they
direct the flow that conveys a message in an earliest transmission fashion. In other words,
intuitively, they provide some form of “acceleration” in the flow of information.

Foremost betweenness TBTF (v) for node v with lifetime T is here defined as follows:

TBTF (v) =
n(v)

n

∑
u6=w 6=v∈V

|FT (u,w, v)|
|FT (u,w)|

(2)

where |FT (u,w)| is the number of foremost journey routes between u and w during time
frame T and |FT (u,w, v)| is the number of the ones passing through v in the same time
frame, n is the total number of nodes, and n(v) is the number of nodes in the connected

component to which v belongs. The factor n(v)
n

is an adjustment coefficient to take into
account possible network disconnections.

3 The Algorithms

3.1 Temporal Shortest Betweenness

Counting the shortest journeys in TVGs can be done employing the algorithm developed in
[4] to construct a shortest journey spanning tree from a source to all destinations. In order
to count the shortest journeys, slight modifications are needed, to store also the number of
shortest journeys arriving at each vertex at each step of time and record the number of hops
that they have had so far in the journey.

Algorithm 1 (CountShortest) contains this modification: the algorithm receives (G, s)
as its input, where G is the TVG and s is the starting node from which the journeys to all
other vertices in the TVG are being counted. The results are returned in the combination
of shortestCount[v, k] and shortestIntCount[v, k] matrices, which record the number of
shortest journeys from s to v with length k, and the number of such journeys that pass
through the nodes that fall on the path of the corresponding journey.

The algorithm starts by adding all the possible predecessors of v into the predecessor
list. Matrix Pred[v, k] stores the predecessor of vertex v. Each predecessor falls on a “quasi-
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Algorithm CountShortest
input : A TVG G, a vertex s ∈ VG
output: shortestCount[v, k]: number and length of the shortest journeys from s to

all v ∈ VG
begin

Initialize tLBD[s]← 0, P red[s, 0]← (), k ← 0, arr ← (),
shortestCount[{., .}]← 0, count[{., .}]← 0, intCount[{., .}]← ∅, and define for all
v 6= s, tLBD[v]←∞
while there is v ∈ VG such that tLBD(v) =∞ and k < n do

k ← k + 1
arr ← ()
for (u, v) ∈ VG do

Let t = EarliestTransmit((u, v), tLBD[u])
if (t+ ζ(u, v)) ≤ tLBD[v] then

add (u, (t+ ζ(u, v))) to Pred[v, k]
arr[v]← min((t+ ζ(u, v)), arr[v])

end

end
for (w, k − 1) ∈ Pred[v, k] do

count[{v, k}]← count[{v, k}] + count[{w, k − 1}]
for each (x, i) in intCount[{w, k − 1}] do

if x exists in intCount[{v, k}] as (x, j) then
replace (x, j) with (x, i+ j) in intCount[{v, k}] and update the
count for (x, i+ j)

end
else

add (x, i+ 1) to the end of intCount[{v, k}] and update the count
for (x, i+ 1)

end

end

end
for v ∈ VG do

if tLBD[v] =∞ then
shortestCount[{v, k}] = count[{v, k}]
update shorthestIntCount[{v, k}] with intCount[{v, k}]
tLBD[v] = arr[v]

end

end
tLBD ← arr

end

end
Algorithm 1: An algorithm to count all shortest journeys from s to all nodes.
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shortest path” with length k. We call this path quasi-shortest since it does not always
store the shortest path, rather, it carries some longer paths that might contribute to the
shortest path at later hops. The arrival time to some vertex v at the current step is stored in
variable arr(v), which is recorded for future path feasibility check. The quasi shortest paths
are counted and stored in Matrix count[v, k], while the intCount[v, k] stores the number of
journeys that pass through a specific vertex on the quasi shortest path from s to v. Some
quasi-shortest paths are, indeed, the shortest paths that are recorded in shortestCount[v, k],
and the count for their intermediate vertices are stored in the shortestIntCount[v, k]. This
is determined by checking the local array tLBD[u] that gives for each u ∈ VG a lower bound
on the departure time, meaning the earliest time that the journey can exit u. tLBD[u] is
initialized to infinity and gets updated anytime that a shortest journey to a vertex is found.
Thus, checking whether the value of tLBD[u] for u is infinity or not, determines if the shortest
journey for u is found earlier or not. It should be noted that function EarliestTransmit(, )
gives, for each edge (u, v), and each time instant t, the earliest moment after t when vertex u
can transmit a message to v. If such a moment does not exist, EarliestTransmit(, ) returns
+∞.

Algorithm CountShortest counts the number of shortest journeys from one node to all
the others, and also the number of such journeys that pass through each intermediate vertex.
Repeating this procedure for all starting points would provide all the necessary information
to compute temporal shortest betweenness for all nodes.

Let δ indicate the maximum number of different time intervals on an edge. The com-
plexity analysis follows directly from the one of the original algorithm described in [4] and
we have:

Theorem 3.1 The computation of temporal shortest betweenness of all nodes in a TVG can
be computed in O(n4 log δ).

Proof Using the data structure proposed in [4], procedure EarliestTransmit(, ) is com-
puted in time O(log δ) due to the fact that we can apply binary search to find the earliest
transmit time. We call procedure EarliestTransmit(, ), m times during the execution of the
algorithm for a total of O(m log δ). Meanwhile, tLBD[v], ∀v ∈ VG becomes a value smaller
than infinity if and only if the graph is connected and we have found all the shortest journeys
including the longest one, which is equal to the eccentricity. In case of a disconnected TVG,
we have to iterate the while loop at most n times. The other factor contributing to the
complexity appears in the nested loop for that results which amounts to O(n2) times.

The complexity has to be multiplied by n to repeat the process from every possible
starting node.

3.2 Foremost Betweenness

The situation is rather different when computing foremost betweenness. In fact, it is easy to
see that there exist TVGs where counting all foremost journeys or journey routes between
two vertices is #P-complete, which means that no polynomial can be devised.

Consider, for example, TVGs where edges always exist (note that a static graph is a
particular TVG) and latency is zero. In such a case any journey between any pair of nodes
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is a foremost journey. Counting all of them is then equivalent to counting all paths between
them, which is a #P-complete problem (see [34]). In general, it is then unavoidable to have
a worst case exponential algorithms to compute foremost betweenness in an arbitrary TVG.

In this Section we first focus on foremost betweenness based on journey routes in the
general setting (Algorithm 2). We then focus on foremost betweenness for special TVGs
with zero latency and instant edges (Algorithm 3), which correspond to the characteristics
of the knowledge Mobilization Network that we analyze in Section 4. Note that each solution
has the same worst case time complexity, linear in the total number of journey routes in the
TVG, which can clearly be exponential. The advantages of the algorithm designed for the
special temporal condition of instant edges and zero latency are mainly practical. In fact,
the worst case complexities are the same, but the execution time can be significantly better
in practice.

3.2.1 A General Algorithm

In this Section we describe an algorithm for the computation of all journey routes between
a node to all other nodes, which is at the basis of the computation of foremost betweenness.

The input of Algorithm CountFormemostJourney is a pair (G, s) where G = (V,E)
is a TVG and s a starting node; the algorithm returns a matrix Counts[x, y], for all x, y ∈
V containing the number of foremost journeys from s to y passing through x (note that
Counts[x, x] denotes the number of foremost journeys from s to x).

First of all, the earliest arrival times of foremost journeys starting from s to all nodes
are computed using the Algorithm from [4]. To each node v is then associated its foremost
arrival time foremost(v).

The counting algorithm is simple and it is based on Depth-First Search (DFS) traversal.
It essentially consists of visiting every journey route of G starting from s, incrementing
the appropriate counters every time a newly encountered journey is foremost. A typical
DFS traversal visits every node and terminates when they are all visited; in our algorithm,
however, we need to repeatedly perform DFS, re-visiting nodes possibly several times, so to
traverse all journey routes.

To do so, the traversal starts as a usual DFS, pushing the incident edges of the source
s onto a stack S and visiting one of the adjacent neighbours (say s′), thus discovering a
first journey π0 = [(s, s′)]. The current journey under visit is kept in a second stack Path
(nodes in Path are marked visited). At this point the DFS continues pushing on the stack
the edges incident to s′ that are feasible with π0 (i.e., the edges whose latest traversal time
is greater than or equal to the earliest arrival time at s′), and updating Count[s′, s′] if π0
has a foremost arrival time at s′.

In general, as soon as a journey π = [(x0, x1), (x1, x2), . . . , , (xk−1, xk)] is encountered in
the traversal, Count[xi, xk], i ≤ k is updated only if π is a foremost journey, and, regardless
of it being foremost, the traversal continues pushing on the stack the edges incident to xk
that are temporally feasible with π.

Whenever backtracking is performed, however, the already visited nodes on the back-
tracking path are remarked unvisited (and popped from Path) in such a way that they can
be revisited as part of different journey route, not yet explored. We remind that in a journey
route a node can re-appear more than once, with the various occurrences corresponding to
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different times. We then need to store the moment when a node is visited in the journey
route so that, if it is visited again, we can determine whether the second visit happened at a
later time. Thus, in both Path and S stacks, we store also a time-stamp, to register the time
of the first visit in Path and to register the time for the next visits in the S. If the visits
happens at different times, the same node is pushed into the stacks again. In fact, we push
the nodes to the Path or S stacks only if they are not visited yet (i.e., not in the path), or
they are visited before (in the path) but at a different time. Function arriv(x, y, t) returns
the arrival time to y, leaving x at time t.

Algorithm CountFormemostJRoutes.
input : (G, s) : a TVG G = (V,E), s ∈ V
output: Counts[x, y], ∀x, y ∈ V : number of foremost journey routes from s to y ∈ V ,

passing through x ∈ V
begin

Path.push(s, 0), Counts[., .]← 0
for all w ∈ Adj(s) do

S.push(s, w, arriv(s, w, 0))
end
while S 6= ∅ do

(x, y, t)← S.pop()
while x 6= Path.top() do

Path.pop()
end
Let π be the journey route corresponding to the content of Path
Let tx,y be the latest possible traversing time of edge (x, y)
if tx,y ≥ arrival(π) then

if y 6∈ Path or y ∈ Path at time t′ < t then
Path.push(y, arriv(x, y, t))
for each (y, w) such that ty,w ≥ arrival(π) and either w 6∈ Path or
w ∈ Path at time t′ < arriv(y, w, t) do

S.push(y, w, arrival(y, w, t))
end
if arrival(π) = foremost(y) then

Update Counts[z, y] for all z ∈ Path
end

end

end

end

end
Algorithm 2: Algorithm to count all journey routes from s to all the other nodes.

Let µ be the number of different journey routes in G, and N (µ) the number of nodes on
those routes.
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Theorem 3.2 Algorithm 2 counts all journey routes from a source to all the other nodes in
G in O(N (µ)) time.

Proof Correctness of the algorithm is straightforward as it is easy to see that the algorithm
follows multiple DFS traversals to visit every journey route from a given source, counting
the number of such routes from s to any destination passing through any intermediate node.

The algorithm traverses every journey from s to any other node and it performs an update
for every visited node in each foremost journey that it encounters. Thus, in the worst case,
it has a O(N (µ)) time complexity.

Clearly, to compute foremost betweenness based on journey routes, the algorithm has to
be repeated for every possible source for a total complexity of of O(nN (µ)).

3.2.2 Algorithm for Zero latency and Instant edges

Algorithm 2 is applicable to a general TVG. We now consider a very special type of TVG
with specific temporal restrictions that correspond to the type of network that we analyze
in the next section. One such peculiarity is given by instant edges, i.e., edges that appear
only during a unique time interval, another characteristic is zero latency: an edge can be
traversed instantaneously.

We now describe a variation of the algorithm specifically designed for those conditions
and we compute foremost betweenness based on increasing journey routes, i.e., we apply the
foremost betweenness formula using foremost increasing journeys.

Given a TVG G = (V,E), since we assume the presence of instant edges, we can divide
time in consecutive intervals I1, I2, . . . , Ik corresponding to k snapshots G1, G2, . . . Gk (Gi =
(Vi, Ei)), in such a way that (x, y) ∈ Ei implies that (x, y) 6∈ Ej for j 6= i. Furthermore, we
know that ζ = 0, that is an edge can be traversed in zero time.

The key idea that can be applied to this very special structure is based on the observation
that, given a foremost route πx,y from x to y with edges in time intervals Ij, with j > i, and
given any journey route π′s,x from s to x with edges only in Ii, the concatenation of π′s,x and
πx,y is a foremost route from s to y, passing through x.

This observation leads to the design of an algorithm that starts by counting the foremost
routes belonging to the last snapshot Gk only, and proceeds backwards using the information
already computed. More precisely, when considering snapshot Gi from a source s, the goal
is to count all foremost routes involving only edges in ∪j≥iEj (i.e., with time intervals in
∪j≥iIj), and when doing so, all the foremost routes involving only edges strictly in the
“future” (i.e., time intervals ∪j>iIj) have been already calculated for any pair of nodes. The
already computed information is used when processing snapshot Gi avoid a recalculation in
a dynamic programming fashion.

The inputs of Algorithm 3 are: a snapshot Gi and a starting node s. The algorithm
returns an array of lists, Counts[u, v], where each of the list elements refer to vertices falling
on the journey. Counts[u, v], for all u, v ∈ V contains the number of foremost journeys from
s to u passing through v counted so far (i.e., considering only edges in ∪j≥iEj).

The actual counting algorithm on snapshot Gi is a modified version of Algorithm 2, still
based on Depth-First Search (DFS) traversal. However, when a new route is discovered to
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Algorithm CountAllSpecial
input : A TVG Gi, starting node s ∈ V , and snapshot interval I
output: Counts[v, u] that records the number of the journeys from s ∈ VG to all

u ∈ VG passing through v ∈ VG during interval I
begin

Initialize Counts[., .]← 0
Path.push(s)
for all w ∈ Adj(s) do

S.push(s, w)
end
while S 6= ∅ do

(x, y)← S.pop()
while x 6= Path.top() do

Path.pop()
end
if y /∈ Path then

Path.push(y)
if y falls in snapshot interval I then

for each (y, w) such that w /∈ Path do
S.push(y, w)

end
if path is foremost then

Counts[z, y] = Normal Count Counts[z, y] for all z ∈ Path
end

end
else

Counts[z, y] = Special Count Counts[z, y] for all z ∈ Path
end

end

end

end
Algorithm 3: Counting all foremost journeys in TVGs with zero latency and instant
edges.

some node x, if this route is foremost, a normal update is performed like in Algorithm 2:
i.e., an increment to Counts[v, x] is done, v being the node that falls on the journey route
from s to x. If instead it is not a foremost route and it is connected to a node that existed
in the “future”, a special update is performed using the data already calculated for the
“future snapshots”. In other words, when s  x is a prefix of a journey route x  y at
a later time snapshot, we perform a procedure called SpecialCount. The special count
involves aggregating the values of Counts[v, x] with Countx[v′, y], for all nodes occurring in
the journey routes between s and x and between x and y (see Algorithm 4).

The time complexity of Algorithm 3, CountAllSpecial, is the same as the one of the
general algorithm, CountFormemostJRoutes. However, in this particular case, the size
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Procedure SpecialCount.
input : Counts[., x], in Gi, and Countx[., y] in ∪j>iGj

output: Counts[v, y], ∀v ∈ V : number of foremost journey routes from s to y ∈ V ,
passing through v ∈ V

begin
for each v ∈ U ∪W where U = all nodes in x y and W = all nodes in s x do

if v ∈ s x and v /∈ x y then
Counts[v, y]+ = Counts[v, x]× Countx[y, y]

end
else if v /∈ s x and v ∈ x y then

Counts[v, y]+ = Counts[x, x]× Countx[v, y]
end
else if v ∈ s x and v ∈ x y then

Counts[v, y]+ = Counts[x, x]×Countx[v, y] +Counts[v, x]×Countx[y, y]−
Counts[v, x]× Countx[v, y]

end

end

end
Algorithm 4: The SpecialCount module.

of a journey route can be bounded by nk, where k is the number of snapshots of G.

– Practical Considerations: reducing time. Algorithm 3 has to be executed in the
chronological order of the time corresponding to the different snapshots, starting from the
last one, since it uses the previously calculated results in the computation of the new results.
Since the graph is divided into independent snapshots, the number of all journeys can be
computed separately for each snapshot, and the result of the calculation can be aggregated
at the end. This has the advantage of reducing the time complexity of the computation
eliminating all the special updates from the first part of the algorithm (while detecting all
the journey routes) and deferring it to the second part (when aggregating all the information
for the final update). Thus, instead of performing the special count at each level, we can
postpone it to the last step of the algorithm, and loop once through all the collected counts
with hard-coded intervals in the loop. While not being advantageous in worst case scenarios,
this strategy results in a generally much more efficient solution from a practical point of view.

4 Knowledge-Net

Knowledge-Net is an heterogeneous network where nodes represent human and non-human
actors (researchers, projects, conference venues, papers, presentations, laboratories), and
edges represent knowledge mobilization between two actors. The network was collected for
a period of seven years [14]. Once an entity or a connection is created, it remains in the
system for the for entire period of the analysis.

Table 1 provides a description of the Knowledge-Net dataset. The dataset consists of
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Table 1: Knowledge-Net data set with characteristics of actors and their roles at different
times

Start Duration #Nodes #Edges Granularity

2005 7 Years 366 750 1 Year

Actor
Type

2005 2006 2007 2008 2009 2010 2011

HIA 3 22 27 46 51 76 94

NHIA 0 3 6 9 9 9 15

NHMA 7 25 43 87 132 194 248

OA 0 5 5 9 9 9 2

Total 10 55 81 151 201 288 366

366 vertices and 750 edges in 2011. The number of entities and connections vary over times
starting from only 10 vertices and 14 edges in 2005 and accumulating to the final network year
in 2011. Knowledge-Net is mainly comprised of non-human actors, 272 in total (non-human
mobilization actors, NHMA, non-human individual actors, NHIA, and organizational actors,
OA), in relation with 94 human actors (HA). Human actors include principle investigators
(PI), highly qualified personnel (HQP) and collaborators (CO). It is through mobilization
actors (NHMA) that individual, organizational actors and mobilization actors associate and
mobilize knowledge to reach goals. For example, scientists mobilize knowledge through
articles where not all contributing authors might be in relation with all other authors, yet
all relate with the publication [14]. These non-human mobilization actors make up the bulk
of the network including conference venues, presentations (invited oral, non-invited oral and
poster), articles, journals, laboratories, research projects, websites, and theses.

Classical statistical parameters have been calculated for Knowledge-Net, representing it
as a static graph where the time of appearance of nodes and edges did not hold any particular
meaning. In doing so, several interesting observations were made regarding the centrality of
certain nodes as knowledge mobilizers and the presence of communities [14]. In particular,
all actor types increased in number over the 7 years indicating a rise in new mobilization
relations over time. Although non-human individual actor absolute numbers remained small
(ranging from 3 in 2006 to 15 in 2011), these actors were critical to making visible tacit
(non-codified) knowledge mobilization from around the world (mostly laboratory material
sharing, including from organizations and universities in the USA, from Norway, and from
Canadian universities). Finally, embedded in human individual actor counts were individuals
that the laboratory acknowledged in peer-reviewed papers, thus making further tacit and
explicit knowledge mobilization visible.

When representing Knowledge-Net as a TVG, we notice that the latency ζ is always zero,
as an edge represents a relationship and its creation does not involve any delay; moreover,
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Figure 1: A small portion of Knowledge-Net represented as a TVG.

edges and nodes exist from their creation (their birth-date) to the end of the system lifetime.
Let birth-date(e) denote the year when edge e is created. An example of a small portion of
Knowledge-Net represented as a TVG is given in Figure 1.

We also notice that, due to zero latency and to the fact that edges never disappear once
created, any shortest journey route in G is equivalent to a shortest path on the static graph
corresponding to its footprint; moreover, the notion of fastest journey does not have much
meaning in this context, because on any route corresponding to a journey, there would be a
fastest one. On the other hand, the notion of foremost journey, and in particular of foremost
increasing journey, is extremely relevant as it describes timely mobilization flow, i.e., flow
that arrives at a node as early as possible.

Note that in this setting, the computation of foremost betweenness can be performed
using Algorithm 3 introduced in the previous Section.

5 Study of KnowledgeNet

5.1 Preliminary Analysis on Consecutive Snapshots

To provide more clear statistics on the Knowledge-Net dataset and a ground for better
understanding of temporal metrics, we first calculated classical statistical measures (e.g.,
node centrality measures, path length, density) on the seven static graphs, corresponding to
the seven years of study. The average for each value for the graphs is calculated to represent
a benchmark on how the rank for each node is compared to others.

The statistical data presented in Table 2 provides valuable information about the graph.
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Table 2: Some static statistical parameters calculated for successive snapshots

2005 2006 2007 2008 2009 2010 2011

Ave. Degree 1.40 1.32 1.63 1.84 1.98 2.02 2.04

Diameter 4 5 5 6 6 6 6

Density 0.31 0.04 0.04 0.02 0.02 0.01 0.01

#Communities 4 3 6 8 8 15 12

Modularity 0.17 0.52 0.46 0.47 0.46 0.54 0.54

Ave. Clustering Coefficient 0.41 0.06 0.21 0.22 0.20 0.24 0.23

Ave. Path Length 2.04 3.04 3.06 3.26 3.34 3.46 3.50

Ave. Normalized Closeness 0.51 0.33 0.33 0.31 0.30 0.29 0.29

Ave. Eccentricity 3.10 4.41 4.40 4.70 4.80 4.83 4.83

Ave. Betweenness 4.70 58.36 83.53 169.70 234.89 354.23 456.18

Ave. Normalized Betweenness 0.13 0.03 0.02 0.01 0.01 ≈ 0 ≈ 0

Ave. Page Rank 0.10 0.01 0.01 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ave. Eigenvector 0.52 0.19 0.15 0.10 0.09 0.07 0.05

The steady decrease in the (normalized) centrality values confirms that the network growth
is not symmetric, so the centrality values have long tails. The low value of normalized
betweenness, along with the low values for density, confirms that the graph is coupled in a
way that there are a great number of shortest paths between any two arbitrary vertices in
the graph. This caused the betweenness for most vertices to be similar and quite low when
compared to the ones of nodes with the highest betweenness. Low average path length is a
sign that the network presents small world characteristics and the knowledge mobilization to
the whole network is expected to be conducted only in a few hops. Meanwhile, the decreasing
graph density along with the increasing average degree represent the slow growth in the
number of edges compared to the number of nodes. Escalation in the number of communities
with increase in graph modularity metrics shows that the knowledge mobilization actors tend
to form communities as time progresses. As the normalized average betweenness decreases
steadily, it can be concluded that a few vertices at each community play the role of mediators
and create the link between communities.

Apart from these general observations, a static analysis of consecutive snapshots, does
not provide deep temporal understanding. For example, it does not reflect which entities
engage in knowledge mobilization in a timely fashion, e.g. by facilitating fast mobilization,
or slowing mobilization flow.

To tackle some of these questions, we represent Knowledge-Net as a TVG and we propose
to study it by employing a form of temporal betweenness that makes use of time in an explicit
manner.
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5.2 Foremost Betweenness of Knowledge-Net

In this Section we focus on Knowledge-Net, and we study TBTF (v) for all v. Nodes are ranked
according to their betweenness values and their ranks are compared with the ones obtained
calculating their static betweenness BT (v) in the same time frame. Given the different
meaning of those two measures, we expect to see the emergence of different behaviours, and,
in particular, we hope to be able to detect nodes with important temporal roles that were
left undetected in the static analysis.

5.2.1 Foremost Betweenness during the lifetime of the system

Table 3 shows the temporally ranked actors accompanied by their static ranks, and the high
ranked static actors with their temporal ranks, both with lifetime T = [2005-2011]. In our
naming convention, an actor named Xi(yy) is of type X, birth date yy and it is indexed
by i; types are abbreviated as follows: H (human), L (Lab), A (article), C (conference),
J (journal), P (project), C (paper citing a publication), I (invited oral presentation), O
(oral presentation). Note that only the nodes whose betweenness has a significant value are
considered, in fact betweenness values tend to lose their importance, especially when the
differences in the values of two consecutive ranks are very small [11].

Interestingly, the four highest ranked nodes are the same under both measures; in partic-
ular, the highest ranked node (L1(05)) corresponds to the main laboratory where the data
is collected and it is clearly the most important actor in the network whether considered in
a temporal or in a static way. On the other hand, the table reveals several differences worth
exploring. From a first look we see that, while the vertices highest ranked statically appear
also among the highest ranked temporal ones, there are some nodes with insignificant static
betweenness, whose temporal betweenness is extremely high. This is the case, for example,
of nodes S1(10) and J1(06).

The case of node S1(10). To provide some interpretation for this behaviour we observe
vertex S1(10) in more details. This vertex corresponds to a poster presentation at a confer-
ence in 2010. We explore two insights. First, although S1(10) has a relatively low degree, it
has a great variety of temporal connections. Only three out of ten incident edges of S1(10)
are connected to actors that are born on and after 2010, and the rest of the neighbours ap-
pear in different times, accounting for at least one neighbour appearing each year for which
the data is collected. This helps the node to operate as a temporal bridge between different
time instances and to perhaps act as a knowledge mobilization accelerator.

Second, S1(10) is close to the centre of the only static community present in [2010-2011]
and it is connected to the two most important vertices in the network. The existence of
a single dense community, and the proximity to two most productive vertices can explain
its negligible static centrality value: while still connecting various vertices S1(10) is not the
shortest connector and its betweenness value is thus low. However, a closer temporal look
reveals that it plays an important role as an interaction bridge between all the actors that
appear in 2010 and later, and the ones that appear earlier than 2010. This role remained
invisible in static analysis, and only emerges when we pay attention to the time of appearance
of vertices and edges. On the basis of these observations, we can interpret S1(10)’s high
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Table 3: List of highest ranked actors according to temporal (resp. static) betweenness,
accompanied by the corresponding static (resp. temporal) rank in lifetime [2005-2011].

Temporal to Static Static to Temporal

Actor Temporal Rank Static Rank Actor Static Rank Temporal Rank

L1(05) 1 1 L1(05) 1 1

H1(05) 2 2 H1(05) 2 2

A1(06) 3 3 A1(06) 3 3

A2(08) 4 4 A2(08) 4 4

P1(06) 5 8 A5(08) 5 12

A3(07) 6 9 A4(09) 6 7

A4(09) 7 6 P2(08) 7 9

S1(10) 8 115 P1(06) 8 5

P2(08) 9 7 A3(07) 9 6

J1(06) 10 160 P3(10) 10 17

C1(07) 11 223 A6(11) 11 18

A5(08) 12 5 A8(09) 12 36

I1(09) 13 28 P4(10) 13 22

O1(05) 14 45 P5(11) 14 27

S2(05) 15 46 H2(05) 15 44

I2(05) 16 47 A7(09) 16 21

P3(10) 17 10 A9(10) 17 31

A6(11) 18 11 P5(11) 18 69

C2(10) 19 133 P6(10) 19 23

J2(09) 20 182

A7(09) 21 16
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temporal betweenness value as providing a fast bridge from vertices created earlier and
those appearing later in time. This lends support to the importance of poster presentations
that can blend tacit and explicit knowledge mobilization in human - poster presentation
- human relations during conferences and continue into future mobilization with new non-
human actors as was the case for S1(10) [2].

The case of node J1(06). J1(06), the Journal of Neurochemistry, behaves similarly to
S1(10) with its high temporal and low static rank. As opposed to S1(10), this node is in-
troduced very early in the network (2006); however, it is only active (i.e. has new incident
edges) in 2006 and 2007. It has only three neighbours, A1(06), A3(07), and C1(07), all highly
ranked vertices statically (A1(06), A3(07)), or temporally (C1(07)). Since its neighbouring
vertices are directly connected to each other or in close proximity of two hops, J1(06) fails
to act as a static short bridge among graph entities. However, its early introduction and
proximity to the most prominent knowledge mobilizers helps it become an important tem-
poral player in the network. This is because temporal journeys overlook geodesic distances
and are instead concerned with temporal distances for vertices. These observations might
explain the high temporal rank of J1(06) in the knowledge mobilization network.

5.2.2 A Finer look at foremost betweenness

A key question is whether the birth-date of a node is an important factor influencing its tem-
poral betweenness. To gain insights, we conducted a finer temporal analysis by considering
TBTF for all possible birth-dates, i.e, for T = [x,2011], ∀x ∈ {2005, 2006, 2007, 2008, 2009, 2010,
2011}. This allowed us to observe how temporal betweenness varies depending on the con-
sidered birth-date.

Before concentrating on selected vertices (statically or temporally important with at least
one interval), and analysing them in more detail, we briefly describe a temporal community
detection mechanism that we employ in analysis.

Detection of temporal communities. We approximately detect communities existing
in temporal networks. To detect communities involving x, we first determine the temporal
foremost journeys arriving at or leaving from x. We then replace each journey with a single
edge, creating a static graph with an edge between x and all the vertices that are reachable
from or can reach x in a foremost manner. For instance, Fig. 2 shows the transformation
of a graph into a directed weighted graph that is used for community detection. We finally
apply existing directed weighted community detection algorithms to compute communities
around x [15]. The model is an approximation since it overlooks the role that is played in
communities by vertices that fall along journeys while not being their start or end-points;
however, it is sufficient for our purposes to give an indication of the community formation
around a node.

The case of node P1(06). This is a research project led by the principle investigator at
L1(05). The project was launched in 2006 and its official institutional and funded elements
wrapped-up in 2011. Data in Table 3 support that P1(06) has similar temporal and static
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Figure 2: Transformation of a temporal graph into a weighted graph used for community
detection.

ranks with regards to its betweenness in lifetime [2005-2011]. One could conclude that the
temporal element does not provide additional information on its importance and that the
edges that are incident to P(06)-1 convey the same temporal and static flow. However, there
is still an unanswered question on whether or not edges act similarly if we start observing
the system at different times. Will a vertex keep its importance throughout the system’s
lifetime?

The result of such analysis is provided in Fig. 3, where TBTF (P1(06)) is calculated for
each birth-date (indicated in the horizontal axis), with all intervals ending in 2011.

While both equally important during the entire lifetime [2005-2011] of the study, this
project seems to assume a rather more relevant temporal role when observing the system in
a lifetime starting in year 2007 (i.e., T =[2007-2011]), when its static betweenness is instead
negligible. This seems to indicate that the temporal flow of edges incident to P1(06) appear-
ing from 2007 on is more significant than the flow of the edges that appeared previously.

With further analysis of P1(06)’s neighbourhood in [2007-2011], we can formulate tech-
nical explanations for this behaviour. First, its direct neighbours also have better temporal
betweenness than static betweenness. Moreover, its neighbours belong to various communi-
ties, both temporally and statically. However, looking at the graph statically, we see several
additional shortest paths that do not pass through P1(06) (thus making it less important
in connecting those communities). In contrast, looking at the graph temporally P1(06) acts
as a mediator and accelerator between communities. More specifically, we observe that the
connections P1(06) creates in 2006 contribute to the merge of different communities that
appear only in 2007 and later. When observing within interval [2006-2011], we then see
that P1(06) is quite central from a static point of view, because the appearance of time of
edges does not matter but, when observing it in lifetime [2007-2011] node P1(06) loses this
role and becomes statically peripheral because the newer connections relay information in
an efficient temporal manner.

In other words, it seems that P1(06) has an important role for knowledge acceleration in
the period 2007-2011, a role that was hidden in the static analysis and that does not emerge
even from an analysis of consecutive static snapshots. For research funders, revealing a re-
search project’s potentially invisible mobilization capacity is relevant. Research projects can
thus be understood beyond mobilization outputs and more in terms of networked temporal
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Figure 3: Comparison between different values for vertex P1(06). Ranks of the vertex in the
last interval are not provided as both betweenness values are zero.

bridges to broader impact.

The case of node A3(07). The conditions for A3(07), a paper published in 2007, il-
lustrate a different temporal phenomenon. Node A3(07) has several incident edges in 2007
(similarly to node P1(06)) when both betweenness measures are high. Peering deeper into
the temporal communities formed around A3(07) is revealing: up to 2007, this vertex is two
steps from vertices that connect two different communities in the static graph. The situa-
tion radically changes however with the arrival of edges in 2008 that modify the structure of
those communities and push A3(07) to the periphery. The shift is dramatic from a temporal
perspective because A3(07) loses it accelerator role where its temporal betweenness becomes
negligible, while statically there is only a slight decrease in betweenness. The reason for
a dampened decrease in static betweenness is that this vertex is close to the centre of the
static community, connecting peripheral vertices to the most central nodes of the network
(such as L1(05) and H1(05)). It is mainly proximity to these important vertices that sustains
A3(07)’s static centrality.

Such temporal insights lend further support to understanding mobilization through a
network lens coupled with sensitivity to time. A temporal shift to the periphery for an actor
translates into decreased potential for sustained mobilization.

5.3 Invisible Rapids and Brooks

On the basis of our observations, we define two concepts to differentiate the static and
temporal flow of vertices in Knowledge Mobilization networks. We call rapids the nodes
with high foremost betweenness, meaning that they can potentially mobilize knowledge in
a timelier manner; and brooks the ones with insignificant foremost betweenness. Moreover,
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Figure 4: Comparison between different values for vertex A3(07). Ranks of the vertex in the
last interval are not provided as both betweenness values are zero.

we call invisible rapids those vertices whose temporal betweenness rank is considerably more
significant than their static rank (i.e., the ones whose centrality was undetected by static
betweenness), and invisible brooks the ones whose static betweenness is considerably higher
than their temporal betweenness, meaning that these vertices can potentially be effective
knowledge mobilizers, yet they are not acting as effectively as others due to slow or non-
timely relations.

Invisible rapids and brooks can be present in different lifetimes as their temporal role
might be restricted to some time intervals only; for example, as we have seen in the previous
Section, S1(10) and J1(06) are invisible rapids in T = [2005-2011], P1(06) is an invisible
rapid in T = [2007-2011], A3(07) is an invisible brook in T = [2008-2011]. Tables 4 and 5
indicate the major invisible rapids and brooks observed in Knowledge-Net.

The presence of a poster presentation, a research project, two journals and a conference
publication among the invisible rapids supports that different types of mobilization actors
can impact timely mobilization while not being as effective at creating short paths among
entities for knowledge mobilization. In other words, they can play a role of accelerating
knowledge mobilization, but to a concentrated group of actors.

As for invisible brooks, we observe a journal (the Biochemica et Biophysica Acta-Molecular
Cell Research (J3(08)), three papers (C3(11), C4(07), and C5(07)) that cite publications by
the main laboratory in the study (L1(05)), a publication (A3(07)) mobilizing knowledge from
members of L1(05), and a research assistant who worked on several research projects as an
HQP. In comparison with invisible rapids, there is a wider variety in the type of mobilization
actors that act as brooks which does not readily lend itself to generalization.

Interestingly, we see the presence of journals among invisible rapids and brooks. From
our analysis, it seems that journals can hold strikingly opposite roles: on the one hand they
can contribute considerably to more timely mobilization of knowledge while not being very
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Table 4: Major invisible rapids

Actor Time Temp. Rank Stat. Rank Type

P1(06) [07-11] 5 105 project

S1(10) [05-11] 8 115 poster

[06-11] 8 113

[07-11] 7 115

[08-11] 5 104

J1(06) [05-11] 10 160 journal

[06-11] 10 154

[07-11] 10 223

C1(07) [05-11] 11 223 citing publication

[06-11] 11 220

J2(09) [06-11] 17 179 journal

[07-11] 16 182

C2(10) [05-11] 19 133 citing poster

[06-11] 16 132

[07-11] 15 133

strong bridges between communities; while on the other hand, they can play critical roles
in bridging network communities, but at a slow pace. A brook, the journal Biochemica et
Biophysica Acta-Molecular Cell Research (J3(08)), for example, helped mobilize knowledge
in two papers for L1(05) (in 2008 and 2009) and is a journal in which a paper (in 2011) citing
a L1(05) publication was also published. Given expected variability in potential mobilization
for a journal, it is not surprising to see these mobilization actors at both ends of the spectrum.

In contrast, the presence of a research project as an invisible rapid is meaningful. It is
meaningful in two ways. First, because when public funders invest in research projects as
mobilization actor, an implicit if not explicit measure of success is timely mobilization with
potential impact inside and outside of academia [14]. Ranking as a rapid (for a mobilization
actor) is one measure that could therefore help funding agencies monitor and detect temporal
change in mobilization networks. Second, a research project as rapid is meaningful because
by its very nature a research project can help accelerate mobilization for the full range of
mobilization actors, including other research projects. As such, it is not surprising that they
can become temporal conduits to knowledge mobilization in all of its forms.

6 Conclusions

In this paper, we proposed the use of a temporal betweenness measure (foremost between-
ness) to analyse a knowledge mobilization network that had been already studied using
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Table 5: Major invisible brooks

Actor Time Stat. Rank Temp. Rank Type

J3(08) [08-11] 9 117 journal

[09-11] 12 84

C3(11) [08-11] 10 191 citing publication

[09-11] 15 153

C4(11) [08-11] 15 105 citing publication

H2(05) [06-11] 16 118 researcher

[07-11] 15 134

A3(07) [08-11] 16 187 publication

C5(07) [08-11] 18 158 citing publication

classical “static” parameters. Our goal was to see the impact on the perceived static central
nodes when employing a measure that explicitly takes time into account. We observed inter-
esting differences. In particular, we witnessed the emergence of invisible rapids: nodes whose
static centrality was considered negligible, but whose temporal centrality appears relevant.
Our interpretation is that nodes with high temporal betweenness contribute to accelerate
mobilization flow in the network and, as such, they can remain undetected when the analysis
is performed statically. We conclude that foremost betweenness is a crucial tool to under-
stand the temporal role of the actors in a dynamic network, and that the combination of
static and temporal betweenness is complementary to provide insights into their importance
and centrality.

Temporal network analysis as performed here is especially pertinent for KM research
that must take time into account to understand academic research impact beyond the narrow
short-term context of academia. Measures of temporal betweenness, as studied in this paper,
can provide researchers and funders with critical tools to more confidently investigate the role
of specific mobilization actors for short and long-term impact within and beyond academia.
The same type of analysis could clearly be beneficial when applied to any other temporal
context.

In conclusion, we focused here on a form of temporal betweenness designed to detect
accelerators. This is only a first step towards understanding temporal dimensions of social
networks; other measures are already under investigation.
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